Research article Special Issues

Uniqueness criteria for initial value problem of conformable fractional differential equation

  • Received: 26 April 2023 Revised: 19 May 2023 Accepted: 23 May 2023 Published: 26 May 2023
  • This paper presents four uniqueness criteria for the initial value problem of a differential equation which depends on conformable fractional derivative. Among them is the generalization of Nagumo-type uniqueness theory and Lipschitz conditional theory, and advances its development in proving fractional differential equations. Finally, we verify the main conclusions of this paper by providing four concrete examples.

    Citation: Yumei Zou, Yujun Cui. Uniqueness criteria for initial value problem of conformable fractional differential equation[J]. Electronic Research Archive, 2023, 31(7): 4077-4087. doi: 10.3934/era.2023207

    Related Papers:

  • This paper presents four uniqueness criteria for the initial value problem of a differential equation which depends on conformable fractional derivative. Among them is the generalization of Nagumo-type uniqueness theory and Lipschitz conditional theory, and advances its development in proving fractional differential equations. Finally, we verify the main conclusions of this paper by providing four concrete examples.



    加载中


    [1] R. P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109 (2010), 973–1033.
    [2] K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, 2010.
    [3] S. Asawasamrit, S. K. Ntoutas, P. Thiramanus, J. Tariboon, Periodic boundary value problems for impulsive conformable fractional integro-differential equations, Boundary Value Probl., 2016 (2016), 122. https://doi.org/10.1186/s13661-016-0629-0 doi: 10.1186/s13661-016-0629-0
    [4] R. A. C. Ferreira, Existence and uniqueness of solutions for two-point fractional boundary value problems, Electron. J. Differ. Equations, 2016 (2016), 1–5.
    [5] R. A. C. Ferreira, A uniqueness result for a fractional differential equation, Fract. Calc. Appl. Anal., 15 (2012), 611–615. https://doi.org/10.2478/s13540-012-0042-z doi: 10.2478/s13540-012-0042-z
    [6] R. P. Agarwal, V. Lakshmikantham, Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations, World Scientific, Singapore, 1993. https://doi.org/10.1142/1988
    [7] M. Nagumo, Eine hinreichende Bedingung f$\ddot{u}$r die Unit$\ddot{a}$t der L$\ddot{o}$sung von Dierentialgleichungen erster Ordnung, Jpn. J. Math., 3 (1926), 107–112. https://doi.org/10.4099/JJM1924.3.0_107 doi: 10.4099/JJM1924.3.0_107
    [8] A. Constantin, On the unicity of solutions for the dierential equation $x^{n}(t) = f(t, x)$, Rend. Circ. Mat. Palermo, 42 (1993), 59–64. https://doi.org/10.1007/BF02845110 doi: 10.1007/BF02845110
    [9] D. Baleanu, O. G. Mustafa, D. O'Regan, A Nagumo-like uniqueness theorem for fractional differential equation, J. Phys. A: Math. Theor., 44 (2011), 104–116. https://doi.org/10.1088/1751-8113/44/39/392003 doi: 10.1088/1751-8113/44/39/392003
    [10] J. B. Diaz, W. L. Walter, On uniqueness theorems for ordinary differential equations and for partial differential equations of hyperbolic type, Trans. Am. Math. Soc., 96 (1960), 90–100. https://doi.org/10.2307/1993485 doi: 10.2307/1993485
    [11] K. Diethelm, The mean value theorems and a Nagumo-type uniqueness theorem for Caputo's fractional calculus, Fract. Calc. Appl. Anal., 15 (2012), 304–313. https://doi.org/10.2478/s13540-012-0022-3 doi: 10.2478/s13540-012-0022-3
    [12] K. Diethelm, Erratum: the mean value theorems and a Nagumo-type uniqueness theorem for caputo's fractional calculus, Fract. Calc. Appl. Anal., 20 (2017), 1567–1570. https:/doi.org/10.1515/fca-2017-0082 doi: 10.1515/fca-2017-0082
    [13] O. G. Mustafa, A Nagumo-like uniqueness result for a second order ODE, Monatsh. Math., 168 (2012), 273–277. https://doi.org/10.1007/s00605-011-0324-2 doi: 10.1007/s00605-011-0324-2
    [14] M. Baccouch, Superconvergence of the discontinuous Galerkin method for nonlinear second-order initial-value problems for ordinary differential equations, Appl. Numer. Math., 115 (2017), 160–179. https://doi.10.1016/j.apnum.2017.01.007 doi: 10.1016/j.apnum.2017.01.007
    [15] I. Bogle, L. David, Comparison between interval methods to solve initial value problems in chemical process design, Comput. Aided Chem. Eng., 33 (2014), 1405–1410. https://doi.org/10.1016/B978-0-444-63455-9.50069-6 doi: 10.1016/B978-0-444-63455-9.50069-6
    [16] R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivatuive, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [17] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [18] R. Abreu-Blaya, A. Fleitas, J. E. N. Vald$\acute{e}$s, R. Reyes, J. M. Rodr$\acute{i}$guez, J. M. Sigarreta, On the conformable fractional logistic models, Math. Methods Appl. Sci., 43 (2020), 4156–4167. https://doi.org/10.1002/mma.6180 doi: 10.1002/mma.6180
    [19] N. Gozutok, U. G$\ddot{o}$z$\ddot{u}$tok, Multivariable conformable fractional calculus, Filomat, 32 (2018), 45–53.
    [20] M. Bohner, V. F. Hatipo$\check{g}$lu, Cobweb model with conformable fractional derivatives, Math. Methods Appl. Sci., 41 (2018), 9010–9017. https://doi.org/10.1002/mma.4846 doi: 10.1002/mma.4846
    [21] A. Harir, S. Malliani, L. S. Chandli, Solutions of conformable fractional-order SIR epidemic model, Int. J. Differ. Equations, 2021 (2021), 6636686. https://doi.org/10.1155/2021/6636686 doi: 10.1155/2021/6636686
    [22] L. Martnez, J. J. Rosales, C. A. Carreo, J. M. Lozano, Electrical circuits described by fractional conformable derivative, Int. J. Circuit Theory Appl., 46 (2018), 1091–1100. https://doi.org/10.3389/fenrg.2022.851070 doi: 10.3389/fenrg.2022.851070
    [23] N. H. Tuan, T. N. Thach, N. H. Can, D. O'Regan, Regularization of a multidimensional diffusion equation with conformable time derivative and discrete data, Math. Methods Appl. Sci., 44 (2021), 2879–2891. https://doi.org/10.1002/mma.6133 doi: 10.1002/mma.6133
    [24] W. S. Chung, Fractional Newton mechanics with conformable fractional derivative, J. Comput. Appl. Math., 290 (2015), 150–158. https://doi.org/10.1016/j.cam.2015.04.049 doi: 10.1016/j.cam.2015.04.049
    [25] D. Zhao, M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo, 54 (2017), 903–917. https://doi.org/10.1007/s10092-017-0213-8 doi: 10.1007/s10092-017-0213-8
    [26] M. Vivas-Cortez, M. P. $\acute{A}$rciga, J. C. Najera, J. E. Hern$\acute{a}$ndez, On some conformable boundary value problems in the setting of a new generalized conformable fractional derivative, Demonstr. Math., 56 (2023), 20220212. https://doi.org/10.1515/dema-2022-0212 doi: 10.1515/dema-2022-0212
    [27] Y. H. Cheng, The dual eigenvalue problems of the conformable fractional Sturm-Liouville problems, Boundary Value Probl., 2021 (2021), 83. https://doi.org/10.1186/s13661-021-01556-z doi: 10.1186/s13661-021-01556-z
    [28] W. C. Wang, Y. H. Cheng, On nodal properties for some nonlinear conformable fractional differential equations, Taiwan. J. Math., 26 (2022), 847–865. https://doi.org/10.11650/tjm/220104 doi: 10.11650/tjm/220104
    [29] E. R. Nwaeze, A mean value theorem for the conformable fractional calculus on arbitrary time scales, Progr. Fract. Differ. Appl., 4 (2016), 287–291. https://doi.org/10.18576/pfda/020406 doi: 10.18576/pfda/020406
    [30] M. Atraoui, M. Bouaouid, On the existence of mild solutions for nonlocal differential equations of the second order with conformable fractional derivative, Adv. Differ. Equations, 2021 (2021), 1–11. https://doi.org/10.1186/s13662-021-03593-5 doi: 10.1186/s13662-021-03593-5
    [31] O. S. Iyiola, E. R. Nwaeze, Some new results on the new conformable fractional calculus with application using D'Alambert approach, Progr. Fract. Differ. Appl., 2 (2016), 115–122. https://doi.org/10.18576/pfda/020204 doi: 10.18576/pfda/020204
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(878) PDF downloads(62) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog