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1. Introduction

Fractional calculus is an effective assistant for explaining the mathematical analysis process in var-
1ous research fields of finance, control systems and mechanics and so forth [1,2]. Latest results related
to fractional differential equations, we recommend reference [3-5].

Uniqueness results play an integral role in the foundation of many of the results in applied sci-
ence. Therefore, different types of initial value problem (IVP) and boundary value problems (BVP)
for differential equation and differential system have been studied, we refer the reader to [2,6—13]. For
example, [2] studied the existence and uniqueness results for a class of fractional differential equations
(FDE), and the results obtained by Diethelm are very similar to the classical theorem in the first-order
differential equation.

Mathematical models involving initial value problems established in scientific and engineering ap-
plications are described by ODE or FDE. Several examples are more convincing:

¢ =f.e.¢), ¢€l0,T],
0(0)=a, ¢'0)=p.
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This nonlinear IVP is widely used in many places. It is used in [14] to give the description of the
spatial variation for physical system. The initial value problem has also been significantly studied in
chemical process design, [15] introduced the comparison of two interval methods to discuss the initial
value problem of ODE.

Long ago, Nagumo [7] discussed the initial value problem consisting of the equation

¢ = f0.e(), 0<y<a,

and the initial condition
¢(0) =0,

where f : [0,a] X R" — R”" is continuous and satisfies

& —nl

0y >0, kel < M.
y

Then, it is concluded that ¢(¢) = 0 is the only solution of the above equation and is further generalized

in [8]. It should be noted that for the n-th order equation in [8] when the coefficient }l in the above

inequality is replaced by 270) where w is an absolutely continuous function with w(0) = 0, w(y) > 0

on [0, a], and if "
If (.8 = fG. )l
W(”)(y)

uniqueness is also established at this time.

In [11, 12], K. Diethelm introduced a uniqueness theorem for Caputo-type fractional differential
equation together with initial value problems using a mean value theorem for Caputo-type fractional
derivative when 0 < a < 1.

Motivated by the above works, the task of this paper is to analyze the following nonlinear conformal
fractional differential equations

— 0, wheny — 0" and &, — 0,

£(0) = 0, (1.1)

where b is a nonnegative constant, @ € (0, 1] and D,¢(y) is the standard conformable fractional deriva-
tive. The conformable fractional derivative, regarded as a new simple fractional derivative, is intro-
duced by the authors [16]. In 2015 Abdeljawad [17] improved the definitions of conformable frac-
tional derivative by introducing a slight modification. In 2019, AbreuBlaya et al. [18] introduced a
generalized conformable fractional derivative. Also in 2018, Nazli et al. [19] introduced multi-variable
conformable derivative for a vector valued function with several variables. Now, conformable frac-
tional calculus have drawn significant interest due to its wide range of applications in different fields of
sciences and engineering [20-25], and the nature of these definitions combines all the requirements of
the standard derivative such as chain rule, fractional integration by parts formulas and fractional power
series expansion, mean value theorem. For recent results and applications on conformable fractional
calculus we refer the reader to [26-30] and references therein.

A function ¢(y) is called a solution of Eq (1.1) if ¢ € C[0,b], D,p(y) exists and ¢(y) satisfies
Eq (1.1). We derived the uniqueness result of Eq (1.1) employing the mean value theorem of the
conformable fractional calculus are proved in [17]. We then introduce the uniqueness of the initial

{ Doe(y) = f(y, (), y € [0,b],
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value problem for conformable fractional differential operators. This uniqueness theorem extends the
classical Nagumo theorem of first-order differential equations (see [10]); later we further extend the
Athanassov-like term and the classical Lipschitz condition as the uniqueness theorem. In addition,
These effective methods are also derived from the ideas in [6] and [13].

2. Preliminaries

In this section, it is not doubtful that we introduce some necessary definitions, lemmas, and some
related properties.
Definition 2.1. [16] Let ¢ : [0,+00) —» R, y > 0 and a € (0,1]. Then The a-conformable fractional
derivative of a function ¢(y) is defined by

ey + &' — o)
3
for'y > 0 and the conformable fractional derivative at 0 is defined as D,p(0) = liI(I)l (Do)). If @ is
y— +

differentiable then D,p(y) = y'=%¢'(y).
Definition 2.2. [16] The conformable fractional integral of a function ¢(y) of order « is given as

D.p(y) = ?L%

Lg(y) = fo " p(s)ds. @1

Lemma 2.3. [17] Let ¢ : (0, +o0) — R be differentiable and a € (0, 1]. Then,

I(tD(t‘P(y) = 90(y) - (,0(0), y > 0.

Lemma 2.4 [17] Let @ € (0,1], v,k, ki, k, € R, and the function u, v be a-differentiable on [0, +c0),
then:

(i) Dou(y) = 0 for all constant functions u(y) = k;

(i1) Do(kyu + kyv) = ki Dou(x) + koDov(x),

(iii) Doy = yy"™*;

(iv) Do(uv) = u(y)Dov(y) + v(y)Dou(y);

u V( )Dau )—I/t )Dav( )
) D, (%) = TP LD,
Lemma 2.5. [17] (Mean value theorem) Let b > a > 0, and u : [a,b] — R be a given function that
satisfies

(i) u is continuous on |a, b,

(ii) u is a-differentiable for some a € (0, 1).

Then there exists a { € (a, b), such that D,u({) = %.
Lemma 2.6. [31] Let u : [a,b] — R be continuous on [c;, b] and a-differentiable for some a € (0, 1).
Then we have the following:

1). uis increasing on [a, b] if D,u(x) > 0 for any x € (a, D).

2). u is decreasing on [a, b] if D u(x) < 0 for any x € (a, b).
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3. Main results

This section is the most exciting part of this article, some uniqueness results for the IVP involving
conformable fractional differential equation are stated as follows.
Theorem 3.1. Let 0 < a < 1. Assume that . l)in(lo 0 fO,u) = £(0,0), and forall y € [0,b] and u,v € R,

the function f satisfies the inequality

YIfuw) = fOl < klu—vl, k<a. (3.1

Then Eq (1.1) has at most one solution.
Proof. Suppose that ¢, ¢, are two different continuous solution of Eq (1.1) on [0, b], it is clear that

©1(0) = ¢2(0) = 0. We need to prove that ¢,(y) = ¢,(y) for y € (0, b]. Let o(y) = ¢1(¥) — ¢2(y), now we
define a function ¥(y) by

_ [y leOI, y€(0,0],
Since both ¢; and ¢, are two solutions of Eq (1.1) and on account of Lemma 2.5, we conclude
Yy = Yy ler) — el

YV le1(y) = ©1(0)] = [02(y) — ¢2(0)]]
Yl y* Dar (1) — @'y Dogpr(n)|

@ 1Do1(17) — Dopr (1)

a 1f 1) = f@m, 2D, 1 € (0, 1).

Subsequently, we can get n — 0, and ¢;(17), ¢2(7) — 0 when y — 0. From the continuity of f, we
conclude that

Y = o f (1, ¢10) = f(1. 2| = @71 £(0,0) — £(0,0)] = ¥(0).

That is to say that y/(y) is nonnegative continuous on [0,b]. If ¥(y) # 0 on (0,b], then it is easy
to conclude that there is a yo € (0, b] such that “%8‘2‘] U(y) = ¥(yg) > 0 and that ¥(y;) < ¥(yg) for
yelo,

v1 € (0,y9). By help of Lemma 2.5 and Eq (3.1), we derive that

Y (yo) Yo le1(vo) = @2(0)l

Yo lle1(o) — @1 (0] = [@2(y0) — 2(0)]]
@ '1Dop1(31) — Datpr (1)

af @) = Fn, e20))
@'Ykl (1) — @2l

'y %alei (1) = ea(n)

Y(y1), y1 € (0,y0).

The contradiction show that ¥/(y) = 0, y € [0, b], thus, ¢(y) = 0, y € [0, b], in other words, we have
©1(y) = ¢2(y) for y € [0, b]. The proof of Theorem 3.1 is completed.

When @ = 1 in Theorem 3.1, the conformable fractional derivative of order @ = 1 coincides with
the known usual derivatives. Thus Theorem 3.1 complement and extend the results in [10].

The following example shows that the restriction k < @ imposed in Eq (3.1) is optimal.

I IA A I
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Example 3.1. Consider IVP in the following form:

Dog(y) = f(v, (), y €10,D],
{ 0(0) = 0, (3.2)
where
0, yel0,b],u<0;
(@+8&u
fO,u) = ,VE0,b], O<u<y’, e=a+é>a;

(@+ &)y ™, yel0,b], y° <u.

For 0 <u <y*, f(y,u) = (":ﬂ So we have

I < @r e,

60 = | .

which easily implies that f is continuous on [0, b] X R. Moreover, f satisfies the Eq (3.1) on [0, b] X R
except that k = o + ¢ > a. We have the following four cases to illustrate:
Case 1: When O < u,u < y*, we have

fO.w) = f(w)] = \(“ +f)” @ +f)ﬁ -¢ tg) lu = ).
y y y
Case 2: When 0 < u < y* < u, we have
0u0 - sl = [ ;f)” — @+ 8y = ("‘y—*;é:)(ys — )
< W Oa
y(l
Case 3: When u < 0 < u < y®, we have
a0 = £ = fo - ] < B,
Case 4: When u <0, y* < u, we have
(@+&) ,

f G, u) = f(y, )] 0= (a + &)y = T

(atf)ﬁs (a+§)|u_ﬁ|.

y e

However, Eq (3.2) has multiple solutions ¢(y) = cy**¢ with ¢ € (0, 1).

The fractional order integral equation is used in the proof process of the next uniqueness result.
Theorem 3.2. Assume that there is a function w € C*[0,b] = {¢ : ¢ € C[0,b], Doy € C[0,b]} such
that w(y) > 0 for all y > 0 and w(0) = 0. In addition, for u,u € R, w and f satisfies

D w(y)
w(y)

lu—1ul|, ye(0,b], (3.3)
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and B
lim |f(y’ Ll) - f(y’ l/t)l —

0.
y—0,11,i—0 D, w(y)

Then Eq (1.1) has at most one solution.

(3.4)

Proof. Assume that Eq (1.1) has two different continuous solutions ¢; and ¢,. On account of Lemma

2.3, we can infer that

Y
o1(y) = fo 2, g1 (x))dx,

and

() = fo e F(x, oa(x))dx.
Then take Y(y) = ¢1(y) — ¢2(y), we get
U462) ler1(y) — @20
fo y X 01(0) = f(x, @a(X))]dx

IA

Y
fo UG 91(9) = f(x ea(Xd.

Now, for y € [0, b], define function ¢(y) by

W)
60) :{ wy €O

0, y=0.
In view of Eq (3.4) we obtain that for all € > 0 there exists a > 0 such that

L/ (x, o1(x)) = f(x, p2(x))]
D, w(x)

<g O<x<n.

In other words,
|F(x, 1(x) = f(x, 92(X)| < eDpw(X).

By Eqgs (3.3) and (3.5), we obtain that

IA

Y
f X f (01 (x0)) = f(x, @a(x))ldx

0
Yy
£ f x* ' Dyw(x)dx

0
el, D w(y)
ew(y), 0 <y<n.

)l

A

In other words,
i lyl
im— =

0.
y=0 w(y)

(3.5)
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Then, we get ¢(y) is a nonnegative continuous on [0, »]. From the above assumption, it is clear that
there exists a yy € (0, b] be such that rr%(a)lzc] d(y) = ¢(yo) > 0. Applying Eq (3.3), we can infer that
¥elO,

Y
)l < l:ﬂ*vwmmmyaﬂnwu»ux

Y D
< f x"‘l—“w(x)lwl(x)—st(x)Idx
0

w(Xx)

f ' X' D w(x)p(x)dx
0

A

¢ou\ijm*Dawcwdx
0

Thus,

w0l 600 [ Ce00
W) W) Jo ¥ D= 0w =40

From the above contradiction, we conclude that ¢(y) = 0 on [0, b]. In other words, ¢,(y) = ¢,(y) for
y € [0, b]. So the proof is finished.

Subsequently, an example is given to share the application of the Theorem 3.2.

Example 3.2. Consider initial value problem in the following form:

{awwzfﬂaﬁ¢w+é:yemu,aemJL
¢(0) = 0.

é(yo) =

(3.6)

Obviously, f(y,u) = y'"¥cos?u + ¢” and b = 1. New let w(y) = y, so we get
Dow(y) = y'™.
It is easy to obtain that
|cos2 u — cos? ﬁ| = % |cos 2u — cos 2u| < |u — u.

Subsequently, we observe that

1-
_ _ ¢ —. D, _
)~ F0.) = 'l cos® u — cos? Tl < 2 — 7 = 22, g
y w(y)
and
lim fO.w) — fowl - _ tim y'7% cos® u — cos? ul
y=0,,—0 Dow(y) y=0,u,i—0 yl-@

lim |cos®u — cos’
y—)O,M,ﬁ—)O

= 0.

With the help of Theorem 3.2, we can conclude that Eq (3.6) has at most one solution.
Theorem 3.3. Let f € C([0,b] X R,R) and f(y, u) is nonincreasing in u for every y € [0,b]. Then Eq
(1.1) has at most one solution in [0, b].

Electronic Research Archive Volume 31, Issue 7, 4077-4087.
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Proof. Assume that Eq (1.1) has two different solutions ¢, , ¢, on [0, b]. Then
Dop1(y) = f(r, 1)), y € 10,5,

Dop2(y) = f(y, 92()), y € [0,b],

and
©1(0) = 92(0) = 0.

Without loss of generality, we assume that there exist y;, y, € [0, b] such that
() =¢1(y), 0<y <y,

©2(0) > ¢1(y), y1 <y <y (3.7)
Thus for y € [y;, y,], we have

Do(p2(y) — 1(0) = f, 2(0) = fO, 01(y)) < 0.

Applying Lemma 2.6 to the above inequality, we get ¢,(y) — ¢;(y) 1s nonincreasing on [y, y,]. Further,
since ¢,(y1) = ¢1(y1), we have ¢,(y) < ¢1(y) on [y;, y,] which contradicts Eq (3.7). This contradiction
shows that ¢, (y) = ¢1(y) for all y € [0, b]. We complete the proof.

We shall illustrate Theorem 3.3 with an example.

Example 3.3. Consider IVP in the following form:

Dop(y) = —lp(y)|*sgne(y). y € [0, b],
(3.8)
¢(0) =0,
Obviously, the function f(y,u) = —Iulésgnu is continuous on [0, b] X R and it is nonincreasing in u

for y € [0, b]. Thus, it follows from Theorem 3.3 that ¢(y) = 0 is the only solution of Eq (3.8).
However, the function f in Eq (3.8) does not satisfy the Lipschitz condition. Then, the above de-
scription shows that the Lipschitz condition is a sufficient rather than a necessary condition to guarantee
the uniqueness for Eq (1.1). The following example shows that the nonincreasing property in Theorem
3.3 cannot be replaced by nondecreasing property.
Example 3.4. Consider IVP in the following form:
{ Dye(y) = k)l sgng(y). y € [0,b], 49
¢(0) =0,

Clearly, f(y,u) = |u|%sgnu is continuous on [0, »] X R and it is nondecreasing in u for y € [0, b].
However, Eq (3.9) has two solutions ¢(y) = 0 and ¢(y) = y.
Theorem 3.4. Let f € C([0,b] X R,R). In addition, f satisfies one-sided Lipschitz condition

SO,u)— fOy,u) < L(u—u), y[0,b], u <u. (3.10)

Then Eq (1.1) has at most one solution in [0, b].
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Proof. Let ¢(y) be a solution of (1.1). Take ¥(y) = e‘gyago(y). According to Lemma 2.4 it follows that
" Dop(y) + (1) Dge™ "

R () ~ Le P ()
e fly, e () = L ().

Do (y)

Therefore, ¢(y) solve of Eq (1.1) if and only if (y) satisfying the following conformable fractional
differential equation

{ Dyu(y) = F(y,u(y)), y € 10,b], (3.11)

u(0) =0,

where F(y,u) = e fO, eéynu) — Lu. It follows from Eq (3.10) that the function F(y, u) satisfying the
conditions in Theorem 3.3. So, Eq (3.11) has at most one solution, equivalently, Eq (1.1) has at most
one solution.

4. Conclusions

This paper is concerned with the study of uniqueness criteria for the initial value problem with
the uses of a conformable fractional derivative. By using conformable fractional calculus, we present
four uniqueness theorems which extends and complements the Nagumo-type uniqueness theory and
Lipschitz conditional theory. Four concrete examples are given to better demonstrate our main results.
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