Research article

Multiplicity of periodic solutions for weakly coupled parametrized systems with singularities

  • Received: 06 March 2023 Revised: 05 April 2023 Accepted: 14 April 2023 Published: 24 April 2023
  • We prove the existence of multiple periodic solutions for weakly coupled parametrized systems with a singularity of repulsive type at the origin and linear growth at infinity. The proof is based on a higher dimensional Poincaré-Birkhoff theorem and the phase-plane analysis of the solutions.

    Citation: Shuang Wang, Chunlian Liu. Multiplicity of periodic solutions for weakly coupled parametrized systems with singularities[J]. Electronic Research Archive, 2023, 31(6): 3594-3608. doi: 10.3934/era.2023182

    Related Papers:

  • We prove the existence of multiple periodic solutions for weakly coupled parametrized systems with a singularity of repulsive type at the origin and linear growth at infinity. The proof is based on a higher dimensional Poincaré-Birkhoff theorem and the phase-plane analysis of the solutions.



    加载中


    [1] A. Fonda, L. Ghirardelli, Multiple periodic solutions of scalar second order differential equations, Nonlinear Anal., 72 (2010), 4005–4015. https://doi.org/10.1016/j.na.2010.01.032 doi: 10.1016/j.na.2010.01.032
    [2] A. C. Lazer, P. J. McKenna, Large scale oscillatory behavior in loaded asymmetric systems, in Annales de l'Institut Henri Poincaré C, Analyse Non Linéaire, 4 (1987), 243–274. https://doi.org/10.1016/S0294-1449(16)30368-7
    [3] M. A. Del Pino, R. F. Manásevich, A. Murua, On the number of $2\pi$-periodic solutions for $u+g(u) = s(1+h(t))$ using the Poincaré-Birkhoff theorem, J. Differ. Equations, 95 (1992), 240–258. https://doi.org/10.1016/0022-0396(92)90031-H doi: 10.1016/0022-0396(92)90031-H
    [4] C. Zanini, F. Zanolin, A multiplicity result of periodic solutions for parameter dependent asymmetric non-autonomous equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 12 (2005), 343–361.
    [5] A. Calamai, A. Sfecci, Multiplicity of periodic solutions for systems of weakly coupled parametrized second order differential equations, Nonlinear Differ. Equations Appl., 24 (2017), 1–17. https://doi.org/10.1007/s00030-016-0427-5 doi: 10.1007/s00030-016-0427-5
    [6] A. Fonda, A. J. Ureña, A higher dimensional Poincaré-Birkhoff theorem for Hamiltonian flows, in Annales de l'Institut Henri Poincaré C, Analyse Non Linéaire, 34 (2017), 679–698. https://doi.org/10.1016/J.ANIHPC.2016.04.002
    [7] P. A. Binding, B. P. Rynne, Half-eigenvalues of periodic Sturm-Liouville problems, J. Differ. Equations, 206 (2004), 280–305. https://doi.org/10.1016/j.jde.2004.05.014 doi: 10.1016/j.jde.2004.05.014
    [8] A. Fonda, L. Ghirardelli, Multiple periodic solutions of Hamiltonian systems in the plane, Topol. Methods Nonlinear Anal., 36 (2010), 27–38.
    [9] A. Fonda, A. Sfecci, On a singular periodic Ambrosetti-Prodi problem, Nonlinear Anal., 149 (2017), 146–155. https://doi.org/10.1016/j.na.2016.10.018 doi: 10.1016/j.na.2016.10.018
    [10] C. Rebelo, Multiple periodic solutions of second order equations with asymmetric nonlinearities, Discrete Contin. Dyn. Syst., 3 (1997), 25–34. https://doi.org/10.3934/dcds.1997.3.25 doi: 10.3934/dcds.1997.3.25
    [11] C. Rebelo, F. Zanolin, Multiplicity results for periodic solutions of second order ODEs with asymmetric nonlinearities, Trans. Amer. Math. Soc., 348 (1996), 2349–2389. https://doi.org/10.1090/S0002-9947-96-01580-2 doi: 10.1090/S0002-9947-96-01580-2
    [12] A. Boscaggin, A. Fonda, M. Garrione, A multiplicity result for periodic solutions of second order differential equations with a singularity, Nonlinear Anal. Theory Methods Appl., 75 (2012), 4457–4470. https://doi.org/10.1016/j.na.2011.10.025 doi: 10.1016/j.na.2011.10.025
    [13] J. Chu, P. J. Torres, M. Zhang, Periodic solutions of second order non-autonomous singular dynamical systems, J. Differ. Equations, 239 (2007), 196–212. https://doi.org/10.1016/j.jde.2007.05.007 doi: 10.1016/j.jde.2007.05.007
    [14] J. Chu, Z. Zhang, Periodic solutions of singular differential equations with sign-changing potential, Bull. Aust. Math. Soc., 82 (2010), 437–445. https://doi.org/10.1017/S0004972710001607 doi: 10.1017/S0004972710001607
    [15] J. Chu, N. Fan, P. J. Torres, Periodic solutions for second order singular damped differential equations, J. Math. Anal. Appl., 388 (2012), 665–675. https://doi.org/10.1016/j.jmaa.2011.09.061 doi: 10.1016/j.jmaa.2011.09.061
    [16] J. Chu, S. Li, H. Zhu, Nontrivial periodic solutions of second order singular damped dynamical systems, Rocky Mountain J. Math., 45 (2015), 457–474. https://doi.org/10.1216/RMJ-2015-45-2-457 doi: 10.1216/RMJ-2015-45-2-457
    [17] M. A. Del Pino, R. F. Manásevich, A. Montero, $T$-periodic solutions for some second order differential equations with singularities, Proc. Edinburgh Math. Soc. Sect. A: Math., 120 (1992), 231–243. https://doi.org/10.1017/S030821050003211X doi: 10.1017/S030821050003211X
    [18] A. Fonda, R. F. Manásevich, F. Zanolin, Subharmonic solutions for some second-order differential equations with singularities, SIAM J. Matrix Anal. Appl., 24 (1993), 1294–1311. https://doi.org/10.1137/0524074 doi: 10.1137/0524074
    [19] D. Jiang, J. Chu, M. Zhang, Multiplicity of positive periodic solutions to superlinear repulsive singular equations, J. Differ. Equations, 211 (2005), 282–302. https://doi.org/10.1016/j.jde.2004.10.031 doi: 10.1016/j.jde.2004.10.031
    [20] A. C. Lazer, S. Solimini, On periodic solutions of nonlinear differential equations with singularities, Proc. Am. Math. Soc., 99 (1987), 109–114. https://doi.org/10.1090/S0002-9939-1987-0866438-7 doi: 10.1090/S0002-9939-1987-0866438-7
    [21] L. Liu, W. Zhao, Y. Liu, S. Tong, Y. Wang, Adaptive finite-time neural network control of nonlinear systems with multiple objective constraints and application to electromechanical system, IEEE Trans. Neural Netw. Learn. Syst., 32 (2021), 5416–5426. https://doi.org/10.1109/TNNLS.2020.3027689 doi: 10.1109/TNNLS.2020.3027689
    [22] L. Liu, X. Li, Y. Liu, S. Tong, Neural network based adaptive event trigger control for a class of electromagnetic suspension systems, Control Eng. Pract., 106 (2021), 104675. https://doi.org/10.1016/j.conengprac.2020.104675 doi: 10.1016/j.conengprac.2020.104675
    [23] L. Liu, Y. Liu, D. Li, S. Tong, Z. Wang, Barrier Lyapunov function-based adaptive fuzzy FTC for switched systems and its applications to resistance-inductance-capacitance circuit system, IEEE Trans. Cybern., 50 (2020), 3491–3502. https://doi.org/10.1109/TCYB.2019.2931770 doi: 10.1109/TCYB.2019.2931770
    [24] H. Wang, Q. Zhu, Adaptive output feedback control of stochastic nonholonomic systems with nonlinear parameterization, Automatica, 98 (2018), 247–255. https://doi.org/10.1016/j.automatica.2018.09.026 doi: 10.1016/j.automatica.2018.09.026
    [25] H. Wang, Q. Zhu, Global stabilization of a class of stochastic nonlinear time-delay systems with SISS inverse dynamics, IEEE Trans. Autom. Control, 65 (2020), 4448–4455. https://doi.org/10.1109/TAC.2020.3005149 doi: 10.1109/TAC.2020.3005149
    [26] Q. Zhu, Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control, IEEE Trans. Autom. Control, 64 (2019), 3764–3771. https://doi.org/10.1109/TAC.2018.2882067 doi: 10.1109/TAC.2018.2882067
    [27] C. Fabry, P. Habets, Periodic solutions of second order differential equations with superlinear asymmetric nonlinearities, Arch. Math., 60 (1993), 266–276. https://doi.org/10.1007/BF01198811 doi: 10.1007/BF01198811
    [28] A. Fonda, R. Toader, Radially symmetric systems with a singularity and asymptotically linear growth, Nonlinear Anal., 74 (2011), 2485–2496. https://doi.org/10.1016/j.na.2010.12.004 doi: 10.1016/j.na.2010.12.004
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(951) PDF downloads(30) Cited by(1)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog