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1. Introduction

In 2010, Fonda and Ghirardelli [1] established a multiplicity result for the parametrized equation x′′ + g(t, x) = sw(t),
x(0) = x(T ), x′(0) = x′(T ).

(1.1)

Here, g : [0,T ]×R→ R is a Carathéodory function, and w : [0,T ]×R→ R is integrable. Their result
generalized the classical result of Lazer and McKenna [2], dated 1987, and extended the results of Del
Pino et al. [3] and Zanini and Zanolin [4]. In 2017, Calamai and Sfecci [5] extended this multiplicity
result to the weakly coupled parametrized system x′′i + gi(t, x) = swi(t),

xi(0) = xi(T ), x′i(0) = x′i(T ),
i = 1, · · ·,N,

where gi : R × RN → R and wi : R → R are continuous functions, x is the vector (x1, · · ·, xN), and
s is a real parameter. The functions gi and wi are assumed to be T -periodic in the time variable. The
proof is based on the higher dimensional Poincaré-Birkhoff theorem obtained by Fonda and Ureña [6].
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Unlike the result in [1], Calamai and Sfecci [5] do not assume the Lipschitz regularity condition on the
functions gi, which is a crucial assumption in [1]. Relevant related results can be found in [7–11].

On the other hand, Boscaggin et al. [12] investigated the parametrized equation (1.1) with a suitable
singularity of repulsive type at the origin and linear growth at infinity. They obtained a multiplicity of
periodic solutions for Eq (1.1). In order to guarantee uniqueness of the associated Cauchy problems,
they also assumed the Lipschitz regularity on the function g. For related results on periodic solutions
of singularity equations, see also [9,13–20]. Furthermore, high-order nonlinear systems with nonlinear
parameterization and other related stability problems have attracted some authors’ attention; see, for
instance, [21–26].

Motivated by the works of [12] and [5], a natural inquiry arises as to whether weakly coupled
parametrized systems with a singularity of repulsive type at the origin and linear growth at infinity
possess multiple periodic solutions. In this paper, we will consider the weakly coupled parametrized
system  x′′i + ϕi(t, xi) + pi(t, x) = swi(t),

xi(0) = xi(T ), x′i(0) = x′i(T ),
i = 1, · · ·,N. (S)

For each index i = 1, · · ·,N, we assume the following hypotheses hold.
(H0) The functions ϕi : [0,T ] × (0,+∞) → R and wi : [0,T ] → R are continuous, and s is a real

parameter.
(H1) There exists a function H : [0,T ] × RN → R such that

∂

∂xi
H(t, x) = pi(t, x),

where pi : [0,T ] × RN → R is continuous and bounded.
(Hi

2) There exists a continuous function f : (0, δ]→ R satisfying

ϕi(t, xi) ≤ f (xi), for every t ∈ [0,T ] and every xi ∈ (0, δ],

and

lim
xi→0+

f (xi) = −∞,

∫ δ

0
f (xi)dxi = −∞.

(Hi
3) There exists a function ai(t) such that

lim
xi→+∞

ϕi(t, xi)
xi

= ai(t), uniformly for every t ∈ [0,T ].

(Hi
4) There exist ai

± and an integer mi ≥ 0 such that

(miπ

T

)2
< ai

− ≤ ai(t) ≤ ai
+ <

(
(mi + 1)π

T

)2

, for every t ∈ [0,T ].

Moreover, the unique solution to  ς′′ + ai(t)ς = wi(t),
ς(0) = ς(T ), ς′(0) = ς′(T ),
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is strictly positive.
Due to the absence of Lipschitz regularity assumptions in our system, uniqueness of the solution

cannot be guaranteed for the corresponding Cauchy problem. To address this issue, we employ the
higher dimensional Poincaré-Birkhoff theorem obtained by Fonda and Ureña [6]. Moreover, the so-
lution trajectories of high-dimensional systems are inherently intricate. To characterize the twisting
properties of the solution, we project the high-dimensional system’s solution onto the plane and utilize
sophisticated phase plane analysis methods.

Throughout the paper, we define
[

mi−1
2

]
as the greatest integer that is less than mi−1

2 . The main results
of this paper are presented below.

Theorem 1.1. Assume that Hamiltonian system (S) satisfies (H0) − (H1) and (Hi
2) − (Hi

4), for every
index i = 1, 2, · · ·,N. Then, there exists s0 > 0 such that, for every s ≥ s0, the Hamiltonian system (S)
has at least

1 + (N + 1)
N∏

i=1

([
mi − 1

2

]
+ 1

)
periodic solutions.

Remark 1.2. Similarly, we can obtain the multiplicity of periodic solutions for system (S) by the
Carathéodory type of regularity. Taking N = 1, Theorem 1.1 leads to the existence of 1 + 2(

[
m1−1

2

]
+ 1)

periodic solutions. Namely, if m1 is odd, the Hamiltonian system (S) has at least m1 + 2 periodic so-
lutions. If m1 is even, there exist m1 + 1 periodic solutions for the system (S). Without assuming the
uniqueness of solutions associated with the Cauchy problem, this result extends Theorem 1.1 in [12]
to weakly coupled parametrized systems with continuous nonlinearities.

Remark 1.3. The function ϕi(t, xi) in system (S) is singular at the origin and merely continuous without
any Lipschitz regularity assumptions. Therefore, Theorem 1.1 extends the results of [5, Theorem 1.3]
to the weakly coupled parametrized systems with singularities.

The remaining sections of this paper are organized as follows. Section 2 introduces the basic con-
cept of the i-th rotation number and provides some auxiliary lemmas for system (S). In Section 3, we
present some auxiliary lemmas for system (P) below and provide a proof of Theorem 1.1.

2. Preliminaries

If the component (xi(t), x′i(t)) of (x(t), x′(t)) ∈ R2N does not attain the origin, we can transform to
the standard polar coordinates as

xi(t) = ρi(t) cos θi(t), x′i(t) = ρi(t) sin θi(t).

Thus, if (xi(t), x′i(t)) , (0, 0) for t ∈ [τ0, τ1], we can define the i-th rotation number of (x(t), x′(t)) along
that interval as

Rot((xi(t), x′i(t)); [τ0, τ1]) = −
1

2π
(θi(τ1) − θi(τ0)) =

1
2π

∫ τ1

τ0

x′i(t)
2 − xi(t)x′′i (t)

xi(t)2 + x′i(t)2 dt.

Here, Rot((xi(t), x′i(t)); [τ0, τ1]) describes clockwise rotations performed by the path of (x(t), x′(t))
around the origin in the time interval [τ0, τ1] and (xi, x′i) phase-plane. The modified version of the
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i-th rotation number of (x(t), x′(t)) on [τ0, τ1] is defined as

Rot√
ai

+

((xi(t), x′i(t)); [τ0, τ1]) =

√
ai

+

2π

∫ τ1

τ0

x′i(t)
2 − xi(t)x′′i (t)

ai
+xi(t)2 + x′i(t)2

dt.

For more details about the modified rotation numbers, please see [11, 27]. For i ∈ {1, · · ·,N}, let

Ni(x, y) =

√
1
x2

i

+ x2
i + y2

i , xi > 0, yi ∈ R,

which is a function similar to the “norm” in the phase-plane. For more details on the function, see [12,
page 4461].
Remark 2.1. Similar to [11, Theorem 4 and Remark 1], for every integer j, we have

Rot((xi(t), x′i(t)); [0,T ]) < j⇐⇒ Rot√
ai

+

((xi(t), x′i(t)); [0,T ]) < j;

Rot((xi(t), x′i(t)); [0,T ]) > j⇐⇒ Rot√
ai

+

((xi(t), x′i(t)); [0,T ]) > j.

Lemma 2.2. There exist s̃ > 0 and two positive constant c0 < C0 such that, for every s ≥ s̃, system (S)
has a solution x̂ = x̂(s, t) whose components satisfy

c0 ≤
x̂i(s, t)

s
≤ C0, (2.1)

for every t ∈ [0,T ] and i ∈ {1, · · ·,N}.

Proof. Consider the truncated function

g̃i(t, x) =

ϕi(t, xi) + pi(t, x), if xi > 1,
ϕi(t, 1) + pi(t, x), if xi ≤ 1,

for t ∈ [0,T ] and x ∈ RN . By (H1), there exists a constant M > 0 such that

|pi(t, x)| ≤ M,

for every (t, x) ∈ [0,T ] × RN and i = 1, · · ·,N. Consequently, by (Hi
3), we have

lim
xi→+∞

g̃i(t, x)
xi

= ai(t) and lim
xi→−∞

g̃i(t, x)
xi

= 0,

uniformly for every t ∈ [0,T ]. Consider the system z′′i +
g̃i(t,sz)

s = wi(t),
zi(0) = zi(T ), z′i(0) = z′i(T ),

i = 1, · · ·,N, (2.2)

where zi(t) = xi(t)/s. By using [5, Lemma 2.3], we have that there are three positive constants s̄, c0

and C0 such that, for every s ≥ s̄, system (2.2) has a solution z = z(s, t) whose components satisfy
c0 ≤ zi(s, t) ≤ C0 for every t ∈ [0,T ] and i ∈ {1, · · ·,N}. Hence, there exists a solution x̂(s, t) of x′′i + g̃i(t, x) = swi(t),

xi(0) = xi(T ), x′i(0) = x′i(T ),
i = 1, · · ·,N,
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whose components satisfy (2.1) for every t ∈ [0,T ] and i ∈ {1, · · ·,N}. Clearly, (2.1) implies that
x̂i(s, t) → +∞ as s → +∞ for every t ∈ [0,T ] and i ∈ {1, · · ·,N}. Then, there exists s̃ > s̄ such that,
x̂i(s, t) > 1 for every t ∈ [0,T ] and i ∈ {1, · · ·,N}, and hence x̂i(s, t) is also a solution of system (S).

Remark 2.3. Note that Remark 2.2 in [5] remains valid even when νi
1(t) = νi

2(t) = 0. Therefore, the
conclusion of Lemma 2.3 in [5] is also valid when

lim
xi→−∞

gi(t, x)
xi

= 0

uniformly for every t ∈ [0,T ]. Our proof of Lemma 2.2 relies on this fact.

To simplify the proof below, we define gi(t, x) = ϕi(t, xi) + pi(t, x), where ϕi and pi are defined as in
(H0) − (H1) and (Hi

2) − (Hi
4). Then, the system (S ) can be written as x′′i + gi(t, x) = swi(t),

xi(0) = xi(T ), x′i(0) = x′i(T ),
i = 1, · · ·,N. (S ′)

We can verify that gi(t, x) satisfies the hypotheses (H0)′, (Hi
2)′ and (Hi

3)′ as follows.
(H0)′ The function gi(t, x) : [0,T ] × (0,+∞)N → R is continuous.
(Hi

2)′ There is a continuous function f̃ : (0, δ]→ R satisfying

gi(t, x) ≤ f̃ (xi), for every t ∈ [0,T ] and every xi ∈ (0, δ],

and

lim
xi→0+

f̃ (xi) = −∞,

∫ δ

0
f̃ (xi)dxi = −∞.

(Hi
3)′ limxi→+∞

gi(t,x)
xi

= ai(t), uniformly for every t ∈ [0,T ].

Lemma 2.4. For every s ∈ R, the solution to the Cauchy problem x′′i + gi(t, x) = swi(t),
xi(0) = x̄i > 0, x′i(0) = ȳi,

i = 1, · · ·,N, (2.3)

is globally defined on [0,T ].

Proof. Let x(t) be a solution of the system (2.3). Assume the contrary, that is, there is a component
xi0(t) of x(t) whose maximal interval of definition is [0, τ) for τ < T . By standard arguments in the
theory of initial value problems, we have

lim sup
σ→τ−

Ni0(x(σ), x′(σ)) = +∞.

By the arguments in [28, Lemma 1], we have

lim
σ→τ−

Rot((xi0(t) − 1, x′i0(t)); [0, σ]) = +∞. (2.4)

On the other hand, by using the computation in [28, Lemma 2], we find that Rot((xi0(t) −
1, x′i0(t)); [0, τ]) is bounded, which is a contradiction with (2.4).
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Lemma 2.5. There exists R̂s > 0 such that, if x : [0,T ]→ RN is a solution of (S ′) withNi(x(t), x′(t)) ≥
R̂s for a certain index i and every t ∈ [0,T ], then

Rot((xi(t) − x̂i(s, 0), x′i(t) − x̂′i(s, 0)); [0,T ]) > mi.

Proof. For simplicity, we assume mi = 1. Take R̂s such that

Ni(x̂i(s, 0), x̂′i(s, 0)) < R̂s.

Let x(t) be a solution of (S ′) withNi(x(t), x′(t)) ≥ R̂s for a certain index i and every t ∈ [0,T ]. We will
show that

Rot((xi(t) − x̂i(s, 0), x′i(t) − x̂′i(s, 0)); [0,T ]) > 1. (2.5)

That is, in the (xi(t), x′i(t))-phase plane, (x(t), x′(t)) performs more than one turn around
(x̂i(s, 0), x̂′i(s, 0)) in the time interval [0,T ].

Writing (xi(t) − x̂i(s, 0), x′i(t) − x̂′i(s, 0) in polar coordinates,

xi(t) = x̂i(s, 0) + ρi(t) cos θi(t), x′i(t) = x̂′i(s, 0) + ρi(t) sin θi(t),

we can deduce that

− θ′i (t) =
x′i(t)(x′i(t) − x̂′i(s, 0)) + (gi(t, x) − swi(t))(xi(t) − x̂i(s, 0))

(xi(t) − x̂i(s, 0))2 + (x′i(t) − x̂′i(s, 0))2 (2.6)

for every t ∈ [0,T ]. With fixed α ∈ ((π/T )2, ai
−), by (Hi

3)′ and (Hi
4), we can choose d > x̂i(s, 0) such

that
gi(t, x) − swi(t) ≥ α(xi(t) − x̂i(s, 0)) (2.7)

for every t ∈ [0,T ] and every xi(t) ≥ d.
We first consider the case when xi(0) > d. The proof will be divided into three steps.

Step 1. We claim that there exists t1 ∈ (0,T ] such that xi(t1) = d and xi(t) > d for every t ∈ [0, t1) (see
Figure 1).

Figure 1. The possible trajectories for the solution in (xi, x′i)-phase plane.
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Suppose, contrary to our claim, that xi(t) > d for every t ∈ [0,T ]. Note that, enlarging R̂s, by
Ni(x(t), x′(t)) ≥ R̂s, we have∣∣∣∣∣∣ x̂′i(s, 0)x′i(t) − x̂′i(s, 0)2

(xi(t) − x̂i(s, 0))2 + (x′i(t) − x̂′i(s, 0))2

∣∣∣∣∣∣ ≤ η

2T
min{α, 1} (2.8)

for xi(t) > d, where η > 0 is sufficiently small such that

π
√
α

+ 4η < T. (2.9)

Combining (2.6), (2.7) with (2.8), we have

−θ′i (t) ≥ sin2 θi(t) + α cos2 θi(t) +
x̂′i(s, 0)x′i(t) − x̂′i(s, 0)2

(xi(t) − x̂i(s, 0))2 + (x′i(t) − x̂′i(s, 0))2

≥ sin2 θi(t) + α cos2 θi(t) −
η

2T
min{α, 1}, (2.10)

that is,
min{α, 1}

η

2T
− θ′i (t) ≥ sin2 θi(t) + α cos2 θi(t) (2.11)

for every t ∈ [0,T ]. Notice that
min{α, 1}

sin2 θi(t) + α cos2 θi(t)
≤ 1

for every t ∈ [0,T ] and α ∈ ((π/T )2, ai
−). Indeed, if 1 ≤ α < ai

−, for every t ∈ [0,T ], one has

min{α, 1}
sin2 θi(t) + α cos2 θi(t)

=
1

1 + (α − 1) cos2 θi(t)
≤ 1.

If (π/T )2 < α < 1, we have

min{α, 1}
sin2 θi(t) + α cos2 θi(t)

=
1

1
α

sin2 θi(t) + cos2 θi(t)
=

1

1 +
(

1
α
− 1

)
sin2 θi(t)

≤ 1

for every t ∈ [0,T ]. Hence,∫ θi(0)

θi(T )

dθi

min{α, 1} η2T − θ
′
i (t)

=

∫ T

0

θ′i (t)
θ′i (t) −min{α, 1} η2T

dt

=

∫ T

0

(
1 −

η

2T
·

min{α, 1}
min{α, 1} η2T − θ

′
i (t)

)
dt

=

∫ T

0

(
1 −

η

2T
·

min{α, 1}
sin2 θi(t) + α cos2 θi(t)

)
dt

≥ T
(
1 −

η

2T

)
. (2.12)

By (2.11) and (2.12), we have

T
(
1 −

η

2T

)
≤

∫ θi(0)

θi(T )

dθi

sin2 θi(t) + α cos2 θi(t)
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=
1
√
α

arctan(
1
√
α

tan θi(t))|0T

≤
π
√
α
, (2.13)

which contradicts (2.9).

Step 2. If xi(t) ≥ d, by the computation in Step 1, then

θ′i (t) < 0, for every t ∈ [0,T ]. (2.14)

On the other hand, if xi(t) ∈ (0, d), since Ni(x(t), x′(t)) is large for every t ∈ [0,T ], either xi(t) is near
the singularity, or |x′i(t)| is large. By (Hi

2)′, we have

lim
xi→0+

(gi(t, x) − swi(t)) = −∞

uniformly for every t ∈ [0,T ]. Arguing as in [28, Lemma 2], inequality (2.14) holds. Thus, up to
enlarging R̂s, we can find t2 ∈ (t1,T ] such that xi(t2) = d, x′i(t2) > 0 and xi(t) ∈ (0, d) for every
t ∈ (t1, t2) (see Figure 1). Moreover, by a similar argument as that in [28, Lemma 2], we have

t2 − t1 < η. (2.15)

Step 3. Note that there are three possible trajectories for the solution when t > t2 (see Figure 1). First,
we will prove that there exists t′ ∈ (t2,T ) such that

θi(0) − θi(t′) = 2π (2.16)

for the trajectories (i) and (ii). If not, it holds that

θi(0) − θi(t) < 2π for every t ∈ (t2,T ).

Similar to (2.13), we have

t1 − η < t1

(
1 −

η

2T

)
≤

∫ θi(0)

θi(t1)

dθi

sin2 θi(t) + α cos2 θi(t)

=
1
√
α

arctan(
1
√
α

tan θi(t))|0t1 (2.17)

and

T − t2 − η < (T − t2)
(
1 −

η

2T

)
≤

∫ θi(t2)

θi(T )

dθi

sin2 θi(t) + α cos2 θi(t)

=
1
√
α

arctan(
1
√
α

tan θi(t))|
t2
T . (2.18)

Combining (2.17), (2.18) with (2.15), we have

T − η < T − (t2 − t1) = t1 + (T − t2) <
π
√
α

+ 2η, (2.19)
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which contradicts (2.9).
Second, for the trajectory (iii), we claim that there exists t3 ∈ (t2,T ) such that xi(t3) = d, and

xi(t) > d when t ∈ (t2, t3) (see Figure 1). Suppose, contrary to our claim, that xi(t) > d for every
t ∈ (t2,T ]. In this case, the inequalities (2.17)–(2.19) are still valid. That is a contradiction. Moreover,
we have

t1 + (t3 − t2) − 2η <
∫ θi(t2)

θi(t3)

dθi

sin2 θi(t) + α cos2 θi(t)
+

∫ θi(0)

θi(t1)

dθi

sin2 θi(t) + α cos2 θi(t)

=
1
√
α

(
arctan(

1
√
α

tan θi(t))|
t2
t3 + arctan(

1
√
α

tan θi(t))|0t1

)
≤

π
√
α
. (2.20)

Combining (2.15) with (2.20), we have

t3 <
π
√
α

+ 3η < T − η.

Now, we claim that there exists t4 ∈ (t3,T ) such that

θi(0) − θi(t4) = 2π (2.21)

for the trajectory (iii). Suppose, contrary to our claim, that

θi(0) − θi(t) < 2π for every t ∈ (t3,T ). (2.22)

Therefore, using a similar argument as in [28, Lemma 2], there exists t5 ∈ (t3, t3 + η) such that xi(t5) =

x̂i(s, 0) (see Figure 1). So,
θi(0) − θi(t5) > 2π,

which is a contradiction with (2.22).
By (2.14), (2.16) and (2.21), we have

Rot((xi(t) − x̂i(s, 0), x′i(t) − x̂′i(s, 0)); [0,T ]) > 1, for xi(0) > d.

Using a similar argument as given above, inequality (2.5) is valid for xi(0) ≤ d. Moreover, for any
positive integer mi > 1, the conclusion can be proved by similar arguments.

3. Proof of Theorem 1.1

To prove Theorem 1.1, we introduce the variable u = (u1, · · ·, uN) as defined by

u =
x − x̂(s, t)

s
, (3.1)

and we transform system (S ′) into u′′i + hi(s, t, u) = 0,
ui(0) = ui(T ), u′i(0) = u′i(T ),

i = 1, · · ·,N, (P)
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where, for every index i,

hi(s, t, u) =
gi(t, su + x̂(s, t)) − gi(t, x̂(s, t))

s
.

It is clear that hi(s, t, u) is well defined for every t ∈ [0,T ] and ui > −x̂i(s, t)/s, and hi(s, t, 0) ≡ 0.
Consider the Cauchy problem u′′i + hi(s, t, u) = 0,

ui(0) = ūi > −
x̂i(s,0)

s , u′i(0) = v̄i,
i = 1, · · ·,N. (3.2)

By (3.1), we find that x(t) is a solution of (2.3) if and only if u(t) solves (3.2), so u(t) is globally defined
on [0,T ] by Lemma 2.4. If the component (ui(t), u′i(t)) of (u(t), u′(t)) does not attain the origin, we can
pass to the standard polar coordinates as

ui(t) = ri(t) cos θi(t), u′i(t) = ri(t) sin θi(t).

Throughout the rest of the proof, D(Γi
s) denotes the open bounded region delimited by a Jordan curve

Γi
s, Bi(0, r̃) denotes the closed ball of radius r̃ centered at the origin, and Di

s denotes the set {(u, v) ∈
RN |ui > −x̂i(s, 0)/s}.

Lemma 3.1. For i ∈ {1, · · ·,N}, it holds that

lim
s→+∞

hi(s, t, u) = ai(t)ui (3.3)

uniformly for every t ∈ [0,T ] and u ∈ RN with |ui| ≤
1
2c0, where c0 is as defined in (2.1).

Proof. From the definition, we have ui > −x̂i(s, t)/s. So, by (2.1), hi(s, t, u) is well defined for every
t ∈ [0,T ] and u ∈ RN with |ui| ≤

1
2c0.

By (2.1), we have, for |ui| ≤
1
2c0 and t ∈ [0,T ],

|hi(s, t, u) − ai(t)ui| ≤

∣∣∣∣∣gi(t, su + x̂(s, t)) − ai(t)(sui + x̂i(s, t))
s

∣∣∣∣∣
+

∣∣∣∣∣ai(t)x̂i(s, t) − gi(t, x̂i(s, t))
s

∣∣∣∣∣
≤

∣∣∣∣∣ui +
x̂i(s, t)

s

∣∣∣∣∣ ∣∣∣∣∣gi(t, su + x̂(s, t)) − ai(t)(sui + x̂i(s, t))
sui + x̂i(s, t)

∣∣∣∣∣
+

x̂i(s, t)
s

∣∣∣∣∣ai(t)x̂i(s, t) − gi(t, x̂(s, t))
x̂i(s, t)

∣∣∣∣∣
≤ (c0 + C0)

∣∣∣∣∣gi(t, su + x̂(s, t)) − ai(t)(sui + x̂i(s, t))
sui + x̂i(s, t)

∣∣∣∣∣
+ C0

∣∣∣∣∣ai(t)x̂i(s, t) − gi(t, x̂(s, t))
x̂i(s, t)

∣∣∣∣∣ . (3.4)

Since x̂i(s, t) → +∞ as s → +∞, sui + x̂i(s, t) → +∞ as s → +∞ uniformly for every t ∈ [0,T ] and
|ui| ≤

1
2c0. By (Hi

3)′ and (3.4), the conclusion is thus achieved.

Lemma 3.2. There exist b, r̃ with 0 < b < r̃ < c0/2 and s1 ≥ s̃ such that, for every s ≥ s1, if
u : [0,T ]→ RN is a solution of (P) with ui(0)2 + u′i(0)2 = r̃2 for a certain index i, then

b < ri(t) <
1
2

c0, for every t ∈ [0,T ].
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Proof. We first prove that ri(t) <
1
2

c0 for every t ∈ [0,T ]. On the contrary, suppose that there exists
t̄ ∈ [0,T ] satisfying

ri(t̄) =
1
2

c0 and ri(t) <
1
2

c0 for every t ∈ [0, t̄). (3.5)

Set

r̃ =
1
8

c0 exp
(
−

(
1 + ai

+

2

)
T
)
, b =

r̃
4

exp
(
−

(
1 + ai

+

2

)
T
)

and ε =
r̃
T
.

It is clear that 0 < b < r̃ < c0/2. By Lemma 3.1, since ri(t) ≤ c0/2 for every t ∈ [0, t̄], there exists
s1 ≥ s̃ such that

|hi(s, t, u) − ai(t)ui| ≤ ε

for every s ≥ s1 and t ∈ [0, t̄]. From (P), we get

|r′i (t)| =

∣∣∣∣∣∣∣u
′
i(t)(ui(t) − hi(s, t, u))√

ui(t)2 + u′i(t)2

∣∣∣∣∣∣∣
≤
|u′i(t)||(a

i
+ + 1)ui(t) + ε|

ri(t)

≤
ai

+ + 1
2

ri(t) + ε.

By a Gronwall argument we have

ri(t̄) ≤ (ri(0) + εt̄) exp
(
ai

+ + 1
2

t̄
)
≤

1
4

c0,

which contradicts (3.5). By a similar argument as above, we can see that ri(t) > b for every t ∈ [0,T ].

Lemma 3.3. There exists s2 ≥ s1 such that, for every s ≥ s2, if u : [0,T ] → RN is a solution of (P)
with ui(0)2 + u′i(0)2 = r̃2 for a certain index i, then

Rot√
ai

+

((ui(t), u′i(t)); [0,T ]) <
mi + 1

2
.

Proof. By (Hi
4), we can fix ε > 0 small such that

T
√

ai
+

2π

(
1 +

c0ε

2b2 min{ai
+, 1}

)
<

mi + 1
2

.

By Lemma 3.2, we have b <
√

ui(t)2 + u′i(t)2 < 1
2c0 for every t ∈ [0,T ]. From (3.3), there exists s2 ≥ s1

such that, for every s ≥ s2, one has

|hi(s, t, u) − ai(t)ui| ≤ ε.

Therefore,

Rot√
ai

+

((ui(t), u′i(t)); [0,T ]) =

√
ai

+

2π

∫ T

0

u′i(t)
2 + hi(s, t, u)ui(t)

ai
+ui(t)2 + u′i(t)2

dt
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≤

√
ai

+

2π

(∫ T

0

u′i(t)
2 + ai(t)ui(t)2

ai
+ui(t)2 + u′i(t)2

dt +

∫ T

0

(hi(s, t, u) − ai(t)ui(t))ui(t)
ai

+ui(t)2 + u′i(t)2
dt

)
≤

T
√

ai
+

2π

(
1 +

c0ε

2b2 min{ai
+, 1}

)
<

mi + 1
2

.

Lemma 3.4. For every s ≥ s2, there exists a strictly star-shaped Jordan curve Γi
s around the origin

such that, if u : [0,T ]→ RN is a solution of (P) with (ui(0), u′i(0)) ∈ Γi
s for a certain index i, then

Rot((ui(t), u′i(t)); [0,T ]) > mi.

Proof. Let x(t) be a solution of (S ′). In the i-th half plane {xi > 0}, choose a suitable closed rectangle
Ks such that (x̂i(s, t), x̂′i(s, t)) ∈ Ks for every t ∈ [0,T ]. Without loss of generality, we assume that if
Ni(x(t), x′(t)) ≥ R̂s for large enough R̂s, then (x(t), x′(t)) < Ks. Since x(t) is globally defined on [0,T ],
by the elastic property in [11, Lemma 6], there exists R̃s ≥ R̂s such that, for any solution x(t) of (S ′),

Ni(x(0), x′(0)) ≥ R̃s ⇒ Ni(x(t), x′(t)) ≥ R̂s for every t ∈ [0,T ]. (3.6)

Let Γi
s = {(ui, u′i) ∈ Di

s : Ni(su + x̂(s, 0), su′ + x̂′(s, 0)) = R̃s}. Suppose that u : [0,T ] → RN is a
solution of (P) with (ui(0), u′i(0)) ∈ Γi

s for some index i. Based on (3.1), we have Ni(x(0), x′(0)) = R̃s,
which implies that Ni(x(t), x′(t)) ≥ R̂s for all t ∈ [0,T ].

Using Proposition 2.2 in [12], we can obtain the independence of

Rot((xi(t) − (λx̂i(s, t) + (1 − λ)x̂i(s, 0)), x′i(t) − (λx̂′i(s, t) + (1 − λ)x̂′i(s, 0))); [0,T ])

with respect to λ ∈ [0, 1] in the (xi, x′i) phase-plane. By applying (3.1), Lemma 2.5 and the definition
of i-th rotation number, we have

Rot((ui(t), u′i(t)); [0,T ]) = Rot((sui(t), su′i(t)); [0,T ])
= Rot((xi(t) − x̂i(s, t), x′i(t) − x̂′i(s, t)); [0,T ])
= Rot((xi(t) − x̂i(s, 0), x′i(t) − x̂′i(s, 0)); [0,T ])
> mi.

Proof of Theorem 1.1. By (2.1), there exists r̂ such that

c0

2
< r̂ <

x̂i(s, 0)
s

.

For any (ui, u′i) ∈ Γi
s, if ui ≥ −r̂, by the definition of Ni(su + x̂i(s, 0), su′ + x̂′i(s, 0)), we have

2s2(ui
2 + u′i

2) ≥ R̃2
s − 2(x̂i(s, 0)2 + x̂′i(s, 0)2) −

1
(sui + x̂i(s, 0))2

≥ R̃2
s − 2(x̂i(s, 0)2 + x̂′i(s, 0)2) −

1
(−sr̂ + x̂i(s, 0))2 .
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So, √
ui

2 + u′i
2 > r̂ >

c0

2
(3.7)

for large enough R̃s as in (3.6). On the other hand, if ui < −r̂, inequality (3.7) clearly holds for any
(ui, u′i) ∈ Γi

s. Recall r̃ < c0/2, so Bi(0, r̃) ⊂ D(Γi
s).

We will prove the multiplicity of periodic solutions by the Poincaré-Birkhoff theorem stated in [5,
Theorem 3.1], which is a simplified version of [6, Theorem 1.2]. Note that there exist [mi−1

2 ]+1 integers
in the interval [mi−1

2 ,mi]. Choose s0 = s2 and fix s ≥ s0. Taking Ω = (D(Γi
s)\B(0, r̃))N , the number of

possible choices of the values (l1, l2, · · ·, lN) in [5, Theorem 3.1] is
∏N

i=1

([
mi−1

2

]
+ 1

)
by Remark 2.1 and

Lemmas 3.3 and 3.4. Applying [5, Theorem 3.1], there exist N + 1 periodic solutions for system (P)
for every (l1, l2, · · ·, lN). Coming back to the system (S ′), by (3.1), there exist (N + 1)

∏N
i=1

([
mi−1

2

]
+ 1

)
periodic solutions for system (S ′). The pivot solution to (S ′) is provided by Lemma 2.2. The proof is
thus concluded.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11901507,
12101337, 12071410) and Qing Lan Project of the Jiangsu Higher Education Institutions of China.

Conflict of interest

The authors declare there is no conflict of interest.

References

1. A. Fonda, L. Ghirardelli, Multiple periodic solutions of scalar second order differential equations,
Nonlinear Anal., 72 (2010), 4005–4015. https://doi.org/10.1016/j.na.2010.01.032

2. A. C. Lazer, P. J. McKenna, Large scale oscillatory behavior in loaded asymmetric sys-
tems, in Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire, 4 (1987), 243–274.
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https://doi.org/10.1016/J.ANIHPC.2016.04.002

Electronic Research Archive Volume 31, Issue 6, 3594–3608.

http://dx.doi.org/https://doi.org/10.1016/j.na.2010.01.032
http://dx.doi.org/https://doi.org/10.1016/S0294-1449(16)30368-7
http://dx.doi.org/https://doi.org/10.1016/0022-0396(92)90031-H
http://dx.doi.org/https://doi.org/10.1007/s00030-016-0427-5
http://dx.doi.org/https://doi.org/10.1016/J.ANIHPC.2016.04.002


3607

7. P. A. Binding, B. P. Rynne, Half-eigenvalues of periodic Sturm-Liouville problems, J. Differ.
Equations, 206 (2004), 280–305. https://doi.org/10.1016/j.jde.2004.05.014

8. A. Fonda, L. Ghirardelli, Multiple periodic solutions of Hamiltonian systems in the plane, Topol.
Methods Nonlinear Anal., 36 (2010), 27–38.

9. A. Fonda, A. Sfecci, On a singular periodic Ambrosetti-Prodi problem, Nonlinear Anal., 149
(2017), 146–155. https://doi.org/10.1016/j.na.2016.10.018

10. C. Rebelo, Multiple periodic solutions of second order equations with asymmetric nonlinearities,
Discrete Contin. Dyn. Syst., 3 (1997), 25–34. https://doi.org/10.3934/dcds.1997.3.25

11. C. Rebelo, F. Zanolin, Multiplicity results for periodic solutions of second order
ODEs with asymmetric nonlinearities, Trans. Amer. Math. Soc., 348 (1996), 2349–2389.
https://doi.org/10.1090/S0002-9947-96-01580-2

12. A. Boscaggin, A. Fonda, M. Garrione, A multiplicity result for periodic solutions of second order
differential equations with a singularity, Nonlinear Anal. Theory Methods Appl., 75 (2012), 4457–
4470. https://doi.org/10.1016/j.na.2011.10.025

13. J. Chu, P. J. Torres, M. Zhang, Periodic solutions of second order non-autonomous singular dynam-
ical systems, J. Differ. Equations, 239 (2007), 196–212. https://doi.org/10.1016/j.jde.2007.05.007

14. J. Chu, Z. Zhang, Periodic solutions of singular differential equations with sign-changing potential,
Bull. Aust. Math. Soc., 82 (2010), 437–445. https://doi.org/10.1017/S0004972710001607

15. J. Chu, N. Fan, P. J. Torres, Periodic solutions for second order singular damped differential equa-
tions, J. Math. Anal. Appl., 388 (2012), 665–675. https://doi.org/10.1016/j.jmaa.2011.09.061

16. J. Chu, S. Li, H. Zhu, Nontrivial periodic solutions of second order singular damped dynamical
systems, Rocky Mountain J. Math., 45 (2015), 457–474. https://doi.org/10.1216/RMJ-2015-45-2-
457
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