Research article Special Issues

EECHS-ARO: Energy-efficient cluster head selection mechanism for livestock industry using artificial rabbits optimization and wireless sensor networks

  • Received: 19 January 2023 Revised: 12 March 2023 Accepted: 14 March 2023 Published: 23 March 2023
  • In the livestock industry, wireless sensor networks (WSNs) play a significant role in monitoring many fauna health statuses and behaviors. Energy preservation in WSNs is considered one of the critical, complicated tasks since the sensors are coupled to constrained resources. Therefore, the clustering approach has proved its efficacy in preserving energy in WSNs. In recent studies, various clustering approaches have been introduced that use optimization techniques to improve the network lifespan by decreasing energy depletion. Yet, they take longer to converge and choose the optimal cluster heads in the network. In addition, the energy is exhausted quickly in the network. This paper introduces a novel optimization technique, i.e., an artificial rabbits optimization algorithm-based energy efficient cluster formation (EECHS-ARO) approach in a WSN, to extend the network lifetime by minimizing the energy consumption rate. The EECHS-ARO technique balances the search process in terms of enriched exploration and exploitation while selecting the optimal cluster heads. The experimentation was carried out on a MATLAB 2021a platform with varying sensor nodes. The obtained results of EECHS-ARO are contrasted with other existing approaches via teaching–learning based optimization algorithm (TLBO), ant lion optimizer (ALO) and quasi oppositional butterfly optimization algorithm (QOBOA). The proposed EECHS-ARO enriches the network lifespan by ~15% and improves the packet delivery ratio by ~5%.

    Citation: Rajakumar Ramalingam, Saleena B, Shakila Basheer, Prakash Balasubramanian, Mamoon Rashid, Gitanjali Jayaraman. EECHS-ARO: Energy-efficient cluster head selection mechanism for livestock industry using artificial rabbits optimization and wireless sensor networks[J]. Electronic Research Archive, 2023, 31(6): 3123-3144. doi: 10.3934/era.2023158

    Related Papers:

  • In the livestock industry, wireless sensor networks (WSNs) play a significant role in monitoring many fauna health statuses and behaviors. Energy preservation in WSNs is considered one of the critical, complicated tasks since the sensors are coupled to constrained resources. Therefore, the clustering approach has proved its efficacy in preserving energy in WSNs. In recent studies, various clustering approaches have been introduced that use optimization techniques to improve the network lifespan by decreasing energy depletion. Yet, they take longer to converge and choose the optimal cluster heads in the network. In addition, the energy is exhausted quickly in the network. This paper introduces a novel optimization technique, i.e., an artificial rabbits optimization algorithm-based energy efficient cluster formation (EECHS-ARO) approach in a WSN, to extend the network lifetime by minimizing the energy consumption rate. The EECHS-ARO technique balances the search process in terms of enriched exploration and exploitation while selecting the optimal cluster heads. The experimentation was carried out on a MATLAB 2021a platform with varying sensor nodes. The obtained results of EECHS-ARO are contrasted with other existing approaches via teaching–learning based optimization algorithm (TLBO), ant lion optimizer (ALO) and quasi oppositional butterfly optimization algorithm (QOBOA). The proposed EECHS-ARO enriches the network lifespan by ~15% and improves the packet delivery ratio by ~5%.



    加载中


    [1] B. C. Menezes, J. D. Kelly, T. Al-Ansari, Livestock production planning with batch-lines in the agriculture industry, Comput. Aided Chem. Eng., 48 (2020), 463–468. https://doi.org/10.1016/B978-0-12-823377-1.50078-1 doi: 10.1016/B978-0-12-823377-1.50078-1
    [2] S. Quintero-Herrera, A. M. García-León, J. E. Botello-Álvarez, A. Estrada-Baltazar, J. E. Abel-Seabra, A. Padilla-Rivera, et al., The use of broccoli agro-industrial waste in dairy cattle diet for environmental mitigation, Cleaner Environ. Syst., 2 (2021), 100035. https://doi.org/10.1016/j.cesys.2021.100035 doi: 10.1016/j.cesys.2021.100035
    [3] N. Wang, Z. Li, Wireless sensor networks (WSNs) in the agricultural and food industries, in Robotics and Automation in the Food Industry, (2013), 171–199. https://doi.org/10.1533/9780857095763.1.171
    [4] S. Neethirajan, B. Kemp, Digital livestock farming, Sens. Bio-Sens. Res., 32 (2021), 100408. https://doi.org/10.1016/j.sbsr.2021.100408 doi: 10.1016/j.sbsr.2021.100408
    [5] V. Kavitha, K. Ganapathy, Galactic swarm optimized convolute network and cluster head elected energy-efficient routing protocol in WSN, Sustainable Energy Technol. Assess., 52 (2022), 102154. https://doi.org/10.1016/j.seta.2022.102154 doi: 10.1016/j.seta.2022.102154
    [6] T. M. Behera, S. K. Mohapatra, U. C. Samal, M. S. Khan, M. Daneshmand, A. H. Gandomi, Residual energy-based cluster-head selection in WSNs for IoT application, IEEE Internet Things J., 6 (2019), 5132–5139. https://doi.org/10.1109/JIOT.2019.2897119 doi: 10.1109/JIOT.2019.2897119
    [7] I. Daanoune, B. Abdennaceur, A. Ballouk, A comprehensive survey on LEACH-based clustering routing protocols in Wireless Sensor Networks, Ad Hoc Networks, 114 (2021), 102409. https://doi.org/10.1016/j.adhoc.2020.102409 doi: 10.1016/j.adhoc.2020.102409
    [8] A. Ihsan, K. Saghar, T. Fatima, O. Hasan, Formal comparison of LEACH and its extensions, Comput. Stand. Interfaces, 62 (2019), 119–127. https://doi.org/10.1016/j.csi.2018.10.001 doi: 10.1016/j.csi.2018.10.001
    [9] X. Wang, H. Hu, Y. Liang, L. Zhou, On the mathematical models and applications of swarm intelligent optimization algorithms, Arch. Comput. Methods Eng., 29 (2022), 3815–3842. https://doi.org/10.1007/s11831-022-09717-8 doi: 10.1007/s11831-022-09717-8
    [10] A. Sarkar, T. S. Murugan, Analysis on dual algorithms for optimal cluster head selection in wireless sensor network, Evol. Intell., 15 (2022), 1471–1485. https://doi.org/10.1007/s12065-020-00546-x doi: 10.1007/s12065-020-00546-x
    [11] R. S. Raghav, U. Prabu, M. Rajeswari, D. Saravanan, K. Thirugnanasambandam, Cuddle death algorithm using ABC for detecting unhealthy nodes in wireless sensor networks, Evol. Intell., 15 (2022), 1605–1617. https://doi.org/10.1007/s12065-021-00570-5 doi: 10.1007/s12065-021-00570-5
    [12] R. Rajakumar, K. Dinesh, T. Vengattaraman, An energy-efficient cluster formation in wireless sensor network using grey wolf optimization, Int. J. Appl. Manage. Sci., 13 (2021), 124–140. https://doi.org/10.1504/IJAMS.2021.116496 doi: 10.1504/IJAMS.2021.116496
    [13] B. Pitchaimanickam, Dragonfly algorithm for hierarchical clustering in wireless sensor networks, in 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), (2021), 192–197. https://doi.org/10.1109/ICICCS51141.2021.9432337
    [14] A. Sarkar, T. S. Murugan, Cluster head selection for energy efficient and delay-less routing in wireless sensor network, Wireless Netw., 25 (2019), 303–320. https://doi.org/10.1007/s11276-017-1558-2 doi: 10.1007/s11276-017-1558-2
    [15] G. Rajeswarappa, S. Vasundra, Self-adaptive cuckoo search-based cluster head selection for maximizing network lifetime in wireless sensor networks, in Proceedings of International Conference on Recent Trends in Computing, (2022), 599–611. https://doi.org/10.1007/978-981-16-7118-0_52
    [16] P. Kathiroli, K. Selvadurai, Energy efficient cluster head selection using improved Sparrow Search Algorithm in Wireless Sensor Networks, J. King Saud Univ. Comput. Inf. Sci., 34 (2022), 8564–8575. https://doi.org/10.1016/j.jksuci.2021.08.031 doi: 10.1016/j.jksuci.2021.08.031
    [17] L. Wang, Q. Cao, Z. Zhang, S. Mirjalili, W. Zhao, Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems, Eng. Appl. Artif. Intell., 114 (2022), 105082. https://doi.org/10.1016/j.engappai.2022.105082 doi: 10.1016/j.engappai.2022.105082
    [18] A. J. Riad, H. M. Hasanien, R. A. Turky, A. H. Yakout, Identifying the PEM fuel cell parameters using artificial rabbits optimization algorithm, Sustainability, 15 (2023), 4625. https://doi.org/10.3390/su15054625 doi: 10.3390/su15054625
    [19] M. Elshahed, M. A. Tolba, A. M. El-Rifaie, A. Ginidi, A. Shaheen, S. A. Mohamed, An artificial rabbits' optimization to allocate PVSTATCOM for ancillary service provision in distribution systems, Mathematics, 11 (2023), 339. https://doi.org/10.3390/math11020339 doi: 10.3390/math11020339
    [20] P. Subramanian, J. M. Sahayaraj, S. Senthilkumar, D. S. Alex, A hybrid grey wolf and crow search optimization algorithm-based optimal cluster head selection scheme for wireless sensor networks, Wireless Pers. Commun., 113 (2020), 905–925. https://doi.org/10.1007/s11277-020-07259-5 doi: 10.1007/s11277-020-07259-5
    [21] M. Busse, W. Schwerdtner, R. Siebert, A. Doernberg, A. Kuntosch, B. König, et al., Analysis of animal monitoring technologies in Germany from an innovation system perspective, Agric. Syst., 138 (2015), 55–65. https://doi.org/10.1016/j.agsy.2015.05.009 doi: 10.1016/j.agsy.2015.05.009
    [22] K. H. Kwong, T. Wu, H. G. Goh, K. Sasloglou, B. Stephen, I. Glover, et al., Practical considerations for wireless sensor networks in cattle monitoring applications, Comput. Electron. Agric., 81 (2012), 33–44. https://doi.org/10.1016/j.compag.2011.10.013 doi: 10.1016/j.compag.2011.10.013
    [23] F. Saleem, M. N. Majeed, J. Iqbal, A. Waheed, A. Rauf, M. Zareei, et al., Ant lion optimizer based clustering algorithm for wireless body area networks in livestock industry, IEEE Access, 9 (2021), 114495–114513. https://doi.org/10.1109/ACCESS.2021.3104643 doi: 10.1109/ACCESS.2021.3104643
    [24] K. Sekaran, R. Rajakumar, K. Dinesh, Y. Rajkumar, T. P. Latchoumi, S. Kadry, et al., An energy-efficient cluster head selection in wireless sensor network using grey wolf optimization algorithm, Telecommun. Comput. Electron. Control, 18 (2020), 2822–2833. http://doi.org/10.12928/telkomnika.v18i6.15199 doi: 10.12928/telkomnika.v18i6.15199
    [25] K. M. Awan, H. H. R. Sherazi, A. Ali, R. Iqbal, Z. A. Khan, M. Mukherjee, Energy‐aware cluster‐based routing optimization for WSNs in the livestock industry, Trans. Emerging Telecommun. Technol., 33 (2022), e3816. https://doi.org/10.1002/ett.3816 doi: 10.1002/ett.3816
    [26] K. Karunanithy, B. Velusamy, Cluster-tree based energy efficient data gathering protocol for industrial automation using WSNs and IoT, J. Ind. Inf. Integr., 19 (2020), 100156. https://doi.org/10.1016/j.jii.2020.100156 doi: 10.1016/j.jii.2020.100156
    [27] B. Pitchaimanickam, G. Murugaboopathi, A hybrid firefly algorithm with particle swarm optimization for energy efficient optimal cluster head selection in wireless sensor networks, Neural Comput. Appl., 32 (2020), 7709–7723. https://doi.org/10.1007/s00521-019-04441-0 doi: 10.1007/s00521-019-04441-0
    [28] R. S. Rathore, S. Sangwan, S. Prakash, K. Adhikari, R. Kharel, Y. Cao, Hybrid WGWO: Whale grey wolf optimization-based novel energy-efficient clustering for EH-WSNs, EURASIP J. Wireless Commun. Networking, 2020 (2020), 101. https://doi.org/10.1186/s13638-020-01721-5 doi: 10.1186/s13638-020-01721-5
    [29] G. Negi, A. Kumar, S. Pant, M. Ram, Optimization of complex system reliability using hybrid grey wolf optimizer, Dec. Making Appl. Manage. Eng., 4 (2021), 241–256. https://doi.org/10.31181/dmame210402241n doi: 10.31181/dmame210402241n
    [30] K. N. Dattatraya, K. R. Rao, Hybrid based cluster head selection for maximizing network lifetime and energy efficiency in WSN, J. King Saud Univ. Comput. Inf. Sci., 34 (2022), 716–726. https://doi.org/10.1016/j.jksuci.2019.04.003 doi: 10.1016/j.jksuci.2019.04.003
    [31] S. Sankar, R. Somula, B. Parvathala, S. Kolli, S. Pulipati, SOA-EACR: Seagull optimization algorithm-based energy aware cluster routing protocol for wireless sensor networks in the livestock industry, Sustainable Comput. Inf. Syst., 33 (2022), 100645. https://doi.org/10.1016/j.suscom.2021.100645 doi: 10.1016/j.suscom.2021.100645
    [32] G. Murugadass, P. Sivakumar, A hybrid elephant herding optimization and cultural algorithm for energy‐balanced cluster head selection scheme to extend the lifetime in WSNs, Int. J. Commun. Syst., 33 (2020), e4538. https://doi.org/10.1002/dac.4538 doi: 10.1002/dac.4538
    [33] A. O. A. Salem, N. Shudifat, Enhanced LEACH protocol for increasing a lifetime of WSNs, Pers. Ubiquitous Comput., 23 (2019), 901–907. https://doi.org/10.1007/s00779-019-01205-4 doi: 10.1007/s00779-019-01205-4
    [34] S. Sankar, P. Srinivasan, A. K. Luhach, R. Somula, N. Chilamkurti, Energy-aware grid-based data aggregation scheme in routing protocol for agricultural internet of things, Sustainable Comput. Inf. Syst., 28 (2020), 100422. https://doi.org/10.1016/j.suscom.2020.100422 doi: 10.1016/j.suscom.2020.100422
    [35] N. R. Malisetti, V. K. Pamula, Performance of quasi oppositional butterfly optimization algorithm for cluster head selection in WSNs, Procedia Comput. Sci., 171 (2020), 1953–1960. https://doi.org/10.1016/j.procs.2020.04.209 doi: 10.1016/j.procs.2020.04.209
    [36] M. Masdari, S. Barshandeh, Discrete teaching–learning-based optimization algorithm for clustering in wireless sensor networks, J. Ambient Intell. Hum. Comput., 11 (2020), 5459–5476. https://doi.org/10.1007/s12652-020-01902-6 doi: 10.1007/s12652-020-01902-6
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1697) PDF downloads(131) Cited by(8)

Article outline

Figures and Tables

Figures(11)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog