Research article Special Issues

Investigation on the fractal characteristic of asphalt pavement texture roughness incorporating 3D reconstruction technology

  • Received: 29 November 2022 Revised: 16 February 2023 Accepted: 23 February 2023 Published: 27 February 2023
  • The textural roughness of asphalt pavement surface is an important indicator to characterize pavement skid resistance. In this paper, multi-visual technology was applied to capture the surface image of asphalt pavement which was transformed into a visualized 3D point cloud model. Then, based on the principle of the digital elevation model (DEM), the disordered 3D point cloud is rasterized and projected into a 2D matrix which contains generalized point cloud elevation information. Meanwhile, the 2D matrix is transformed into grayscale to build the equivalent grayscale image. Furthermore, the fractal dimensions were calculated in terms of one-dimensional pavement section profile, two-dimensional grayscale, and equivalent grayscale to characterize the pavement roughness. The results showed that the fractal dimensions are positively correlated with the mean texture depth (MTD), and the fractal dimension of equivalent grayscale has the best correlation with MTD. It should be highlighted that the equivalent grayscale image is directly transformed by the reconstruction of the three-dimensional point cloud, and the grayscale value of each point can represent the elevation of different pavement surfaces. Therefore, the equivalent grayscale image can better reflect the real roughness of the pavement surface. Meanwhile, the proposed method in this paper can effectively reduce the influence of some factors (e.g., light and color, etc..) on the texture detection of the pavement surface.

    Citation: Han-Cheng Dan, Yongcheng Long, Hui Yao, Songlin Li, Yanhao Liu, Quanfeng Zhou. Investigation on the fractal characteristic of asphalt pavement texture roughness incorporating 3D reconstruction technology[J]. Electronic Research Archive, 2023, 31(4): 2337-2357. doi: 10.3934/era.2023119

    Related Papers:

  • The textural roughness of asphalt pavement surface is an important indicator to characterize pavement skid resistance. In this paper, multi-visual technology was applied to capture the surface image of asphalt pavement which was transformed into a visualized 3D point cloud model. Then, based on the principle of the digital elevation model (DEM), the disordered 3D point cloud is rasterized and projected into a 2D matrix which contains generalized point cloud elevation information. Meanwhile, the 2D matrix is transformed into grayscale to build the equivalent grayscale image. Furthermore, the fractal dimensions were calculated in terms of one-dimensional pavement section profile, two-dimensional grayscale, and equivalent grayscale to characterize the pavement roughness. The results showed that the fractal dimensions are positively correlated with the mean texture depth (MTD), and the fractal dimension of equivalent grayscale has the best correlation with MTD. It should be highlighted that the equivalent grayscale image is directly transformed by the reconstruction of the three-dimensional point cloud, and the grayscale value of each point can represent the elevation of different pavement surfaces. Therefore, the equivalent grayscale image can better reflect the real roughness of the pavement surface. Meanwhile, the proposed method in this paper can effectively reduce the influence of some factors (e.g., light and color, etc..) on the texture detection of the pavement surface.



    加载中


    [1] Y. Jia, S. Wang, J. Peng, Y. Gao, D. Hu, X. Zhao, Evaluation of pavement rutting based on driving safety of vehicles, Int. J. Pavement Res. Technol., 15 (2022), 457–469. https://doi.org/10.1007/s42947-021-00032-2 doi: 10.1007/s42947-021-00032-2
    [2] P. Buddhavarapu, A. Banerjee, J. A. Prozzi, Influence of pavement condition on horizontal curve safety, Accid. Anal. Prevent., 52 (2013), 9–18. https://doi.org/10.1016/j.aap.2012.12.010 doi: 10.1016/j.aap.2012.12.010
    [3] J. Hu, X. Gao, R. Wang, S. Sun, Research on comfort and safety threshold of pavement roughness, Transp. Res. Record, 2641 (2017), 149–155. https://doi.org/10.3141/2641-17 doi: 10.3141/2641-17
    [4] T. Wang, L. Hu, X. Pan, S. Xu, D. Yun, Effect of the compactness on the texture and friction of asphalt concrete intended for wearing course of the road pavement, Coatings, 10.2 (2020), 192. https://doi.org/10.3390/coatings10020192 doi: 10.3390/coatings10020192
    [5] H. Pérez-Acebo, H. Gonzalo-Orden, D. J. Findley, E. Rojí, A skid resistance prediction model for an entire road network, Constr. Build. Mater., 262 (2020), 120041. https://doi.org/10.1016/j.conbuildmat.2020.120041 doi: 10.1016/j.conbuildmat.2020.120041
    [6] Y. Peng, J. Q. Li, Y. Zhan, K. C. P. Wang, G. Yang, Finite element method-based skid resistance simulation using in-situ 3D pavement surface texture and friction data, Materials, 12 (2019), 3821. https://doi.org/10.3390/ma12233821 doi: 10.3390/ma12233821
    [7] D. Chen, N. R. Sefidmazgi, H. Bahia, Exploring the feasibility of evaluating asphalt pavement surface macro-texture using image-based texture analysis method, Road Mater. Pavement Design, 16 (2015), 405–420. https://doi.org/10.1080/14680629.2015.1016547 doi: 10.1080/14680629.2015.1016547
    [8] F. G. Praticò, R. Vaiana, A study on the relationship between mean texture depth and mean profile depth of asphalt pavements, Constr. Build. Mater., 101 (2015), 72–79. https://doi.org/10.1016/j.conbuildmat.2015.10.021 doi: 10.1016/j.conbuildmat.2015.10.021
    [9] J. Huyan, W. Li, S. Tighe, Z. Sun, Quantitative analysis of macrotexture of asphalt concrete pavement surface based on 3D data, Transp. Res. Record, 2674 (2020), 732–744. https://doi.org/10.1177/0361198120920269 doi: 10.1177/0361198120920269
    [10] D. W. Bechert, M. Bruse, W. Hage, R. Meyer, Fluid mechanics of biological surfaces and their technological application, Naturwissenschaften, 87 (2000), 157–171. https://doi.org/10.1007/s001140050696 doi: 10.1007/s001140050696
    [11] S. Chen, X. Liu, H. Luo, J. Yu, F. Chen, Y. Zhang, A state-of-the-art review of asphalt pavement surface texture and its measurement techniques, J. Road Eng., 2 (2022), 156–180. https://doi.org/10.1016/j.jreng.2022.05.003 doi: 10.1016/j.jreng.2022.05.003
    [12] L. F. Walubita, E. Mahmoud, S. I. Lee, G. Carrasco, J. J. Komba, J. J. Komba, Use of grid reinforcement in HMA overlays–A Texas field case study of highway US 59 in Atlanta District, Constr. Build. Mater., 213 (2019), 325–336. https://doi.org/10.1016/j.conbuildmat.2019.04.072 doi: 10.1016/j.conbuildmat.2019.04.072
    [13] O. H. Jeong, D. H. Chen, L. F. Walubita, A. J. Wimsatt, Mitigating seal coat damage due to superheavy load moves in Texas low volume roads, Constr. Build. Mater., 25 (2011), 3236–3244. https://doi.org/10.1016/j.conbuildmat.2011.03.010 doi: 10.1016/j.conbuildmat.2011.03.010
    [14] L. Fuentes, K. Taborda, X. Hu, E. Horak, T. Bai, L. F. Walubita, A probabilistic approach to detect structural problems in flexible pavement sections at network level assessment, Int. J. Pavement Eng., 78 (2020), 1867–1880. https://doi.org/10.1080/10298436.2020.1828586 doi: 10.1080/10298436.2020.1828586
    [15] A. E. Gendy, A. Shalaby, Mean profile depth of pavement surface macrotexture using photometric stereo techniques, J. Transp. Eng., 133 (2007), 433–440. https://doi.org/10.1061/(ASCE)0733-947X(2007)133:7(433) doi: 10.1061/(ASCE)0733-947X(2007)133:7(433)
    [16] Z. Du, J. Yuan, F. Xiao, C. Hettiarachchi, Application of image technology on pavement distress detection: A review, Measurement, 184 (2021), 109900. https://doi.org/10.1016/j.measurement.2021.109900 doi: 10.1016/j.measurement.2021.109900
    [17] L. Liu, P. Zhu, J. Guan, R. Jiang, X. Zhou, A binocular reconstruction method fused with Laplacian image information for pavement texture evaluation, Measurement, 185 (2021), 110039. https://doi.org/10.1016/j.measurement.2021.110039 doi: 10.1016/j.measurement.2021.110039
    [18] I. Pranjić, A. Deluka-Tibljaš, Pavement texture-friction relationship establishment via image analysis methods, Materials, 15 (2022), 846. https://doi.org/10.3390/ma15030846 doi: 10.3390/ma15030846
    [19] L. Puzzo, G. Loprencipe, C. Tozzo, A. D'Andrea, Three-dimensional survey method of pavement texture using photographic equipment, Measurement, 111 (2017), 146–157. https://doi.org/10.1016/j.measurement.2017.07.040 doi: 10.1016/j.measurement.2017.07.040
    [20] K. Zhang, P. Sun, L. Li, Y. Zhao, Y. Zhao, Z. Zhang, A novel evaluation method of aggregate distribution homogeneity for asphalt pavement based on the characteristics of texture structure, Constr. Build. Mater., 306 (2021), 124927. https://doi.org/10.1016/j.conbuildmat.2021.124927 doi: 10.1016/j.conbuildmat.2021.124927
    [21] O. Ghaderi, M. Abedini, Evaluation of the airport runway flexible pavement macro-texture using digital image processing technique (DIPT), Int. J. Pavement Eng., 23 (2021), 1–13. https://doi.org/10.1080/10298436.2021.1968393 doi: 10.1080/10298436.2021.1968393
    [22] H. C. Dan, G. W. Bai, Z. H. Zhu, X. Liu, W. Cao, An improved computation method for asphalt pavement texture depth based on multiocular vision 3D reconstruction technology, Constr. Build. Mater., 321 (2022), 126427. https://doi.org/10.1016/j.conbuildmat.2022.126427 doi: 10.1016/j.conbuildmat.2022.126427
    [23] S. Green, A. Bevan, M. Shapland, A comparative assessment of structure from motion methods for archaeological research, J. Archaeol. Sci., 46 (2014), 173–181. https://doi.org/10.1016/j.jas.2014.02.030 doi: 10.1016/j.jas.2014.02.030
    [24] Y. Ding, X. Zheng, Y. Zhou, H. Xiong, J. Gong, Low-cost and efficient indoor 3D reconstruction through annotated hierarchical structure-from-motion, Remote Sens., 11 (2018), 58–68. https://doi.org/10.3390/rs11010058 doi: 10.3390/rs11010058
    [25] S. Zhao, D. D. Robeltson, G. Wang, B. Whiting; K. T. Bae, X-ray CT metal artifact reduction using wavelets: an application for imaging total hip prostheses, IEEE Trans. Med. Imaging, 19 (2000), 1238–1247. http://dx.doi.org/10.1109/42.897816 doi: 10.1109/42.897816
    [26] S. W. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. T. Barron, F. Kainz, Burst photography for high dynamic range and low-light imaging on mobile cameras, ACM Trans. Graphics (ToG), 35 (2016), 1–12. https://doi.org/10.1145/2980179.2980254 doi: 10.1145/2980179.2980254
    [27] A. O. Akyüz, Deep joint deinterlacing and denoising for single shot dual-ISO HDR reconstruction, IEEE Trans. Image Process., 29 (2020), 7511–7524. https://doi.org/10.1109/TIP.2020.3004014 doi: 10.1109/TIP.2020.3004014
    [28] Z. J. Burk, C. S. Johnson, Method for production of 3D interactive models using photogrammetry for use in human anatomy education, HAPS Educ., 23 (2019), 457–463. https://doi.org/10.21692/HAPS.2019.016 doi: 10.21692/HAPS.2019.016
    [29] G. Jakovljevic, M. Govedarica, F. Alvarez-Taboada, V. Pajic, Accuracy assessment of deep learning-based classification of LiDAR and UAV points clouds for DTM creation and flood risk mapping, Geosciences, 9 (2019), 323. https://doi.org/10.3390/geosciences9070323 doi: 10.3390/geosciences9070323
    [30] H. Wendt, P. Abry, S. Jaffard, H. Ji, Z. Shen, Wavelet leader multifractal analysis for texture classification, in 2009 16th IEEE International Conference on Image Processing (ICIP), (2009), 3829–3832. https://doi.org/10.1109/ICIP.2009.5414273.
    [31] S. Mallat, Zero-crossings of a wavelet transform, IEEE Trans. Inf. Theory, 37 (1991), 1019–1033. https://doi.org/10.1109/18.86995 doi: 10.1109/18.86995
    [32] G. Strang, Wavelet transforms versus Fourier transforms, Bull. Am. Math. Soc., 28 (1993), 288–305. https://doi.org/10.1090/s0273-0979-1993-00390-2 doi: 10.1090/s0273-0979-1993-00390-2
    [33] G. Yang, Q. J. Li, Y. J. Zhan, K. C. P. Wang, C. Wang, Wavelet based macrotexture analysis for pavement friction prediction, KSCE J. Civ. Eng., 22 (2018), 117–124. https://doi.org/10.1007/s12205-017-1165-x doi: 10.1007/s12205-017-1165-x
    [34] L. Wei, T. F. Fwa, Z. Zhe, Wavelet analysis and interpretation of road roughness, J. Transp. Eng., 131 (2005), 120–130. https://doi.org/10.1061/(ASCE)0733-947X(2005)131:2(120) doi: 10.1061/(ASCE)0733-947X(2005)131:2(120)
    [35] T. Wan, H. Wang, P. Feng, A. Diab, Concave distribution characterization of asphalt pavement surface segregation using smartphone and image processing based techniques, Constr. Build. Mater., 301 (2021), 124111. https://doi.org/10.1016/j.conbuildmat.2021.124111 doi: 10.1016/j.conbuildmat.2021.124111
    [36] M. M. Kanafi, A. Kuosmanen, T. K. Pellinen, A. J. Tuononen, Macro-and micro-texture evolution of road pavements and correlation with friction, Int. J. Pavement Eng., 16 (2015), 168–179. https://doi.org/10.1080/10298436.2014.937715 doi: 10.1080/10298436.2014.937715
    [37] M. Abdulkareem, N. Bakhary, M. Vafaei, N. M. Noor, R. N. Mohamed, Application of two-dimensional wavelet transform to detect damage in steel plate structures, Measurement, 146 (2019), 912–923. https://doi.org/10.1016/j.measurement.2019.07.027 doi: 10.1016/j.measurement.2019.07.027
    [38] C. Liu, Y. Zhan, Q. Deng, Y. Qiu, A. Zhang, An improved differential box counting method to measure fractal dimensions for pavement surface skid resistance evaluation, Measurement, 178 (2021), 109376. https://doi.org/10.1016/j.measurement.2021.109376 doi: 10.1016/j.measurement.2021.109376
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1465) PDF downloads(86) Cited by(1)

Article outline

Figures and Tables

Figures(15)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog