Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

A model of amacrine cells for orientation detection

  • As the most studied sensory system, the visual system plays an important role in our understanding of brain functions. Biological researchers have divided the nerve cells in the retina into dozens of visual channels carrying various characteristics based on visual features. Although orientation-selective cells have been identified in the retinas of various animals, the specific neural circuits of such cells have been controversial. In this study, a new simple and efficient orientation detection model based on the perceptron is proposed to restore the neural circuitry of orientation-selective cells in the retina. The performance of this model is experimentally compared with that of the convolutional neural network for image orientation recognition, and the results verify that the proposed model offers very good orientation detection. The proposed perceptron-based orientation detection model provides a new perspective to explain the neural circuits of orientation-selective cells.

    Citation: Fenggang Yuan, Cheng Tang, Zheng Tang, Yuki Todo. A model of amacrine cells for orientation detection[J]. Electronic Research Archive, 2023, 31(4): 1998-2018. doi: 10.3934/era.2023103

    Related Papers:

    [1] Asghar Ahmadkhanlu, Hojjat Afshari, Jehad Alzabut . A new fixed point approach for solutions of a p-Laplacian fractional q-difference boundary value problem with an integral boundary condition. AIMS Mathematics, 2024, 9(9): 23770-23785. doi: 10.3934/math.20241155
    [2] Djamila Chergui, Taki Eddine Oussaeif, Merad Ahcene . Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions. AIMS Mathematics, 2019, 4(1): 112-133. doi: 10.3934/Math.2019.1.112
    [3] Cuiying Li, Rui Wu, Ranzhuo Ma . Existence of solutions for Caputo fractional iterative equations under several boundary value conditions. AIMS Mathematics, 2023, 8(1): 317-339. doi: 10.3934/math.2023015
    [4] Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593
    [5] Isra Al-Shbeil, Abdelkader Benali, Houari Bouzid, Najla Aloraini . Existence of solutions for multi-point nonlinear differential system equations of fractional orders with integral boundary conditions. AIMS Mathematics, 2022, 7(10): 18142-18157. doi: 10.3934/math.2022998
    [6] Yujun Cui, Chunyu Liang, Yumei Zou . Existence and uniqueness of solutions for a class of fractional differential equation with lower-order derivative dependence. AIMS Mathematics, 2025, 10(2): 3797-3818. doi: 10.3934/math.2025176
    [7] Yitao Yang, Dehong Ji . Properties of positive solutions for a fractional boundary value problem involving fractional derivative with respect to another function. AIMS Mathematics, 2020, 5(6): 7359-7371. doi: 10.3934/math.2020471
    [8] Xiulin Hu, Lei Wang . Positive solutions to integral boundary value problems for singular delay fractional differential equations. AIMS Mathematics, 2023, 8(11): 25550-25563. doi: 10.3934/math.20231304
    [9] Xiping Liu, Mei Jia, Zhanbing Bai . Nonlocal problems of fractional systems involving left and right fractional derivatives at resonance. AIMS Mathematics, 2020, 5(4): 3331-3345. doi: 10.3934/math.2020214
    [10] Najla Alghamdi, Bashir Ahmad, Esraa Abed Alharbi, Wafa Shammakh . Investigation of multi-term delay fractional differential equations with integro-multipoint boundary conditions. AIMS Mathematics, 2024, 9(5): 12964-12981. doi: 10.3934/math.2024632
  • As the most studied sensory system, the visual system plays an important role in our understanding of brain functions. Biological researchers have divided the nerve cells in the retina into dozens of visual channels carrying various characteristics based on visual features. Although orientation-selective cells have been identified in the retinas of various animals, the specific neural circuits of such cells have been controversial. In this study, a new simple and efficient orientation detection model based on the perceptron is proposed to restore the neural circuitry of orientation-selective cells in the retina. The performance of this model is experimentally compared with that of the convolutional neural network for image orientation recognition, and the results verify that the proposed model offers very good orientation detection. The proposed perceptron-based orientation detection model provides a new perspective to explain the neural circuits of orientation-selective cells.



    In this research, we mainly focused on wave equation to study and examine the coupled system. In this system, we assumed a bounded domain ΩRN where Ω indicates sufficiently smooth boundary of ΩRN and take the positive constants ξ0,ξ1,σ,β1,β3 where m1 for N=1,2, and 1<mN+2N2 for N3. The coupled system with these terms is given by

    {vtt(ξ0+ξ1v22+δ(v,vt)L2(Ω))Δv(t)+0g1(s)Δv(ts)ds+β1|vt(t)|m2vt(t)+τ2τ1|β2(r)||vt(tr)|m2vt(tr)dr+f1(v,w)=0.wtt(ξ0+ξ1w22+δ(w,wt)L2(Ω))Δw(t)+0g2(s)Δw(ts)ds+β3|wt(t)|m2wt(t)+τ2τ1|β4(r)||wt(tr)|m2wt(tr)dr+f2(v,w)=0.v(z,t)=v0(z),vt(z,0)=v1(z),w(z,t)=w0(z),wt(z,0)=w1(z),inΩvt(z,t)=j0(z,t),wt(z,t)=ϱ0(z,t),inΩ×(0,τ2)v(z,t)=w(z,t)=0,inΩ×(0,) (1.1)

    in which G=Ω×(τ1,τ2)×(0,) and τ1<τ2 are taken to be non-negative constants in a manner that β2, β4:[τ1,τ2]R indicates distributive time delay while gi, i=1,2 are positive.

    The viscoelastic damping term, whose kernel is the function g, is a physical term used to describe the link between the strain and stress histories in a beam that was inspired by the Boltzmann theory. There are several publications that discuss this subject and produce a lot of fresh and original findings [1,2,3,4,5], particularly the hypotheses regarding the initial condition [6,7,8,9,10,11,12] and the kernel. See [13,14,15,16,17]. As it concerns to the plate equation and the span problem, Balakrishnan and Taylor introduced a novel damping model in [18] that they dubbed the Balakrishnan-Taylor damping. Here are a few studies that specifically addressed the research of this dampening for further information [18,19,20,21,22,23].

    Several applications and real-world issues are frequently affected by the delay, which transforms numerous systems into interesting research topics. Numerous writers have recently studied the stability of the evolution systems with time delays, particularly the effect of distributed delay. See [24,25,26].

    In [1], the authors presented the stability result of the system over a considerably broader class of kernels in the absence of delay and Balakrishnan-Taylor damping ξ0=1,ξ1=δ=βi=0,i=1,,4.

    Based on everything said above, one specific problem may be solved by combining these damping terms (distributed delay terms, Balakrishnan-Taylor damping and infinite memory), especially when the past history and the distributed delay

    τ2τ1|βi(r)||ut(tr)|m2ut(tr)dr,    i=2,4

    are added. We shall attempt to throw light on it since we think it represents a fresh topic that merits investigation and analysis in contrast to the ones mentioned before. Our study is structured into multiple sections: in the second section, we establish the assumptions, notions, and lemmas we require; in the final section, we substantiate our major finding.

    In this section of the paper, we will introduce some basic results related to the theory for the analysis of our problem. Let us take the below:

    (G1) hi:R+R+ are a non-increasing C1 functions fulfills the following

    gi(0)>0,,ξ00hi(s)ds=li>0,i=1,2, (2.1)

    and

    g0=0h1(s)ds,ˆg0=0g2(s)ds,

    (G2) One can find a function C1 functions Gi:R+R+ holds true Gi(0)=Gi(0)=0.

    The functions Gi(t) are strictly increasing and convex of class C2(R+) on (0,ϱ],rgi(0) or linear in a manner that

    gi(t)ζi(t)Gi(gi(t)),t0,fori=1,2, (2.2)

    in which ζi(t) are a C1 functions fulfilling the below

    ζi(t)>0,ζi(t)0,t0. (2.3)

    (G3) β2, β4:[τ1,τ2]R are a bounded function fulfilling the below

    τ2τ1|β2(r)|dr<β1,τ2τ1|β4(r)|dr<β3. (2.4)

    (G4) fi:R2R are C1 functions with fi(0,0)=0, and one can find a function F in a way that

    f1(c,e)=dFdc(c,e),f2(c,e)=dFde(c,e),F0,af1(c,e)+ef2(c,e)=F(c,e)0, (2.5)

    and

    dfidc(c,e)+dfide(c,e)d(1+cpi1+epi1).(c,e)R2. (2.6)

    Take the below

    (gϕ)(t):=Ω0h(r)|ϕ(t)ϕ(tr)|2drdz,

    and

    M1(t):=(ξ0+ξ1v22+δ(v(t),vt(t))L2(Ω)),M2(t):=(ξ0+ξ1w22+δ(w(t),wt(t))L2(Ω)).

    Lemma 2.1. (Sobolev-Poincare inequality [27]). Assume that 2q< for n=1,2 and 2q<2nn2 for n3. Then, one can find c=c(Ω,q)>0 in a manner that

    vqcv2,vG10(Ω).

    Moreover, choose the below as in [26]:

    x(z,ρ,r,t)=vt(z,trρ),y(z,ρ,r,t)=wt(z,trρ)

    with

    {rxt(z,ρ,r,t)+xρ(z,ρ,r,t)=0,syt(z,ρ,r,t)+yρ(z,ρ,r,t)=0x(z,0,r,t)=vt(z,t),y(z,0,r,t)=wt(z,t). (2.7)

    Take the auxiliary variable (see [28])

    ηt(z,s)=v(z,t)v(z,ts),s0,ϑt(z,s)=w(z,t)w(z,ts),s0.

    Then

    ηtt(z,s)+ηts(z,s)=vt(z,t),ϑtt(z,s)+ϑts(z,s)=wt(z,t). (2.8)

    Rewrite the problem (1.1) as follows

    {vtt(l1+ξ1v22+δ(v,vt)L2(Ω))Δv(t)+0g1(s)Δηt(s)ds+β1|vt(t)|m2vt(t)+τ2τ1|β2(s)||x(z,1,r,t)|m2x(z,1,r,t)dr+f1(v,w)=0,wtt(l2+ξ1w22+δ(w,wt)L2(Ω))Δw(t)+0g2(s)Δϑt(s)ds+β3|wt(t)|m2wt(t)+τ2τ1|β4(r)||y(z,1,r,t)|m2y(z,1,r,t)dr+f2(v,w)=0,rxt(z,ρ,r,t)+xρ(z,ρ,r,t)=0,ryt(z,ρ,r,t)+yρ(z,ρ,r,t)=0,ηtt(z,s)+ηts(z,s)=vt(z,t)ϑtt(z,s)+ϑts(z,s)=wt(z,t), (2.9)

    where

    (z,ρ,r,t)Ω×(0,1)×(τ1,τ2)×(0,).

    with

    {v(z,t)=v0(z),vt(z,0)=v1(z),w(z,t)=w0(z),wt(z,0)=w1(z),inΩx(z,ρ,r,0)=j0(z,ρr),y(z,ρ,r,0)=ϱ0(z,ρr),inΩ×(0,1)×(0,τ2)v(z,t)=ηt(z,s)=0,zΩ,t,s(0,),ηt(z,0)=0,t0,η0(z,s)=η0(s)=0,s0,w(z,t)=ϑt(z,s)=0,zΩ,t,s(0,),ϑt(z,0)=0,t0,ϑ0(z,s)=ϑ0(s)=0,s0. (2.10)

    In the upcoming Lemma, the energy functional will be introduced.

    Lemma 2.2. Let the energy functional is symbolized by E, then it is given by

    E(t)=12(vt22+wt22)+ξ14(v(t)42+w(t)42)+ΩF(v,w)dz+12(l1v(t)22+l2w(t)22)+12((g1v)(t)+(g2w)(t))+m1m10τ2τ1s(|β2(r)|x(z,ρ,r,t)mm+|β4(r)|y(z,ρ,r,t)mm)drdρ. (2.11)

    The above fulfills the below

    E(t)γ0(vt(t)mm+wt(t)mm)+12((g1v)(t)+(g2w)(t))δ4{(ddt{v(t)22})2+(ddt{w(t)22})2}0, (2.12)

    in which γ0=min{β1τ2τ1|β2(r)|dr,β3τ2τ1|β4(r)|dr}.

    Proof. To prove the result, we take the inner product of (2.9) with vt,wt and after that integrating over Ω, the following is obtained

    (vtt(t),vt(t))L2(Ω)(M3(t)Δv(t),vt(t))L2(Ω)+(0h1(s)Δηt(s)ds,vt(t))L2(Ω)+β1(|vt|m2vt,vt)L2(Ω)+τ2τ1|β2(s)|(|x(z,1,r,t)|m2x(z,1,r,t),vt(t))L2(Ω)dr+(wtt(t),wt(t))L2(Ω)(M4(t)Δw(t),wt(t))L2(Ω)+(0h2(s)Δϑt(s)ds,wt(t))L2(Ω)+β3(|wt|m2wt,wt)L2(Ω)+τ2τ1|β4(s)|(|y(z,1,r,t)|m2y(z,1,r,t),wt(t))L2(Ω)dr+(f1(v,w),vt(t))L2(Ω)+(f2(v,w),wt(t))L2(Ω)=0. (2.13)

    in which

    M3(t):=(l1+ξ1v22+δ(v(t),vt(t))L2(Ω)),M4(t):=(l2+ξ1w22+δ(w(t),wt(t))L2(Ω)).

    Using mathematical skills, the following is obtained

    (vtt(t),vt(t))L2(Ω)=12ddt(vt(t)22), (2.14)

    further simplification leads us to the following

    (M3(t)Δv(t),vt(t))L2(Ω)=((l1+ξ1v22+δ(v(t),vt(t))L2(Ω))Δv(t),vt(t))L2(Ω)=(l1+ξ1v22+δ(v(t),vt(t))L2(Ω))Ωv(t).vt(t)dz=(l1+ξ1v22+δ(v(t),vt(t))L2(Ω))ddt{Ω|v(t)|2dz}=ddt{12(l1+ξ12v22)v(t)22}+δ4ddt{v(t)22}2. (2.15)

    The following is obtained after calculation

    (0g1(s)Δηt(s)ds,vt(t))L2(Ω)=Ωvt0g1(s)ηt(s)dsdz=0g1(s)Ωvtηt(s)dzds=0g1(s)Ω(ηtt+ηts)ηt(s)dzds=0g1(s)Ωηttηt(s)dzds+Ω0g1(s)ηtsηt()ddz=12ddt(g1v)(t)12(g1v)(t). (2.16)

    In the same way, we have

    (wtt(t),wt(t))L2(Ω)=12ddt(wt(t)22),(M4(t)Δw(t),wt(t))L2(Ω)=ddt{12(l2+ξ12w22)w(t)22}+δ4ddt{w(t)22}2,(0g2(s)Δϑt(s)ds,wt(t))L2(Ω)=12ddt(g2w)(t)12(g2w)(t). (2.17)

    Now, multiplying the equation (2.9) by x|β2(r)|,y|β4(r)|, and integrating over Ω×(0,1)×(τ1,τ2) and utilizing (2.7), the below is obtained

    ddtm1mΩ10τ2τ1r|β2(r)|.|x(z,ρ,r,t)|mdrdρdz=(m1)Ω10τ2τ1|β2(r)|.|y|m1xρdrdρdz=m1mΩ10τ2τ1|β2(r)|ddρ|x(z,ρ,r,t)|mdrdρdz=m1mΩτ2τ1|β2(r)|(|x(z,0,r,t)|m|x(z,1,r,t)|m)drdz=m1m(τ2τ1|β2(r)|dr)Ω|vt(t)|mdzm1mΩτ2τ1|β2(r)|.|x(z,1,r,t)|mdrdz=m1m(τ2τ1|β2(r)|dr)vt(t)mmm1mτ2τ1|β2(r)|x(z,1,r,t)mmdr. (2.18)

    Similarly, we have

    ddtm1mΩ10τ2τ1r|β4(r)|.|y(z,ρ,r,t)|mdrdρdz=m1m(τ2τ1|β4(r)|dr)wt(t)mmm1mτ2τ1|β4(r)|y(z,1,r,t)mmdr. (2.19)

    Here, we utilize the inequalities of Young as

    τ2τ1|β2(r)|(|x(z,1,r,t)|m2x(z,1,r,t),vt(t))L2(Ω)ds1m(τ2τ1|β2(r)|dr)vt(t)mm+m1mτ2τ1|β2(r)|x(z,1,r,t)mmdr, (2.20)

    and

    τ2τ1|β4(r)|(|y(z,1,r,t)|m2y(z,1,r,t),wt(t))L2(Ω)dr1m(τ2τ1|β4(r)|dr)wt(t)mm+m1mτ2τ1|β4(r)|y(z,1,r,t)mmdr. (2.21)

    Finally, we have

    (f1(v,w),vt(t))L2(Ω)+(f2(v,w),wt(t))L2(Ω)=ddtΩF(v,w)dz. (2.22)

    Thus, after replacement of (2.14)–(2.22) into (2.13), we determined (2.11) and (2.12). As a result, we obtained that E is a non-increasing function by (2.2)–(2.5), which is required.

    Theorem 2.3. Take the function U=(v,vt,w,wt,x,y,ηt,ϑt)T and assume that (2.1)–(2.5) holds true. Then, for any U0H, then one can find a unique solution U of problems (2.9) and (2.10) in a manner that

    UC(R+,G).

    If U0G1, then U fulfills the following

    UC1(R+,G)C(R+,G1),

    in which

    G=(G10(Ω)×L2(Ω))2×(L2(Ω,(0,1),(τ1,τ2)))2×(Lg1×Lg2).G1={UG/v,wG2G10,vt,wtG10(Ω),x,y,xρ,yρL2(Ω,(0,1),(τ1,τ2)),(ηt,ϑt)Lg1×Lg2,ηt(z,0)=ϑt(z,0)=0,x(z,0,r,t)=vt,y(z,0,r,t)=wt}.

    Here, the stability of the systems (2.9) and (2.10) will be established and investigated. For which the following lemma is needed

    Lemma 3.1. Let us suppose that (2.1) and (2.2) fulfills.

    Ω(0gi(s)(v(t)v(ts))ds)2dzCκ,i(hiv)(t),i=1,2. (3.1)

    where

    Cκi:=0g2i(s)κgi(s)gi(s)dshi(t):=κgi(t)gi(t),i=1,2.

    Proof.

    Ω(0gi(s)(v(t)v(ts))ds)2dz=Ω(tgi(ts)(v(t)v(ts))ds)2dz=Ω(tgi(ts)κgi(ts)gi(ts)κgi(ts)gi(ts)(v(t)v(s))ds)2dz (3.2)

    which is obtained through Young's inequality (Eq 3.1).

    Lemma 3.2. (Jensens inequality). Let f:Ω[c,e] and h:ΩR are integrable functions in a manner that for any zΩ, h(z)>0 and Ωh(z)dz=k>0. Furthermore, assume a convex function G such that G:[c,e]R. Then

    G(1kΩf(z)h(z)dz)<1kΩG(f(z))h(z)dz. (3.3)

    Lemma 3.3. It is mentioned in [12] that one can find a positive constant β, ˆβ in a manner that

    I1(t)=Ωtg1(s)|ηt(δ)|2dsdzβμ(t),I2(t)=Ωtg2(s)|ϑt(δ)|2dsdzˆβˆμ(t), (3.4)

    in which

    μ(t)=0g1(t+s)(1+Ωv20(z,s)dz)ds,ˆμ(t)=0g2(t+s)(1+Ωw20(z,s)dz)ds.

    Proof. As the function E(t) is decreasing and utilizing (2.11), we have the following

    Ω|ηt(s)|2dz=Ω(v(z,t)v(z,ts)2dz2Ωv2(z,t)dz+2Ωv2(z,ts)dz2sups>0Ωv2(z,s)dz+2Ωv2(z,tx)dz4E(0)l1+2Ωv2(z,ts)dz, (3.5)

    for any t,s0. Further, we have

    I1(t)4E(0)l1tg1(s)ds+2tg1(s)Ωv2(z,ts)dzds4E(0)l10g1(t+s)ds+20g1(t+s)Ωv20(z,s)dzdsβμ(t), (3.6)

    in which β=max{4E(0)l1,2} and μ(t)=0g1(t+s)(1+Ωu20(z,s)dz)ds.

    In the same way, we can deduce that

    I2(t)4E(0)l20g2(t+s)ds+20g2(t+s)Ωw20(z,s)dzdsˆβˆμ(t), (3.7)

    in which ˆβ=max{4E(0)l2,2} and ˆμ(t)=0g2(t+s)(1+Ωw20(z,s)dz)ds. In the upcoming part, we set the following

    Ψ(t):=Ω(v(t)vt(t)+w(t)wt(t))dz+δ4(v(t)42+w(t)42), (3.8)

    and

    Φ(t):=Ωvt0g1(s)(v(t)v(ts))dsdzΩwt0g2(s)(w(t)w(ts))dsdz, (3.9)

    and

    Θ(t):=10τ2τ1reρr(|β2(r)|.x(z,ρ,r,t)mm+|β4(r)|.y(z,ρ,r,t)mm)drdρ. (3.10)

    Lemma 3.4. In (3.8), the functional Ψ(t) fulfills the following

    Ψ(t)vt22+wt22(lε(c1+c2)σ1)(v22+w22)ξ1(v42+w42)+c(ε)(vtmm+wtmm)+c(σ1)(Cκ,1(g1v)(t)+Cκ,2(h2w)(t))ΩF(v,w)dz+c(ε)τ2τ1(|β2(r)x(z,1,r,t)mm+|β4(r)y(z,1,r,t)mm)dr. (3.11)

    for any ε,σ1>0 with l=min{l1,l2}.

    Proof. To prove the result, differentiate (3.8) first and then apply (2.9), we have the following

    Ψ(t)=vt22+Ωvttvdz+δv22Ωvtvdz+wt22+Ωwttwdz+δw22Ωwtwdz=vt22+wt22ξ0(v22+w22)ξ1(v42+w42)β1Ω|vt|m2vtvdzI11β3Ω|wt|m2wtwdzI12+Ωv(t)0g1(s)v(ts)dsdzI21+Ωw(t)0g2(s)w(ts)dsdzI22Ωτ2τ1|β2(r)||x(z,1,r,t)|m2x(z,1,r,t)vdrdzI31Ωτ2τ1|β4(r)||y(z,1,r,t)|m2y(z,1,r,t)wdrdzI32Ω(vf1(v,w)+wf2(v,w))dzI4. (3.12)

    We estimate the last 6 terms of the RHS of (3.12). The following is obtained by applying Young's, Sobolev-Poincare and Hölder's inequalities on (2.1) and (2.11), we have

    I11εβm1vmm+c(ε)vtmmεβm1cmpvm2+c(ε)vtmmεβm1cmp(E(0)l1)(m2)/2v22+c(ε)vtmmεc11v22+c(ε)vtmm. (3.13)

    In addition to this, for any σ1>0, by Lemma 3.1, we have the below

    I21(0g1(s)ds)v22Ωv(t)0g1(s)(v(t)v(ts))dsdz(ξ0l1+σ1)v22+cσ1Cκ,1(h1v)(t). (3.14)

    Taking same steps to I12, the below is obtained

    I31εc21v22+c(ε)τ2τ1|β2(r)|.x(z,1,r,t)mmdr. (3.15)

    Same steps for I11,I21 and I31, we have

    I12εc12w22+c(ε)wtmmI22(ξ0l2+σ1)w22+cσ1Cκ,2(h2w)(t),I32εc22w22+c(ε)τ2τ1|β4(r)|.y(z,1,r,t)mmdr. (3.16)

    Combining (3.13)–(3.21), (3.12) and (2.5), the required (3.11) is obtained.

    Lemma 3.5. For any σ,σ2,σ3>0, the functional Φ(t) introduced in (3.9) holds true

    Φ(t)(l0σ3)(vt22+wt22)+ξ1σ(v42+w42)+σ(ξ0+^l02+cˆl)v22+σ(ξ0+ˆh20+cl2)w22+σ22δE(0)(1l1(12ddtv22)2+1l2(12ddtw22)2)+c(σ,σ2,σ3)(Cκ,1(h1v)(t)+Cκ,2(h2w)(t))+c(σ)(vtmm+τ2τ1|β2(r)x(z,1,r,t)mmdr)+c(σ)(wtmm+τ2τ1|β4(r)y(z,1,r,t)mmdr). (3.17)

    where ˆl=max{l1,l2}, l0=min{g0,ˆg0} and ^l0=max{g0,ˆg0}.

    Proof. To prove the result, simplification of (3.9) and (2.9) through mathematical skills leads us to the following

    Φ(t)=Ωvtt0g1(s)(v(t)v(ts))dsdzΩvtt(0g1(s)(v(t)v(ts))ds)dzΩwtt0g2(s)(w(t)w(ts))dsdzΩwtt(0g2(s)(w(t)w(ts))ds)dz=(ξ0+ξ1v22)Ωv0g1(s)(v(t)v(ts))dsdzJ11+(ξ0+ξ1w22)Ωw0g2(s)(w(t)w(ts))dsdzJ12+δΩvvtdz.Ωv0g1(s)(v(t)v(ts))dsdzJ21+δΩwwtdz.Ωw0g2(s)(w(t)w(ts))dsdzJ22Ω(0g1(s)v(ts)ds).(0g1(s)(v(t)v(ts))ds)dzJ31Ω(0g2(s)w(ts)ds).(0g2(s)(w(t)w(ts))ds)dzJ32β1Ω|vt|m2vt(0g1(s)(v(t)v(ts))ds)dzJ41β3Ω|wt|m2wt(0g2(s)(w(t)w(ts))ds)dxJ42Ωτ2τ1|β2(r)||x(z,1,r,t)|m2x(z,1,r,t)×0g1(s)(v(t)v(ts))ds)dsdzJ51Ωτ2τ1|β4(r)||y(z,1,r,t)|m2y(z,1,r,t)×0g2(s)(w(t)w(ts))ds)dsdzJ51Ωvtt(0g(s)(v(t)v(ts))ds)dzJ61Ωwtt(0g2(s)(w(t)w(ts))ds)dzJ62Ωf1(v,w).(0g1(s)(v(t)v(ts))ds)dzJ71Ωf2(v,w).(0g2(s)(w(t)w(ts))ds)dzJ72. (3.18)

    Here, we will find our the approximation of the terms of the RHS of (3.18). Using the well-known Young's, Sobolev-Poincare and Hölder's inequalities on (2.1), (2.11) and Lemma 3.1, we proceed as follows

    |J11|(ξ0+ξ1v22)(σv22+14σCκ,1(h1v)(t))σξ0v22+σξ1v42+(ξ04σ+ξ1E(0)4l1ξ)Cκ,1(h1v)(t), (3.19)

    and

    J21σ2δ(Ωvvtdz)2v22+δ4σ2Cκ,1(h1v)(t)σ22δE(0)l1(12ddtv22)2+δ4σ2Cκ,1(h1v)(t), (3.20)
    |J31|Ω(0g1(s)v(t)ds)(0g1(s)(v(ts)v(t))ds)dzΩ(0g1(s)(v(t)v(ts))ds)2dzδg20v22+(1+14δ)Cκ,1(h1v)(t), (3.21)
    |J41|c(σ)vtmm+σβm1Ω(0g1(s)(v(t)v(ts))ds)mdzc(σ)vtmm+σ(βm1cmp[4g0E(0)l1](m2))Cκ,1(h1v)(t)c(σ)vtmm+σc3Cκ,1(h1v)(t). (3.22)

    In the same, we obtained the following

    J51c(σ)x(z,1,r,t)mm+σc4Cκ,1(h1v)(t), (3.23)

    and to find the approximation of J61, we have

    t(0g1(s)(v(t)v(ts))ds)=t(tg1(ts)(v(t)v(s))ds)=tg1(ts)(v(t)v(s))ds+(tg1(ts)ds)vt(t)=0g1(s)(v(t)v(ts))ds+g0vt(t),

    the (2.2) implies that

    J61(g0σ3)vt22+cσ3Cκ,1(h1v)(t). (3.24)

    In the same steps, the estimation of Ji2, i=1,..,6 are obtained and

    J71cσl1v22+c(σ)Cκ,1(h1v)(t)J72cσl2w22+c(σ)Cκ,2(h2v)(t). (3.25)

    Here, put (3.19)–(3.25) into (3.18), the required result is obtained.

    Lemma 3.6. The functional Θ(t) introduced in (3.10) fulfills the below

    Θ(t)γ110τ2τ1r(|β2(r)|.x(z,ρ,r,t)mm+|β4(r)|.y(z,ρ,r,t)mm)drdργ1τ2τ1(|β2(s)|.x(z,1,r,t)mm+|β4(r)|.y(z,1,r,t)mm)dr+β5(vt(t)mm+wt(t)mm). (3.26)

    in which β5=max{β1,β3}.

    Proof. To prove the result, using Θ(t), and (2.9), we obtained the following

    Θ(t)=mΩ10τ2τ1erρ|β2(r)|.|x|m1xρ(z,ρ,r,t)drdρdzmΩ10τ2τ1erρ|β4(r)|.|y|m1yρ(z,ρ,r,t)drdρdz=Ω10τ2τ1rerρ|β2(r)|.|x(z,ρ,r,t)|mdrdρdzΩτ2τ1|β2(r)|[er|x(z,1,r,t)|m|x(z,0,r,t)|m]drdzΩ10τ2τ1rerρ|β4(r)|.|y(z,ρ,r,t)|mdrdρdzΩτ2τ1|β4(r)|[er|y(z,1,r,t)|m|y(z,0,r,t)|m]drdz

    Utilizing x(z,0,r,t)=vt(z,t),y(z,0,r,t)=wt(z,t), and ererρ1, for any 0<ρ<1, moreover, select γ1=eτ2, we have

    Θ(t)γ1Ω10τ2τ1r(|β2(r)|.|z(z,ρ,r,t)|m+|β4(r)|.|y(z,ρ,r,t)|m)drdρdzγ1Ωτ2τ1(|β2(r)||x(z,1,r,t)|m+|β4(r)||y(z,1,r,t)|m)drdz+τ2τ1|β2(r)|drΩ|vt|m(t)dz+τ2τ1|β4(r)|drΩ|wt|m(t)dz,

    applying (2.4), the required proof is obtained. In the next step, we below functional are introduced

    A1(t):=Ωt0φ1(ts)v(s)2dsdz,A2(t):=Ωt0φ2(ts)w(s)2dsdz, (3.27)

    in which φ1(t)=tg1(s)ds,φ2(t)=tg2(s)ds.

    Lemma 3.7. Let us suppose that (2.1) and (2.2) satisfied. Then, the functional F1=A1+A2 and fulfills the following

    F1(t)12((g1v)(t)+(g2w)(t))+3g0Ωv2dz+3ˆg0Ωw2dz+12Ωtg1(s)(v(t)v(ts))2dsdz+12Ωtg2(s)(w(t)w(ts))2dsdz. (3.28)

    Proof. We can easily prove this lemma with the help of Lemma 3.7 in [13] and Lemma 3.4 in [15].

    Now, we have sufficient mathematical tools to prove the below mentioned Theorem.

    Theorem 3.8. Take (2.1)–(2.5), then one can find positive constants ςi,i=1,2,3 and positive function ς4(t) in a way that the energy functionalmentioned in (2.11) fulfills

    E(t)ς1D12(ς2+ς3t0ˆζ(ν)D4(ς4(ν)μ0(ν))dνt0ζ0(ν)dν), (3.29)

    in which

    D2(t)=tD(ε0t),D3(t)=tD1(t),D4(t)=¯D3(t), (3.30)

    and

    μ0=max{μ,ˆμ},ˆζ=max{ζ1,ζ2},ζ0=min{ζ1,ζ2},

    which are increasing and convex in (0, ϱ].

    Proof. For the proof, we define the below functional

    G(t):=NE(t)+N1Ψ(t)+N2Φ(t)+N3Θ(t), (3.31)

    we determined the positive constants N,Ni,i=1,2,3. Simplifying (3.36) and utilizing 2.12, the Lemmas 3.4–3.6, we have

    G(t):=NE(t)+N1Ψ(t)+N2Φ(t)+N3Θ(t){N2(l0σ3)N1}(vt22+wt22){N3ξ1N2ξ1σ}(v42+w42){N1(lε(c1+c2)σ1)N2σ(ξ0+^l02+cˆl)}(v22+w22){Nδ4N2σ22δE(0)l}[(12ddtv22)2+(12ddtw22)2]+{N1c(σ1)+N2c(σ,σ2,σ3)}(Cκ,1(h1v)(t)+Cκ,2(h2w)(t))+N2((g1v)(t)+(g2w)(t)){γ0NN1c(ε)N2c(σ)N3β5}(vtmm+wtmm)(γ1N3N1c(ε)N2c(σ))τ2τ1|β2(r)x(z,1,r,t)mmds)N3γ110τ2τ1r|β2(r)|.x(z,ρ,r,t)mmdrdρ(γ1N3N1c(ε)N2c(σ))τ2τ1|β4(r)y(z,1,r,t)mmdr)N3γ110τ2τ1r|β4(r)|.y(z,ρ,r,t)mmdrdρN1ΩF(v,w)dz. (3.32)

    We select the various constants at this point such that the values included in parenthesis are positive in this stage. Here, putting

    σ3=l02,ε=l4(c1+c2),σ1=l4,σ2=lN16E(0)N2,N1=l04N2.

    Thus, we arrive at

    H(t)l04N2(wt22+wt22)ζ1N2(l04δ)(w42+u42)N2(ll08δ(ζ0+^h02+cˆl))(w22+u22)Nδ8[(12ddtv22)2+(12ddtw22)2]+N2c(σ,σ1,σ2,σ3)(Cκ,1(h1v)(t)+Cκ,2(h2w)(t))+N2((g1v)(t)+(g2v)(t))N1ΩF(v,w)dz(γ0NN2c(σ,ε)N3β5)(vtmm+wtmm)(γ1N3N2c(σ,ε))τ2τ1|β2(r)x(z,1,r,t)mmds)N3γ110τ2τ1r|β2(r)|.x(z,ρ,r,t)mmdrdρ(γ1N3N2c(σ,ε))τ2τ1|β4(r)y(z,1,r,t)mmdr)N3γ110τ2τ1r|β4(r)|.y(z,ρ,r,t)mmdrdρ. (3.33)

    In the upcoming, we select σ in a manner that

    σ<min{l04,ll08(ξ0+^g02+cˆl)}.

    After that, we take N2 in a way that

    N2(ll08σ(ξ0+^g02+cˆl))>4l0,

    and take N3 large enough in a way that

    γ1N3N2c(σ,ε)>0.

    As a result, for positive constants di,i=1,2,3,4,5, (3.33) can be written as

    H(t)d1(vt22+wt22)d2(v42+w42)4l0(v22+w22)Nδ8[(12ddtv22)2+(12ddtw22)2](N2d3Cκ)((h1v)(t)+(h2w)(t))+Nκ2((g1v)(t)+(g2w)(t))(γ0Nc)(vtmm+wtmm)d5ΩF(v,w)dzd410τ2τ1s(|β2(r)|.x(z,ρ,r,t)mm+|β4(r)|.y(z,ρ,r,t)mm)drdρ, (3.34)

    in which Cκ=max{Cκ,1,Cκ,2}.

    We know that κg2i(s)κgi(s)gi(s)gi(s), then from from Lebesgue Dominated Convergence, we have the below

    limκ0+κCκ,i=limκ0+0κg2i(s)κgi(s)gi(s)ds=0,i=1,2 (3.35)

    which leads to

    limκ0+κCκ=0.

    As a result of this, one can find 0<κ0<1 in a manner that if κ<κ0, then

    κCκ1d3. (3.36)

    From (3.8)–(3.10) through mathematical skills, we have the following

    |H(t)NE(t)|N12(vt(t)22+wt(t)22+cpw(t)22+cpw(t)22)+δN14(v(t)42+w(t)42)+N22(vt(t)22+wt(t)22)+N22cp(Cκ,1(g1v)(t)+Cκ,2(g2w)(t))+N310τ2τ1reρr(|β2(r)|.x(z,ρ,r,t)mm+|β4(r)|.y(z,ρ,r,t)mm)drdρ. (3.37)

    By the fact eρr<1 and (2.2), we have the below

    |H(t)NE(t)|C(N1,N2,N3)E(t)=C1E(t). (3.38)

    that is

    (NC1)E(t)H(t)(N+C1)E(t). (3.39)

    Here, set κ=12N and take N large enough in a manner that

    NC1>0,,γ0Nc>0,12N12κ0>0,κ=12N<κ0,

    we find

    H(t)k2E(t)+14((g1v)(t)+(g2w)(t)) (3.40)

    for some k2>0, and

    c5E(t)H(t)c6E(t),t0 (3.41)

    for some c5,c6>0, we have

    H(t)E(t).

    After that, the below cases are considered:

    Case 3.9. Gi,i=1,2 are linear. Multiplying (3.40) by ζ0(t)=min{ζ1(t),ζ2(t)}, we find

    ζ0(t)H(t)k2ζ0(t)E(t)+14ζ0(t)((g1v)(t)+(g2w)(t))k2ζ0(t)E(t)+14ζ1(t)(g1v)(t)+14ζ2(t)(g2w)(t). (3.42)

    The last two terms in (3.42), we have

    ζ1(t)4(g1v)(t)=ζ1(t)4Ω0g1(δ)|ηt(s)|2dsdz=ζ1(t)4Ωt0g1(s)|ηt(s)|2dsdzI1+ζ1(t)4Ωtg1(s)|ηt(s)|2dsdzI2 (3.43)

    To estimate I1, using (2.11),

    I114Ωt0ζ1(s)g1(s)|ηt(s)|2dsdz=14Ωt0g1(s)|ηt(s)|2dsdz12l1E(t), (3.44)

    and by (3.4), we get

    I2β4ζ1(t)μ(t). (3.45)

    In the same way, we obtained

    ζ2(t)4(g2w)(t)12l2E(t)+ˆβ4ζ2(t)ˆμ(t). (3.46)

    As a result of this, we get

    ζ0(t)H(t)k2ζ0(t)E(t)1ˆlE(t)+2β0w(t), (3.47)

    where β0=max{β4,ˆβ4} and w(t)=ˆζ(t)μ0(t).

    Applying ζi(t)0, we get

    H1(t)k2ζ0(t)E(t)+2β0w(t), (3.48)

    with

    H1(t)=ζ0(t)H(t)+1ˆlE(t)E(t),

    we have

    k4E(t)H1(t)k5E(t), (3.49)

    then, the following is obtained from (3.48)

    k2E(T)T0ζ0(t)dtk2T0ζ0(t)E(t)dtH1(0)H1(T)+2β0T0w(t)dtH1(0)+2β0T0ˆζ(t)μ0(t)dt.

    Further analysis implies that

    E(T)1k2(G1(0)+2β0T0ˆξ(t)μ0(t)dtT0ξ0(t)dt),

    From the linearity of D, the linearity of the functions D2,D2 and D4 can easily be determined. This implies that

    E(T)λ1D12(H1(0)k2+2β0k2T0ˆζ(t)μ0(t)dtT0ζ0(t)dt), (3.50)

    which gives (3.29) with ς1=λ1, ς2=H1(0)k2, ς3=2β0λ2k2, and ς4(t)=Id(t)=t. Hence, the required proof is completed.

    Case 3.10. Let Hi,i=1,2 are nonlinear. Then, with the help of (3.28) and (3.40). Assume the positive functional

    H2(t)=H(t)+F1(t)

    then for all t0 and for some k3>0, the following holds true

    H2(t)k3E(t)+12Ωtg1(s)(v(t)v(ts))2dsdz+12Ωtg2(s)(w(t)w(ts))2dsdz, (3.51)

    with the help of (3.4), we have

    k3t0E(x)dxH2(0)H2(t)+β0t0μ0(ς)dςH2(0)+β0t0μ0(ς)dς. (3.52)

    Therefore

    t0E(x)dxk6μ1(t), (3.53)

    where k6=max{H2(0)k3,β0k3} and μ1(t)=1+t0μ0(ς)dς.

    Corollary 3.11. The following is obtained from (2.11) and (3.53):

    t0Ω|v(t)v(ts)|2dzds+t0Ω|w(t)w(ts)|2dzds2t0Ωv2(t)v2(ts)dzds+2t0Ωw2(t)w2(ts)dzds4l0t0E(t)E(ts)ds8l0t0E(x)dx8k6l0μ1(t). (3.54)

    Now, we define ϕi(t),i=1,2 by

    ϕ1(t):=B(t)t0Ω|v(t)v(ts)|2dzds,ϕ2(t):=B(t)t0Ω|w(t)w(ts)|2dzds (3.55)

    where B(t)=B0μ1(t) and 0<B0<min{1,l8k6}.

    Then, by (3.53), we have

    ϕi(t)<1,t>0,i=1,2 (3.56)

    Further, we suppose that ϕi(t)>0,t>0,i=1,2. In addition to this, we define another functional Γ1,Γ2 by

    Γ1(t):=t0g1(s)Ω|v(t)v(ts)|2dzds,Γ2(t):=t0g2(s)Ω|w(t)w(ts)|2dzds (3.57)

    Here, obviously Γi(t)cE(t),i=1,2. As Gi(0)=0,i=1,2 and Gi(t) are convex strictly on (0, ϱ], then

    Gi(λz)λGi(z),0<λ<1,z(0,ϱ],i=1,2. (3.58)

    Applying (2.3) and (3.56), we get

    Γ1(t)=1B(t)ϕ1(t)t0ϕ1(t)(g1(s))ΩB(t)|v(t)v(ts)|2dzds1B(t)ϕ1(t)t0ϕ1(t)ζ1(s)G1(g1(s))ΩB(t)|v(t)v(ts)|2dzdsζ1(t)B(t)ϕ1(t)t0G1(ϕ1(t)g1(s))ΩB(t)|v(t)v(ts)|2dzdsζ1(t)B(t)G1(1ϕ1(t)t0ϕ1(t)g1(s)ΩB(t)|v(t)v(ts)|2dzds)=ζ1(t)B(t)G1(B(t)t0g1(s)Ω|v(t)v(ts)|2dzds)=ζ1(t)B(t)¯G1(B(t)t0g1(s)Ω|v(t)v(ts)|2dzds). (3.59)
    Γ2(t)ζ2(t)B(t)¯G2(B(t)t0g2(s)Ω|w(t)w(ts)|2dzds). (3.60)

    Taking the same steps, ¯Gi,i=1,2 are C2-extension of Gi that are convex strictly and increasing strictlyon R+. From (3.59), we have the following

    t0g1(s)Ω|v(t)v(ts)|2dzds1B(t)¯G11(B(t)Γ1(t)ζ1(t))t0g2(s)Ω|w(t)w(ts)|2dzds1B(t)¯G21(B(t)Γ2(t)ζ2(t)). (3.61)

    Putting (3.61) and (3.4) into (3.40), we have

    H(t)k2E(t)+cB(t)¯G11(B(t)Γ1(t)ζ1(t))+cB(t)¯G21(B(t)Γ2(t)ζ2(t))+k6μ0(t) (3.62)

    Here, introduce K1(t) for ε0<r by

    K1(t)=D(ε0B(t)E(t)E(0))H(t)+E(t), (3.63)

    in which D=min{G1,G2} and is equivalent to E(t). Because of this E(t)0,¯Gi>0, and ¯Gi>0,i=1,2. Also applying (3.62), we obtained that

    K1(t)=ε0(E(t)B(t)E(0)+E(t)B(t)E(0))D(ε0E(t)B(t)E(0))H(t)+D(ε0E(t)B(t)E(0))H(t)+E(t)k2E(t)D(ε0B(t)E(t)E(0))+k6μ0(t)D(ε0B(t)E(t)E(0))+cB(t)¯G11(B(t)Γ1(t)ζ1(t)))D(ε0B(t)E(t)E(0))+cB(t)¯G21(B(t)Γ2(t)ζ2(t)))D(ε0B(t)E(t)E(0))+E(t) (3.64)

    According to [29], we introduce the conjugate function of ¯Gi by ¯Gi, which fulfills

    AB¯Gi(A)+¯Gi(B),i=1,2 (3.65)

    For A=D(ε0(E(t)B(t))/(E(0)))) and Bi=¯Gi1((B(t)Γi(t))/(ζi(t))),i=1,2 and applying (3.64), we have

    K1(t)k2E(t)D(ε0E(t)B(t)E(0))+k6μ0(t)D(ε0E(t)B(t)E(0))+cB(t)¯G1(D(ε0E(t)B(t)E(0)))+cB(t)B(t)Γ1(t)ζ1(t)+cB(t)¯G2(D(ε0E(t)B(t)E(0)))+cB(t)B(t)Γ2(t)ζ2(t)+E(t)k2E(t)D(ε0E(t)B(t)E(0))+k6μ0(t)D(ε0E(t)B(t)E(0))+cB(t)D(ε0E(t)B(t)E(0))(¯G1)1[D(ε0E(t)B(t)E(0))]+cB(t)D(ε0E(t)B(t)E(0))(¯G2)1[D(ε0E(t)B(t)E(0))]+cΓ1(t)ζ1(t)+cΓ2(t)ζ2(t). (3.66)

    Here, we multiply (3.66) by ζ0(t) and get

    ζ0(t)K1(t)k2ζ0(t)E(t)D(ε0E(t)B(t)E(0))+k6ζ0(t)μ0(t)D(ε0E(t)B(t)E(0))+2cζ0(t)B(t)ε0E(t)B(t)E(0)D(ε0E(t)B(t)E(0))+cΓ1(t)+cΓ2(t)k2ζ0(t)E(t)D(ε0E(t)B(t)E(0))+k6ζ0(t)μ0(t)D(ε0E(t)B(t)E(0))+2cζ0(t)B(t)ε0E(t)B(t)E(0)D(ε0E(t)B(t)E(0))cE(t) (3.67)

    where we utilized the following ε0(B(t)E(t)/E(0))<r, D=min{G1,G2} and Γi<cE(t),i=1,2, and define the functional K2(t) as

    K2(t)=ζ0(t)K1(t)+cE(t) (3.68)

    Effortlessly, one can prove that K2(t)E(t), i.e., one can find two positive constants m1 and m2 in a manner that

    m1K2(t)E(t)m2K2(t), (3.69)

    then, we have

    K2(t)β6ζ0(t)E(t)E(0)D(ε0E(t)B(t)E(0))+k6ζ0(t)μ0(t)D(ε0E(t)B(t)E(0))=β6ζ0(t)B(t)D2(E(t)B(t)E(0))+k6ζ0(t)μ0(t)D(ε0E(t)B(t)E(0)), (3.70)

    where β6=(k2E(0)2cε0) and D2(t)=tD(ε0t).

    Choosing ε0 so small such that β6>0, since D2(t)=D(ε0t)+ε0tD(ε0t). As D2(t),D2(t)>0 on (0, 1] and Gi on (0, ϱ] are strictly increasing. Applying Young's inequality (3.65) on the last term in (3.70)

    with A=D(ε0E(t)B(t)E(0)) and B=k6δμ(t), we find

    k6μ0(t)D(ε0E(t)B(t)E(0))=σB(t)(k6σB(t)μ0(t))(D(ε0E(t)B(t)E(0)))<σB(t)D3(k6σB(t)μ0(t))+σB(t)D3(D(ε0E(t)B(t)E(0)))<σB(t)D4(k6σB(t)μ0(t))+σB(t)(ε0E(t)B(t)E(0))D(ε0E(t)B(t)E(0))<σB(t)D4(k6σB(t)μ0(t))+σε0B(t)D2(ε0E(t)B(t)E(0)). (3.71)

    Here, choose σ small enough in a manner that β6σε0>0 andcombining (3.70) and (3.71), we have

    K2(t)β7ζ0(t)B(t)D2(E(t)B(t)E(0))+σζ0(t)B(t)D4(k6δB(t)μ0(t)). (3.72)

    where β7=β6σε0>0, D3(t)=tD1(t) and D4(t)=¯D3(t).

    In light of fact E<0 and B<0, then D2(E(t)B(t)E(0)) is decreasing. As a consequences of this, for 0tT, we have

    D2(E(T)B(T)E(0))<D2(E(t)B(t)E(0)). (3.73)

    In the next step, combine (3.72) with (3.73) and multiply by B(t), the following is obtained

    B(t)K2(t)+β7ζ0(t)D2(E(T)B(T)E(0))<σζ0(t)D4(k6σB(t)μ0(t)). (3.74)

    Since B<0, then for any 0<t<T

    (BK2)(t)+β7ζ0(t)D2(E(T)B(T)E(0))<σζ0(t)D4(k6σB(t)μ0(t))<σˆζ(t)D4(k6σB(t)μ0(t)). (3.75)

    Simplify (3.75) over [0,T] and apply B(0)=1, the following is obtained

    D2(E(T)B(T)E(0))T0ζ0(t)dt<K2(0)β7+σβ7T0ˆζ(t)D4(k6σB(t)μ0(t))dt. (3.76)

    Consequently, we have

    D2(E(T)B(T)E(0))<K2(0)β7+σβ7T0ˆζ(t)D4(k6σB(t)μ0(t))dtT0ζ0(t)dt. (3.77)

    As a results of this, we obtain

    (E(T)B(T)E(0))<D12(K2(0)β7+σβ7T0ˆζ(t)D4(k6σB(t)μ0(t))dtT0ζ0(t)dt). (3.78)

    As a result of this, we get

    E(T)<E(0)B(T)D12(K2(0)β7+σβ7T0ˆζ(t)D4(k6σB(t)μ0(t))dtT0ζ0(t)dt). (3.79)

    where, we have (3.29) with ς1=E(0)B(T), ς2=K2(0)β7, ς3=σβ7, and ς4(t)=k6σB(t).

    Hence, the required result is obtained 3.8.

    The purpose of this work was to study when the coupled system of nonlinear viscoelastic wave equations with distributed delay components, infinite memory and Balakrishnan-Taylor damping. Assume the kernels gi:R+R+ holds true the below

    gi(t)ζi(t)Gi(gi(t)),tR+,fori=1,2,

    in which ζi and Gi are functions. We prove the stability of the system under this highly generic assumptions on the behaviour of gi at infinity and by dropping the boundedness assumptions in the historical data. This type of problem is frequently found in some mathematical models in applied sciences. Especially in the theory of viscoelasticity. What interests us in this current work is the combination of these terms of damping, which dictates the emergence of these terms in the problem. In the next work, we will try to using the same method with same problem. But in added of other dampings.

    The researchers would like to thank the Deanship of Scientific Research, Qassim University for funding the publication of this project.

    The authors declare there is no conflicts of interest.



    [1] D. Milner, M. Goodale, The Visual Brain in Action, OUP Oxford, 2006. https://doi.org/10.1093/acprof:oso/9780198524724.001.0001
    [2] S. T. Fiske, S. E. Taylor, Social Cognition, Mcgraw-Hill Book Company, 1991.
    [3] M. J. Tovée, An Introduction to the Visual System, Cambridge University Press, 1996.
    [4] D. C. Burr, M. C. Morrone, J. Ross, Selective suppression of the magnocellular visual pathway during saccadic eye movements, Nature, 371 (1994), 511–513. https://doi.org/10.1038/371511a0 doi: 10.1038/371511a0
    [5] T. Soldatos, D. Karakitsos, K. Chatzimichail, M. Papathanasiou, A. Gouliamos, A. Karabinis, Optic nerve sonography in the diagnostic evaluation of adult brain injury, Crit. Care, 12 (2008), R67. https://doi.org/10.1186/cc6897 doi: 10.1186/cc6897
    [6] A. Kaneko, Receptive field organization of bipolar and amacrine cells in the goldfish retina, J. Physiol., 235 (1973), 133–153. https://doi.org/10.1113/jphysiol.1973.sp010381 doi: 10.1113/jphysiol.1973.sp010381
    [7] D. I. Vaney, B. Sivyer, W. R. Taylor, Direction selectivity in the retina: symmetry and asymmetry in structure and function, Nat. Rev. Neurosci., 13 (2012), 194–208. https://doi.org/10.1038/nrn3165 doi: 10.1038/nrn3165
    [8] T. Baden, P. Berens, K. Franke, M. R. Rosón, M. Bethge, T. Euler, The functional diversity of retinal ganglion cells in the mouse, Nature, 529 (2016), 345–350. https://doi.org/10.1038/nature16468 doi: 10.1038/nature16468
    [9] H. R. Maturana, S. Frenk, Directional movement and horizontal edge detectors in the pigeon retina, Science, 142 (1963), 977–979. https://doi.org/10.1126/science.142.3594.977 doi: 10.1126/science.142.3594.977
    [10] W. R. Levick, Receptive fields and trigger features of ganglion cells in the visual streak of the rabbit's retina, J. Physiol., 188 (1967), 285–307. https://doi.org/10.1113/jphysiol.1967.sp008140 doi: 10.1113/jphysiol.1967.sp008140
    [11] D. H. Hubel, T. N. Wiesel, Receptive fields, binocular interaction and functional architecture in the cat's visual cortex, J. Physiol., 160 (1962), 106–154. https://doi.org/10.1113/jphysiol.1962.sp006837 doi: 10.1113/jphysiol.1962.sp006837
    [12] W. R. Levick, L. N. Thibos, Orientation bias of cat retinal ganglion cells, Nature, 286 (1980), 389–390. https://doi.org/10.1038/286389a0 doi: 10.1038/286389a0
    [13] W. R. Levick, L. N. Thibos, Analysis of orientation bias in cat retina, J. Physiol., 329 (1982), 243–261. https://doi.org/10.1113/jphysiol.1982.sp014301 doi: 10.1113/jphysiol.1982.sp014301
    [14] L. N. Thibos, W. R. Levick, Orientation bias of brisk-transient y-cells of the cat retina for drifting and alternating gratings, Exp. Brain Res., 58 (1985), 1–10. https://doi.org/10.1007/BF00238948 doi: 10.1007/BF00238948
    [15] E. Sernagor, N. M. Grzywacz, Emergence of complex receptive field properties of ganglion cells in the developing turtle retina, J. Neurophysiol., 73 (1995), 1355–1364. https://doi.org/10.1152/jn.1995.73.4.1355 doi: 10.1152/jn.1995.73.4.1355
    [16] J. H. Marshel, A. P. Kaye, I. Nauhaus, E. M. Callaway, Anterior-posterior direction opponency in the superficial mouse lateral geniculate nucleus, Neuron, 76 (2012), 713–720. https://doi.org/10.1016/j.neuron.2012.09.021 doi: 10.1016/j.neuron.2012.09.021
    [17] D. M. Piscopo, R. N. El-Danaf, A. D. Huberman, C. M. Niell, Diverse visual features encoded in mouse lateral geniculate nucleus, J. Neurophysiol., 33 (2013), 4642–4656. https://doi.org/10.1523/JNEUROSCI.5187-12.2013 doi: 10.1523/JNEUROSCI.5187-12.2013
    [18] B. Scholl, A. Y. Y. Tan, J. Corey, N. J. Priebe, Emergence of orientation selectivity in the mammalian visual pathway, J. Neurophysiol., 33 (2013), 10616–10624. https://doi.org/10.1523/JNEUROSCI.0404-13.2013 doi: 10.1523/JNEUROSCI.0404-13.2013
    [19] I. Damjanović, E. Maximova, V. Maximov, On the organization of receptive fields of orientation-selective units recorded in the fish tectum, J. Integr. Neurosci., 8 (2009), 323–344. https://doi.org/10.1142/S0219635209002174 doi: 10.1142/S0219635209002174
    [20] J. Johnston, H. Ding, S. H. Seibel, F. Esposti, L. Lagnado, Rapid mapping of visual receptive fields by filtered back projection: application to multi-neuronal electrophysiology and imaging, J. Neurophysiol., 592 (2014), 4839–4854. https://doi.org/10.1113/jphysiol.2014.276642 doi: 10.1113/jphysiol.2014.276642
    [21] N. Nikolaou, A. S. Lowe, A. S. Walker, F. Abbas, P. R. Hunter, I. D. Thompson, et al., Parametric functional maps of visual inputs to the tectum, Neuron, 76 (2012), 317–324. https://doi.org/10.1016/j.neuron.2012.08.040 doi: 10.1016/j.neuron.2012.08.040
    [22] A. S. Lowe, N. Nikolaou, P. R. Hunter, I. D. Thompson, M. P. Meyer, A systems-based dissection of retinal inputs to the zebrafish tectum reveals different rules for different functional classes during development, J. Neurophysiol., 33 (2013), 13946–13956. https://doi.org/10.1523/JNEUROSCI.1866-13.2013 doi: 10.1523/JNEUROSCI.1866-13.2013
    [23] P. Antinucci, N. Nikolaou, M. P. Meyer, R. Hindges, Teneurin-3 specifies morphological and functional connectivity of retinal ganglion cells in the vertebrate visual system, Cell Rep., 5 (2013), 582–592. https://doi.org/10.1016/j.celrep.2013.09.045 doi: 10.1016/j.celrep.2013.09.045
    [24] P. Antinucci, O. Suleyman, C. Monfries, R. Hindges, Neural mechanisms generating orientation selectivity in the retina, Curr. Biol., 26 (2016), 1802–1815. https://doi.org/10.1016/j.cub.2016.05.035 doi: 10.1016/j.cub.2016.05.035
    [25] S. A. Bloomfield, Two types of orientation-sensitive responses of amacrine cells in the mammalian retina, Nature, 350 (1991), 347–350. https://doi.org/10.1038/350347a0 doi: 10.1038/350347a0
    [26] S. A. Bloomfield, Orientation-sensitive amacrine and ganglion cells in the rabbit retina, J. Neurophysiol., 71 (1994), 1672–1691. https://doi.org/10.1152/jn.1994.71.5.1672 doi: 10.1152/jn.1994.71.5.1672
    [27] R. Nelson, E. V. F. Jr, H. Kolb, Intracellular staining reveals different levels of stratification for on-and off-center ganglion cells in cat retina, J. Neurophysiol., 41 (1978), 472–483. https://doi.org/10.1152/jn.1978.41.2.472 doi: 10.1152/jn.1978.41.2.472
    [28] F. Rosenblatt, The Perceptron, A perceiving and Recognizing Automaton Project Para, Cornell Aeronautical Laboratory, 1957.
    [29] J. R. Huguenard, Low-threshold calcium currents in central nervous system neurons, Annu. Rev. Physiol., 58 (1996), 329–348. https://doi.org/10.1146/annurev.ph.58.030196.001553 doi: 10.1146/annurev.ph.58.030196.001553
    [30] A. Borst, T. Euler, Seeing things in motion: models, circuits, and mechanisms, Neuron, 71 (2011), 974–994. https://doi.org/10.1016/j.neuron.2011.08.031 doi: 10.1016/j.neuron.2011.08.031
    [31] A. B. Watson, G. Y. Yang, J. A. Solomon, J. D. Villasenor, Visual thresholds for wavelet quantization error, in Hum. Vision Electron. Imaging, 2657 (1996), 382–392. https://doi.org/10.1117/12.238735
    [32] S. Lawrence, C. L. Giles, A. C. Tsoi, A. D. Back, Face recognition: a convolutional neural-network approach, IEEE Trans. Neural Networks, 8 (1997), 98–113. https://doi.org/10.1109/72.554195 doi: 10.1109/72.554195
    [33] F. A. Gerritsen, P. W. Verbeek, Implementation of cellular-logic operators using 33 convolution and table lookup hardware, Comput. Vision Graphics Image Process., 27 (1984), 115–123. https://doi.org/10.1016/0734-189X(84)90086-0 doi: 10.1016/0734-189X(84)90086-0
    [34] M. Liang, X. Hu, Recurrent convolutional neural network for object recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2015), 3367–3375. Available from: https://openaccess.thecvf.com/content_cvpr_2015/html/Liang_Recurrent_Convolutional_Neural_2015_CVPR_paper.html.
    [35] K. Fukushima, S. Miyake, Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition, in Competition and Cooperation in Neural Nets, (1982), 267–285. https://doi.org/10.1007/978-3-642-46466-9_18
    [36] A. Waibel, Modular construction of time-delay neural networks for speech recognition, Neural Comput., 1 (1989), 39–46. https://doi.org/10.1162/neco.1989.1.1.39 doi: 10.1162/neco.1989.1.1.39
    [37] W. Zhang, J. Tanida, K. Itoh, Y. Ichioka, Shift-invariant pattern recognition neural network and its optical architecture, in Proceedings of Annual Conference of the Japan Society of Applied Physics, (1988), 2147–2151.
    [38] C. Garcia, M. Delakis, Convolutional face finder: a neural architecture for fast and robust face detection, IEEE Trans. Pattern Anal. Mach. Intell., 26 (2004), 1408–1423. https://doi.org/10.1109/TPAMI.2004.97 doi: 10.1109/TPAMI.2004.97
    [39] J. Platt, S. Nowlan, A convolutional neural network hand tracker, Proc. Adv. Neural Inf. Process. Syst., 1995 (1995), 901–908. Available from: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/cnnHand.pdf.
    [40] S. Greenland, S. J. Senn, K. J. Rothman, J. B. Carlin, C. Poole, S. N. Goodman, et al., Statistical tests, p values, confidence intervals, and power: a guide to misinterpretations, Eur. J. Epidemiol., 31 (2016), 337–350. https://doi.org/10.1007/s10654-016-0149-3 doi: 10.1007/s10654-016-0149-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1611) PDF downloads(54) Cited by(1)

Figures and Tables

Figures(12)  /  Tables(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog