We study intelligence control systems and propose a new cascade flocking model with feedback. Compared to the one-way nature of past flocking models, our model adds a feedback mechanism, which means that the followers can have an influence on the direct leader's action. We demonstrate that these models can form a flock under specific conditions. This makes the flocking model more suitable for realistic applications.
Citation: Yuhang Liu, Le Li. A cascade flocking model with feedback[J]. Electronic Research Archive, 2023, 31(1): 169-189. doi: 10.3934/era.2023009
We study intelligence control systems and propose a new cascade flocking model with feedback. Compared to the one-way nature of past flocking models, our model adds a feedback mechanism, which means that the followers can have an influence on the direct leader's action. We demonstrate that these models can form a flock under specific conditions. This makes the flocking model more suitable for realistic applications.
[1] | S. Ahn, H. O. Bae, S. Y. Ha, Y. Kim, H. Lim, Application of flocking mechanism to the modeling of stochastic volatility, Math. Models Methods Appl. Sci., 23 (2013), 1603–1628. https://doi.org/10.1142/S0218202513500176 doi: 10.1142/S0218202513500176 |
[2] | I. D. Couzin, J. Krause, R. James, G. D. Ruxton, N. R. Franks, Collective memory and spatial sorting in animal groups, J. Theor. Biol., 218 (2002), 1–11. https://doi.org/10.1006/jtbi.2002.3065 doi: 10.1006/jtbi.2002.3065 |
[3] | I. D. Couzin, J. Krause, N. R. Franks, S. Levin, Effective leadership and decision making in animal groups on the move, Nature, 433 (2005), 513–516. https://doi.org/10.1038/nature03236 doi: 10.1038/nature03236 |
[4] | T. Vicsek, A. Czirk, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226–1235. https://doi.org/10.1103/PhysRevLett.75.1226 doi: 10.1103/PhysRevLett.75.1226 |
[5] | F. Cucker, S. Smale, Emergent behavior in flocks, IEEE Trans. Autom. Control, 52 (2007), 852–862. https://doi.org/10.1109/TAC.2007.895842 doi: 10.1109/TAC.2007.895842 |
[6] | F. Cucker, S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197–227. https://doi.org/10.1007/s11537-007-0647-x doi: 10.1007/s11537-007-0647-x |
[7] | F. Cucker, S. Smale, D. Zhou, Modeling language evolution, Found. Comput. Math., 4 (2004), 315–343. https://doi.org/10.1007/s10208-003-0101-2 doi: 10.1007/s10208-003-0101-2 |
[8] | J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2008), 694–719. https://doi.org/10.1137/060673254 doi: 10.1137/060673254 |
[9] | S. Motsch, E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923–947. https://doi.org/10.1007/s10955-011-0285-9 doi: 10.1007/s10955-011-0285-9 |
[10] | Z. Li, X. Xue, Cucker-Smale flocking under rooted leadership with free-will agents, Physica A, 410 (2014), 205–217. https://doi.org/10.1016/j.physa.2014.05.008 doi: 10.1016/j.physa.2014.05.008 |
[11] | F. Dalmao, E. Mordecki, Cucker-Smale flocking under hierachical leadership and random interactions, SIAM J. Appl. Math., 71 (2011), 1307–1316. https://doi.org/10.1137/100785910 doi: 10.1137/100785910 |
[12] | J. A. Carrillo, M. Fornasier, J. Rosado, G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218–236. https://doi.org/10.1137/090757290 doi: 10.1137/090757290 |
[13] | S. Y. Ha, J. G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297–325. https://dx.doi.org/10.4310/CMS.2009.v7.n2.a2 doi: 10.4310/CMS.2009.v7.n2.a2 |
[14] | L. Li, L. Huang, J. Wu, Cascade flocking with free-will, Discrete Contin. Dyn. Syst. - Ser. B, 21 (2016), 497–522 https://doi.org/10.3934/dcdsb.2016.21.497 doi: 10.3934/dcdsb.2016.21.497 |