Research article Special Issues

Nonlinear programming for fleet deployment, voyage planning and speed optimization in sustainable liner shipping

  • Received: 04 August 2022 Revised: 20 September 2022 Accepted: 22 September 2022 Published: 26 October 2022
  • Limiting carbon dioxide emissions is one of the main concerns of green shipping. As an important carbon intensity indicator, the Energy Efficiency Operational Index (EEOI) represents the energy efficiency level of each ship and can be used to guide the operations of ship fleets for liner companies. Few studies have investigated an integrated optimization problem of fleet deployment, voyage planning and speed optimization with consideration of the influences of sailing speed, displacement and voyage option on fuel consumption. To fill this research gap, this study formulates a nonlinear mixed-integer programming model capturing all these elements and subsequently proposes a tailored exact algorithm for this problem. Extensive numerical experiments are conducted to show the efficiency of the proposed algorithm. The largest numerical experiment, with 7 ship routes and 32 legs, can be solved to optimality in four minutes. Moreover, managerial insights are obtained according to sensitivity analyses with crucial parameters, including the weighting factor, unit price of fuel, Suez Canal toll fee per ship, weekly fixed operating cost and cargo load in each leg.

    Citation: Yiwei Wu, Yadan Huang, H Wang, Lu Zhen. Nonlinear programming for fleet deployment, voyage planning and speed optimization in sustainable liner shipping[J]. Electronic Research Archive, 2023, 31(1): 147-168. doi: 10.3934/era.2023008

    Related Papers:

  • Limiting carbon dioxide emissions is one of the main concerns of green shipping. As an important carbon intensity indicator, the Energy Efficiency Operational Index (EEOI) represents the energy efficiency level of each ship and can be used to guide the operations of ship fleets for liner companies. Few studies have investigated an integrated optimization problem of fleet deployment, voyage planning and speed optimization with consideration of the influences of sailing speed, displacement and voyage option on fuel consumption. To fill this research gap, this study formulates a nonlinear mixed-integer programming model capturing all these elements and subsequently proposes a tailored exact algorithm for this problem. Extensive numerical experiments are conducted to show the efficiency of the proposed algorithm. The largest numerical experiment, with 7 ship routes and 32 legs, can be solved to optimality in four minutes. Moreover, managerial insights are obtained according to sensitivity analyses with crucial parameters, including the weighting factor, unit price of fuel, Suez Canal toll fee per ship, weekly fixed operating cost and cargo load in each leg.



    加载中


    [1] United States Environmental Protection Agency (USEPA), Sources of greenhouse gas emissions, 2022. Available from: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions.
    [2] S. S. Young (SSY), Smoke and mirrors: new decarbonisation regulations meet rising emissions, 2022. Available from: https://www.ssyonline.com/our-blog/posts/2022/january-2022/smoke-and-mirrors-new-decarbonisation-regulations-meet-rising-emissions/.
    [3] International Maritime Organization (IMO), Third IMO greenhouse gas study, 2014. Available from: https://gmn.imo.org/wp-content/uploads/2017/05/GHG3-Executive-Summary-and-Report_web.pdf.
    [4] United Nations (UN), Paris agreement, 2015. Available from: https://unfccc.int/sites/default/files/english_paris_agreement.pdf.
    [5] International Maritime Organization (IMO), Initial IMO GHG strategy, 2018. Available from: https://www.imo.org/en/MediaCentre/HotTopics/Pages/Reducing-greenhouse-gas-emissions-from-ships.aspx.
    [6] Lloyd's List, Shipping emissions rise 4.9% in 2021, 2022. Available from: https://lloydslist.maritimeintelligence.informa.com/LL1139627/Shipping-emissions-rise-49-in-2021.
    [7] International Maritime Organization (IMO), Guidelines for voluntary use of the ship energy efficiency operational indicator (EEOI), 2009. Available from: https://gmn.imo.org/wp-content/uploads/2017/05/Circ-684-EEOI-Guidelines.pdf.
    [8] International Maritime Organization (IMO), Report of the marine environment protection committee on its sixty-second session, 2011. Available from: https://euroshore.com/sites/euroshore.com/files/downloads/mepc%2062-24.pdf.
    [9] Q. Meng, Y. Du, Y. Wang, Shipping log data based container ship fuel efficiency modeling, Transport. Res. Part B Methodol., 83 (2016), 207–229. https://doi.org/10.1016/j.trb.2015.11.007 doi: 10.1016/j.trb.2015.11.007
    [10] L. Zhen, S. Wang, G. Laporte, Y. Hu, Integrated planning of ship deployment, service schedule and container routing, Comput. Oper. Res., 104 (2019), 304–318. https://doi.org/10.1016/j.cor.2018.12.022 doi: 10.1016/j.cor.2018.12.022
    [11] L. Zhen, Y. Hu, S. Wang, G. Laporte, Y. Wu, Fleet deployment and demand fulfillment for container shipping liners, Transp. Res. Part B Methodol., 120 (2019), 15–32. https://doi.org/10.1016/j.trb.2018.11.011 doi: 10.1016/j.trb.2018.11.011
    [12] Q. Meng, S. Wang, H. Andersson, K. Thun, Containership routing and scheduling in liner shipping: overview and future research directions, Transp. Sci., 48 (2014), 265–280. https://doi.org/10.1287/trsc.2013.0461 doi: 10.1287/trsc.2013.0461
    [13] S. Wang, Q. Meng, Container liner fleet deployment: A systematic overview, Transport. Res. Part C Emerging Technol., 77 (2017), 389–404. https://doi.org/10.1016/j.trc.2017.02.010 doi: 10.1016/j.trc.2017.02.010
    [14] M. Christiansen, E. Hellsten, D. Pisinger, D. Sacramento, C. Vilhelmsen, Liner shipping network design, Eur. J. Opre. Res., 286 (2020), 1–20. https://doi.org/10.1016/j.ejor.2019.09.057 doi: 10.1016/j.ejor.2019.09.057
    [15] X. Lai, L. Wu, K. Wang, F. Wang, Robust ship fleet deployment with shipping revenue management, Transp. Res. Part B Methodol., 161 (2022), 169–196. https://doi.org/10.1016/j.trb.2022.05.005 doi: 10.1016/j.trb.2022.05.005
    [16] V. Zisi, H. N Psaraftis, T. Zis, The impact of the 2020 global sulfur cap on maritime CO2 emissions, Marit. Bus. Rev., 6 (2021), 339–357. https://doi.org/10.1108/MABR-12-2020-0069 doi: 10.1108/MABR-12-2020-0069
    [17] M. Zhu, K. F. Yuen, J. W. Ge, K. X. Li, Impact of maritime emissions trading system on fleet deployment and mitigation of CO2 emission, Transp. Res. Part D Transp. Environ., 62 (2018), 474–488. https://doi.org/10.1016/j.trd.2018.03.016 doi: 10.1016/j.trd.2018.03.016
    [18] S. Wang, D. Zhuge, L. Zhen, C. Y. Lee, Liner shipping service planning under sulfur emission regulations, Transp. Sci., 55 (2021), 491–509. https://doi.org/10.1287/trsc.2020.1010 doi: 10.1287/trsc.2020.1010
    [19] J. Pasha, M. A. Dulebenets, A. M. Fathollahi-Fard, G. Tian, Y. Y. Lau, P. Singh, et al., An integrated optimization method for tactical-level planning in liner shipping with heterogeneous ship fleet and environmental considerations, Adv. Eng. Inf., 48 (2021), 101299. https://doi.org/10.1016/j.aei.2021.101299 doi: 10.1016/j.aei.2021.101299
    [20] Y. Zhao, J. Ye, J. Zhou, Container fleet renewal considering multiple sulfur reduction technologies and uncertain markets amidst COVID-19, J. Clean. Prod., 317 (2021), 128361. https://doi.org/10.1016/j.jclepro.2021.128361 doi: 10.1016/j.jclepro.2021.128361
    [21] J. Chen, J. Ye, A. Liu, Y. Fei, Z. Wan, X. Huang, Robust optimization of liner shipping alliance fleet scheduling with consideration of sulfur emission restrictions and slot exchange, Ann. Oper. Res., 2022 (2022), 1–31. https://doi.org/10.1007/s10479-022-04590-x doi: 10.1007/s10479-022-04590-x
    [22] Y. Zhao, Y. Fan, K. Fagerholt, J. Zhou, Reducing sulfur and nitrogen emissions in shipping economically, Transp. Res. Part D Transp. Environ., 90 (2021), 102641. https://doi.org/10.1016/j.trd.2020.102641 doi: 10.1016/j.trd.2020.102641
    [23] N. Acomi, O. C. Acomi, Improving the voyage energy efficiency by using EEOI, Procedia-Social Behav. Sci., 138 (2014), 531–536. https://doi.org/10.1016/j.sbspro.2014.07.234 doi: 10.1016/j.sbspro.2014.07.234
    [24] Y. Hou, K. Kang, X. Liang, Vessel speed optimization for minimum EEOI in ice zone considering uncertainty, Ocean. Eng., 188 (2019), 106240. https://doi.org/10.1016/j.oceaneng.2019.106240 doi: 10.1016/j.oceaneng.2019.106240
    [25] C. Sun, H. Wang, C. Liu, Y. Zhao, Dynamic prediction and optimization of energy efficiency operational index (EEOI) for an operating ship in varying environments, J. Mar. Sci. Eng., 7 (2019), 402. https://doi.org/10.3390/jmse7110402 doi: 10.3390/jmse7110402
    [26] M. Ichsan, M. F. Pradana, B. Noche, Estimation and optimization of the voyage energy efficiency operational indicator (EEOI) on Indonesian sea tollway corridors, in IOP Conference Series: Materials Science and Engineering., 673 (2019), 012024. https://doi.org/10.1088/1757-899X/673/1/012024
    [27] K. Prill, C. Behrendt, M. Szczepanek, I. Michalska-Pożoga, A new method of determining energy efficiency operational indicator for specialized ships, Energies, 13 (2020), 1082. https://doi.org/10.3390/en13051082 doi: 10.3390/en13051082
    [28] Y. Hou, Y. Xiong, Y. Zhang, X. Liang, L. Su, Vessel energy efficiency uncertainty optimization analysis in ice zone considering interval parameters, Ocean Eng., 232 (2021), 109114. https://doi.org/10.1016/j.oceaneng.2021.109114 doi: 10.1016/j.oceaneng.2021.109114
    [29] J. Zhou, Y. Zhao, J. Liang, Multiobjective route selection based on LASSO regression: when will the Suez Canal lose its importance? Math. Prob. Eng., 2021 (2021), 6613332. https://doi.org/10.1155/2021/6613332 doi: 10.1155/2021/6613332
    [30] Y. Zhao, Y. Fan, J. Zhou, H. Kuang, Bi-objective optimization of vessel speed and route for sustainable coastal shipping under the regulations of emission control areas, Sustainability, 11 (2019), 6281. https://doi.org/10.3390/su11226281 doi: 10.3390/su11226281
    [31] S. Wang, Q. Meng, Sailing speed optimization for container ships in a liner shipping network, Transport. Transp. Res. Part E Logist. Transp. Rev., 48 (2012), 701–714. https://doi.org/10.1016/j.tre.2011.12.003 doi: 10.1016/j.tre.2011.12.003
    [32] Y. Zhao, J. Zhou, Y. Fan, H. Kuang, Sailing speed optimization model for slow steaming considering loss aversion mechanism, J. Adv. Transp., 2020 (2020), 2157945. https://doi.org/10.1155/2020/2157945 doi: 10.1155/2020/2157945
    [33] B. D. Brouer, J. F. Alvarez, C. E. M. Plum, D. Pisinger, M. M. Sigurd, A base integer programming model and benchmark suite for liner-shipping network design, Transp. Sci., 48 (2013), 281–312. https://doi.org/10.1287/trsc.2013.0471 doi: 10.1287/trsc.2013.0471
    [34] A. Alharbi, S. Wang, P. Davy, Schedule design for sustainable container supply chain networks with port time windows, Adv. Eng. Inf., 29 (2015), 322–331. https://doi.org/10.1016/j.aei.2014.12.001 doi: 10.1016/j.aei.2014.12.001
    [35] Ship and Bunker (S & B), World bunker prices, 2022. Available from: https://shipandbunker.com/prices/av/global/av-g20-global-20-ports-average.
    [36] Y. Wang, Q. Meng, Y. Du, Liner container seasonal shipping revenue management. Transp. Res. Part B Methodol., 82 (2015), 141–161. https://doi.org/10.1016/j.trb.2015.10.003 doi: 10.1016/j.trb.2015.10.003
    [37] L. Zhen, Y. Wu, S. Wang, G. Laporte, Green technology adoption for fleet deployment in a shipping network, Transp. Res. Part B Methodol., 139 (2020), 388–410. https://doi.org/10.1016/j.trb.2020.06.004 doi: 10.1016/j.trb.2020.06.004
    [38] Lloyd's List, Shipowners focus on 2030 carbon cut target, 2021. Available from: https://lloydslist.maritimeintelligence.informa.com/LL1136881/Shipowners-focus-on-2030-carbon-cut-target.
    [39] HKTDC, Egypt: Suez Canal temporarily slashes fees for Asia-bound shipping, 2020. Available from: https://research.hktdc.com/en/article/NDI2MDE2NTg2.
    [40] L. Zhen, Y. Wu, S. Wang, Y. Hu, W. Yi, Capacitated closed-loop supply chain network design under uncertainty, Adv. Eng. Inf., 38 (2018), 306–315. https://doi.org/10.1016/j.aei.2018.07.007 doi: 10.1016/j.aei.2018.07.007
    [41] D. Huang, S. Wang, A two-stage stochastic programming model of coordinated electric bus charging scheduling for a hybrid charging scheme, Multimodal Transp., 1 (2022), 100006. https://doi.org/10.1016/j.multra.2022.100006 doi: 10.1016/j.multra.2022.100006
    [42] W. Wang, Y. Wu, Is uncertainty always bad for the performance of transportation systems? Commun. Transp. Res., 1 (2021), 100021. https://doi.org/10.1016/j.commtr.2021.100021 doi: 10.1016/j.commtr.2021.100021
    [43] J. Zhang, D. Z. Long, R. Wang, C. Xie, Impact of penalty cost on customers' booking decisions, Prod. Oper. Manage., 30 (2021), 1603–1614. https://doi.org/10.1111/poms.13297 doi: 10.1111/poms.13297
    [44] Y. Ding, K. Chen, D. Xu, Q. Zhang, Dynamic pricing research for container terminal handling charge, Marit. Policy Manage., 48 (2021) 512–529. https://doi.org/10.1080/03088839.2020.1790051 doi: 10.1080/03088839.2020.1790051
    [45] M. Kim, Y. Jeong, I. Moon, Efficient stowage plan with loading and unloading operations for shipping liners using foldable containers and shift cost-sharing, Marit. Policy Manage., 48 (2021), 877–894. https://doi.org/10.1080/03088839.2020.1821109 doi: 10.1080/03088839.2020.1821109
    [46] X. Song, J. G. Jin, H. Hu, Planning shuttle vessel operations in large container terminals based on waterside congestion cases, Marit. Policy Manage., 48 (2021), 988–1009. https://doi.org/10.1080/03088839.2020.1719443 doi: 10.1080/03088839.2020.1719443
    [47] L. Wu, Y. Adulyasak, J. F. Cordeau, S. Wang, Vessel service planning in seaports, Oper. Res., 70 (2022), 2032–2053. https://doi.org/10.1287/opre.2021.2228 doi: 10.1287/opre.2021.2228
    [48] W. Yi, S. Wu, L. Zhen, G. Chawynski, Bi-level programming subsidy design for promoting sustainable prefabricated product logistics, Cleaner Logist. Supply Chain, 1 (2021), 100005. https://doi.org/10.1016/j.clscn.2021.100005 doi: 10.1016/j.clscn.2021.100005
    [49] W. Yi, L. Zhen, Y. Jin, Stackelberg game analysis of government subsidy on sustainable off-site construction and low-carbon logistics, Cleaner Logist. Supply Chain, 2 (2021), 100013. https://doi.org/10.1016/j.clscn.2021.100013 doi: 10.1016/j.clscn.2021.100013
    [50] W. Yi, H. Wang, Y. Jin, J. Cao, Integrated computer vision algorithms and drone scheduling, Commun. Transp. Res., 1 (2021), 100002. https://doi.org/10.1016/j.commtr.2021.100002 doi: 10.1016/j.commtr.2021.100002
    [51] W. Zhu, J. Wu, T. Fu, J. Wang, J. Zhang, Q. Shangguan, Dynamic prediction of traffic incident duration on urban expressways: a deep learning approach based on LSTM and MLP, J. Intell. Connected. Veh., 4 (2021), 80–91. https://doi.org/10.1108/JICV-03-2021-0004 doi: 10.1108/JICV-03-2021-0004
    [52] E. Hirata, M. Lambrou, D. Watanabe, Blockchain technology in supply chain management: insights from machine learning algorithms, Marit. Bus. Rev., 6 (2021), 114–128. https://doi.org/10.1108/MABR-07-2020-0043 doi: 10.1108/MABR-07-2020-0043
    [53] Y. Li, S. E. Li, X. Jia, S. Zeng, Y. Wang, FPGA accelerated model predictive control for autonomous driving, J. Intell. Connected. Veh., 5 (2022), 63–71. https://doi.org/10.1108/JICV-03-2021-0002 doi: 10.1108/JICV-03-2021-0002
    [54] A. P. C. Chan, W. Yi, F. K. Wong, Evaluating the effectiveness and practicality of a cooling vest across four industries in Hong Kong, Facilities, 34 (2016), 511–534. https://doi.org/10.1108/F-12-2014-0104 doi: 10.1108/F-12-2014-0104
    [55] W. Yi, Y. Zhao, A. P. C. Chan, Evaluating the effectiveness of cooling vest in a hot and humid environment, Ann. Work Exposures Health, 61 (2017), 481–494. https://doi.org/10.1093/annweh/wxx007 doi: 10.1093/annweh/wxx007
    [56] S. Wang, R. Yan, A global method from predictive to prescriptive analytics considering prediction error for "Predict, then optimize" with an example of low-carbon logistics, Cleaner Logist. Supply Chain, 4 (2022) 100062. https://doi.org/10.1016/j.clscn.2022.100062 doi: 10.1016/j.clscn.2022.100062
    [57] R. Yan, S. Wang, Integrating prediction with optimization: models and applications in transportation management, Multimodal Transp., 1 (2022), 100018. https://doi.org/10.1016/j.multra.2022.100018 doi: 10.1016/j.multra.2022.100018
    [58] L. Zhang, L. Guan, D. Z Long, H. Shen, H. Tang, Who is better off by selling extended warranties in the supply chain: the manufacturer, the retailer, or both? Ann. Oper. Res., 2020 (2020). https://doi.org/10.1007/s10479-020-03728-z doi: 10.1007/s10479-020-03728-z
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1836) PDF downloads(215) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog