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Abstract: Limiting carbon dioxide emissions is one of the main concerns of green shipping. As an 
important carbon intensity indicator, the Energy Efficiency Operational Index (EEOI) represents the 
energy efficiency level of each ship and can be used to guide the operations of ship fleets for liner 
companies. Few studies have investigated an integrated optimization problem of fleet deployment, 
voyage planning and speed optimization with consideration of the influences of sailing speed, 
displacement and voyage option on fuel consumption. To fill this research gap, this study formulates 
a nonlinear mixed-integer programming model capturing all these elements and subsequently proposes 
a tailored exact algorithm for this problem. Extensive numerical experiments are conducted to show 
the efficiency of the proposed algorithm. The largest numerical experiment, with 7 ship routes and 32 
legs, can be solved to optimality in four minutes. Moreover, managerial insights are obtained according 
to sensitivity analyses with crucial parameters, including the weighting factor, unit price of fuel, Suez 
Canal toll fee per ship, weekly fixed operating cost and cargo load in each leg. 
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dioxide emission 

 

1. Introduction 

Climate change is arguably one of the greatest challenges of our time. Although shipping is 
regarded as an environmentally efficient mode of transportation, it generates tremendous air emissions 
that have harmful effects on the global environment. Carbon dioxide (CO  ) accounts for the vast 
majority of greenhouse gas emissions from the transportation sector [1]. Moreover, United Kingdom 
broker Simpson Spence Young estimated that CO   emissions from global shipping in 2021 
increased 4.9% from 2020 and surpassed 2019 levels [2]. Unless serious actions are taken soon, CO  
emissions from global shipping may increase by between 50 and 250% by 2050 [3], which 
undoubtedly will contribute to global warming.  

Maritime decarbonization in particular is necessary to achieve the long-term goal of the Paris 
Agreement adopted at the Paris climate conference (COP21) in 2015 [4], that is, to limit the increase 
in the average global temperature to well below 2 °C, preferably to 1.5 °C, above pre-industrial levels. 
For this reason, many emission limits and regulations are promulgated to reduce CO  emissions and 
stop global warming. For example, the International Maritime Organization (IMO), which is the United 
Nations specialized agency for international shipping, has set strategies to reduce carbon emissions 
per unit of transport work by at least 40% by 2030 and reduce the total annual greenhouse gas 
emissions from international shipping by at least 50% by 2050, with 2008 as a baseline [5]. Despite the 
intensifying regulatory environment, international shipping released 833 million tons of CO  in 2021, 
an increase of 4.9% from 2020 [6]. Hence, it is urgent for liner companies to consider how to reduce 
carbon emissions when scheduling shipping activities to meet international requirements. 

The carbon emissions per unit of transport work can be referred to as the carbon intensity, and 
one of the carbon intensity indicators is the EEOI, which was introduced by the IMO in 2009 and 
enforced in 2011 to measure the energy efficiency level of each operating ship [7]. The EEOI value of 
a ship over a year reflects the energy efficiency of the ship and may help liner companies to schedule 
ship fleets when considering the maritime decarbonization target. The EEOI value of a ship can be 
calculated by dividing annual carbon emissions of the ship (g) by actual ton-miles carried by the ship 
(the amount of transported cargo times total travel distance) in the year [8]. Therefore, the EEOI value 
of a ship is directly influenced by the type of used fuel, cargo load and total distance traveled. The 
lower the EEOI value is, the better the energy efficiency performance. From an operational perspective, 
several operation decisions, such as voyage planning and speed optimization, which further influences 
fleet deployment, can be jointly optimized to reduce the EEOI because these decisions directly affect 
fuel consumption. Moreover, displacement (tons), i.e., the total weight of the ship itself, cargo, ballast 
water and bunker, also influences fuel consumption [9]. Hence, seeking the optimal fleet deployment, 
voyage planning and speed to achieve liner operations management optimization is an efficient way to 
reduce EEOI, achieve energy savings and reduce emissions. 

This study is motivated by the abovementioned real-world challenge in green shipping, and it 
may contribute to liner operations management by proposing a nonlinear mixed-integer programming 
(MIP) model and a tailored exact algorithm. Two assumptions are considered in this study: 1) Ships 
are homogenous on each route in terms of the cost structure, which is consistent with the assumptions 
considered in Zhen et al. [10]; 2) ships’ dwell time at all ports of call on a ship route is given, which is 
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in line with the assumptions considered in Zhen et al. [11]. This study provides liner companies with 
scientific methods to optimize fleet deployment, voyage planning and speed to reduce both the total 
weekly cost and the average EEOI value of all deployed ships on all routes with the consideration of 
the influences of sailing speed, displacement and voyage option on fuel consumption. Eleven sets of 
numerical experiments with different route compositions were first conducted to evaluate the 
performance of the proposed algorithm. Moreover, sensitivity analyses with crucial parameters, 
including the weighting factor, unit price of fuel, Suez Canal toll fee per ship, weekly fixed operating 
cost and cargo load in each leg, are carried out to show the influence of these aspects on the results to 
look for managerial insights. 

The remainder of this study is organized as follows. Related works are reviewed in Section 2. 
Section 3 elaborates on the problem background and proposes a nonlinear MIP model for the integrated 
problem. A tailored exact algorithm is designed in Section 4. Section 5 reports the computational 
experiments, including basic experiments to evaluate the efficiency of the proposed algorithm and 
sensitivity analyses to seek managerial insights. Conclusions are outlined in the last section. 

2. Literature review and discussion 

The core part of this study is related to the widely-studied fleet deployment problem. Readers 
interested in overviews of the above problem can refer to Meng et al. [12], Wang and Meng [13] and 
Christiansen et al. [14]. This study focuses on an integrated optimization problem of fleet deployment, 
voyage planning and speed optimization to minimize both the total weekly cost and the average EEOI 
value of all deployed ships on all routes. Thus, this section reviews the streams of related literature 
from the following two perspectives: the fleet deployment problem and studies related to EEOI. 

The first research stream is concerned with the fleet deployment problem. As an important 
concern for liner companies, the fleet deployment problem determines the number of ships to be 
deployed on various ship routes to maximize the total profit or to minimize the total cost. Lai et al. [15] 
formulated a two-stage model for a fleet deployment problem with shipping revenue management 
under demand uncertainty whose randomness is represented by probability-free uncertain sets. They 
also developed a column-and-constraint generation based exact algorithm to solve the model. In recent 
years, sustainable development is the main development direction of the shipping industry [16]. One 
of the most important green shipping factors in the fleet deployment problem is reducing emissions 
from ships, such as CO , sulfur oxides (SO ) and nitrogen oxides (NO ). Zhu et al. [17] investigated 
the influence of a maritime emissions trading system on fleet deployment and mitigation of CO  
emissions. They proposed a stochastic integer programming model to determine fleet deployment and 
CO  emissions with different CO  prices. Considering sulfur emission control areas, Wang et al. [18] 
studied an integrated problem of schedule design, fleet deployment, sailing optimization and path 
selection, and they proposed a nesting algorithmic framework to solve the problem. Pasha et al. [19] 
designed a decomposition-based heuristic algorithm to solve an integrated problem of service 
frequency determination, fleet deployment, speed optimization and ship schedule design considering 
emissions released by ships with the aim of maximizing the total turnaround profit. Zhao et al. [20] 
formulated a two-stage stochastic linear model for a fleet renewal problem considering three sulfur 
reduction technologies and uncertain markets. With the consideration of sulfur emission limits, Chen 
et al. [21] built an ellipsoidal uncertainty set to describe demand uncertainties and developed a robust 
optimization model for an alliance fleet deployment problem with slot exchange. Moreover, Zhao et 
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al. [22] investigated how to reduce SO   and NO   emissions in shipping economically by 
determining the optimal technology choice. 

The second topic considered in the related works is EEOI. Operational data, such as speed and 
deadweight, are usually used to analyze EEOI. Existing papers on EEOI mainly focus on two aspects, 
namely, estimation of EEOI values and scheduling based on EEOI values. In terms of the estimation 
of EEOI values, Acomi and Acomi [23] used commercial software to estimate the value of EEOI before 
a voyage, and they compared estimated values and true values according to speeds, days on anchor 
and waiting days. In terms of scheduling based on EEOI values, Hou et al. [24] formulated a sailing 
speed optimization model with consideration of uncertain ice loads to minimize the EEOI value of 
each ship in ice areas. Sun et al. [25] developed a dynamic optimization model for sailing speeds of 
ships to improve fuel efficiency as well as reduce EEOI. They used a neural network to predict fuel 
consumption rate and ship speed, and they applied a genetic algorithm to optimize engine revolution 
and seek the minimum EEOI. Considering the uncertainty in ice loads as well as water velocity, Ichsan 
et al. [26] studied a decided route on the sea tollway of Indonesia and optimized the rate of EEOI of 
ships deployed on the route. With the aim of minimizing EEOI values of seven types of specialized 
ships, Prill et al. [27] assumed that the EEOI of each ship is related to the deadweight of the ship, the 
type and amount of consumed fuel and the voyage distance traveled by the ship, and they proposed a 
new method of determining the EEOI of each ship by optimizing sailing speeds of ships and the 
realization time of each exploitation task. Hou et al. [28] developed a ship speed optimization model 
which brought a 15% reduction in EEOI in the computational experiment. 

In summary, the prevailing trend in the fleet deployment problem is studying how to reduce 
emissions from the shipping industry because of the increasing public concern about environmental 
protection. However, few works focus on an integrated optimization problem of fleet deployment, 
voyage planning and speed optimization to minimize both the total weekly cost and the average EEOI 
value of all deployed ships on all routes. Therefore, this paper studies an integrated optimization 
problem of fleet deployment, voyage planning and speed optimization with consideration of the 
influences of sailing speed, displacement and voyage option on fuel consumption. Moreover, some 
other frequently ignored operating limits, such as Suez Canal toll fee, are considered in this paper. This 
study proposes a nonlinear MIP model to minimize two objectives, i.e., the total weekly cost and the 
average EEOI value of all deployed ships on all routes, by determining the optimal fleet deployment, 
voyage planning and speed. 

3. Problem description and model formulation 

This study is oriented toward an integrated optimization problem of fleet deployment, voyage 
planning and speed optimization with consideration of the influences of sailing speed, displacement 
and voyage option on fuel consumption. This section first elaborates on the detailed background of the 
problem in Section 3.1, explains the objective function of the problem in Section 3.2 and presents the 
mathematical model in Section 3.3. 

3.1. Problem background 

We consider a liner company operating on a network containing a set 𝑅 of container ship routes 
(services). The liner company has already determined the optimal service plan including fleet 
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deployment, sailing speed and voyage selection. However, in the context of the Carbon Intensity 
Indicator (CII) introduced by the IMO, especially considering EEOI, the liner company may need to 
reoptimize their service plan including fleet deployment, sailing speed and voyage options such as the 
Cape of Good Hope route or the Suez Canal route [29] in Figure 1. 

Rotterdam

Singapore

Suez Canal route

Cape of Good Hope route  

Figure 1. Comparison of two voyage options: Suez Canal route and Cape of Good Hope route. 

Some ship routes, e.g., 𝑟  (𝑟 ∈ 𝑅 ), operated by the liner company may contain the voyage 
between Asian ports and European ports. We assume that the liner company originally selects the Suez 
Canal route for these voyages because sailing through the Suez Canal saves a lot of time. In this case, 
let 𝐼  and 𝐼  represent the set of legs that do not cross Asian and European ports on ship route 𝑟 and 
the set of legs across Asian and European ports on ship route 𝑟, respectively. For example, Table 1 
summarizes the sets of 𝐼   and 𝐼   of route 𝑟  whose port rotation is Qingdao-Shanghai-Ningbo-
Yantian-Rotterdam-Hamburg-Antwerp-Singapore-Qingdao. We then let 𝛾  denote a binary variable 
which equals 1 if and only if the voyage option of leg 𝑖, 𝑖 ∈ 𝐼 , on ship route 𝑟 selects the Suez Canal 
voyage and equals 0 if selecting the Cape of Good Hope voyage. In addition, sailing speeds of deployed 
ships during each leg should be between 𝑣  and 𝑣 , where 𝑣  and 𝑣  represent the minimum and 
maximum speeds of ships on ship routes, respectively. Let 𝑉 represent a set of all possible sailing 
speeds indexed by 𝑣, and 𝑉 𝑣, 𝑣 0.1, … , 𝑣 0.1, 𝑣 .  

Table 1. Summary of sets 𝐼  and 𝐼 . 

Set Leg 

𝐼  
Qingdao → Shanghai Shanghai → Ningbo Ningbo → Yantian 
Rotterdam → Hamburg Hamburg → Antwerp Singapore → Qingdao 

𝐼  Yantian → Rotterdam Antwerp → Singapore  

In terms of fleet deployment and speed optimization, EEOI values of all deployed ships on all 
ship routes should be regarded as an important consideration because when stricter CO  emission 
reduction regulations issued by international organizations take effect, liner companies have to find 
ways to reduce their deployed ships’ EEOI values. The incorporation of EEOI may result in higher 
costs for liner companies in practice; however, companies certainly aim to minimize their total cost 
while complying with EEOI regulations. Therefore, this study considers the influences of sailing speed, 
displacement and voyage option on fuel consumption. Bi-objective programming has been widely 
applied before when minimizing carbon emissions and maximizing profit of liner companies, such as 
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in Zhao et al. [30]. From the perspective of the liner company, this study develops a bi-objective model 
to balance the total weekly cost, including the weekly fixed operating cost, weekly Suez Canal toll fee 
and weekly fuel cost, and the average EEOI value of all deployed ships on all ship routes by 
determining fleet deployment, voyage planning and sailing speed of all deployed ships. The above 
strategic-level problem involves many intertwined decisions, so a scientific decision-making 
methodology is needed for this problem. 

3.2. Objective function 

This problem is formulated as a bi-objective programming model. These two objective functions 
are the total weekly cost and the average EEOI value of all deployed ships on all routes. In the 
following paragraphs, we first explain separately how to formulate these two objective functions and 
then introduce how to deal with the bi-objective programming. 

The first objective function focuses on the total weekly cost, which contains three parts: the 
weekly fixed operating cost, weekly Suez Canal toll fee and weekly fuel cost. Specifically, the first 
part is the weekly fixed operating cost of deployed ships. Because a fleet of homogeneous ships is 
deployed on each route to maintain a weekly service frequency, the total fixed operating cost for all 
deployed ships on all routes during one week can be calculated as ∑ 𝑜𝛽∈ , where 𝑜 and 𝛽  denote 
the weekly operating cost for deploying one ship on ship routes and the number of ships deployed on 
route 𝑟 , respectively. Next is the weekly Suez Canal toll fee faced by the liner company. Let 𝑞  
denote the Suez Canal toll fee of each ship deployed on route 𝑟 (USD/ship). Hence, we can calculate 

the weekly Suez Canal toll fee by ∑ ∑ 𝑞 𝛾∈∈ . 

The last part of the total weekly cost is the fuel cost, which depends on fuel consumption. Each 
ship contains a main engine, which provides propulsion power for the ship, and an auxiliary engine, 
which provides power for uses other than propulsion. Specifically, in terms of fuel consumption of the 
main engine, most of the existing fuel consumption models in the literature [11,31,32] agreed that a 
ship’s unit fuel consumption significantly depends on its sailing speed and calculated the unit fuel 
consumption function by 𝑐𝑣  to conduct liner shipping network analyses, where 𝑣 is sailing speed 
(knots), and 𝑐  and 𝑐  are positive coefficients. However, apart from sailing speed, several other 
factors also influence fuel consumption. The first one is displacement (tons), i.e., the total weight of 
the ship itself, cargo, ballast water and bunker. Meng et al. [9] investigated the relationship between 
the fuel consumption rate of a container ship and several factors, including sailing speed, displacement 
and weather/sea conditions. However, it is extremely difficult to record the precise weather/sea 
conditions because the effects of waves, wind and currents are interwoven in practice. Hence, the 
influence of weather/sea conditions on fuel consumption is not considered in this study. Also, this 
study formulates the unit fuel consumption function as 𝑐 𝑣 𝑑  (tons/hour), which is given by Meng 
et al. (2016) [9], where 𝑐 , 𝑐  and 𝑐  are positive coefficients, and 𝑣 and 𝑑 represent the actual 
sailing speed (knots) and displacement (tons) of the ship during one leg, respectively. Finally, in terms 
of fuel consumption of the auxiliary engine, we assume the auxiliary engine of a ship deployed on ship 
route 𝑟 consumes an amount 𝑒  of fuel per day. In summary, the total amount of fuel consumed by 
a ship’s main engine on ship route 𝑟 , denoted by 𝜀  , can be calculated by 𝜀

∑ ∑ 𝑐 𝑣 𝛼 𝑑∈∈ ∑ ∑ 𝑐 𝑣 𝛼 𝑑∈  ∈  , where 𝛼  , 𝑑  , 𝑙   and 



153 

Electronic Research Archive  Volume 31, Issue 1, 147-168. 

𝑙  represent, respectively, a binary variable which equals 1 if and only if the speed of the ship sailing 
during leg 𝑖 on route 𝑟 is 𝑣 and 0 otherwise, actual displacement (tons) of the ship during leg 𝑖 on 
ship route 𝑟, length (n mile) of the 𝑖th leg if 𝑖 ∈ 𝐼  or length of the 𝑖th leg taking the Suez Canal 
route if 𝑖 ∈ 𝐼  on ship route 𝑟 and length (n mile) of the 𝑖th (𝑖 ∈ 𝐼 ) leg taking the Cape of Good 
Hope route on ship route 𝑟. Weekly fuel consumption of auxiliary engines of all deployed ships on 
route 𝑟 is 7𝑒 𝛽  because the total time for a ship completing travel along route 𝑟 including dwell 
time and sailing time is 7𝛽   days to maintain a weekly container shipping service frequency. In 
summary, the total weekly fuel cost of all deployed ships on all routes is ∑ 𝑎 𝜀 7𝑎 𝑒 𝛽∈ , 
where 𝑎   and 𝑎   are the unit prices of fuels consumed by the main and auxiliary engines, 
respectively (USD/ton). Therefore, the total weekly cost can be calculated by ∑ 𝑜𝛽∈

∑ 𝑞 𝛾∈ 𝑎 𝜀 7𝑎 𝑒 𝛽 . 

The second objective is the average EEOI value of all deployed ships on all routes. According to 
the IMO [8], the EEOI of a ship is described by the ratio of the total amount of CO  emissions released 
by the ship over a year to the product of the ship’s cargo transported and total distance over a year, and 
it is related to fuel consumption, sailing speed, load tonnage and mileage of voyage. The calculation 
formula of EEOI is Eq (1), which is given by the IMO [8].  

EEOI            

       
       (1) 

Here, notice that the EEOI of a ship is also equal to the ratio of the total amount of CO  emissions 
released by the ship over a week to the product of the ship’s cargo transported and total distance over 
a week because of the weekly service frequency. In addition, we assume that the ships owned by the 
liner company generate 𝑔 tons of CO  when burning one ton of fuel, and let 𝑚  denote the volume 
of cargo load in the ship during leg 𝑖 , 𝑖 ∈ 𝐼 ∪ 𝐼  . Also, since we calculate the amount of CO  
emissions in tons, but the amount of CO  emissions in the EEOI calculation formula is in grams, we 
need to multiply the amount of CO  emissions by 10  when calculating the EEOI value of each 
operating ship. Therefore, the average EEOI value of all ships deployed on all routes is  

∑
∑ ∈ ∑ ∈

∈ ∑ 𝛽∈ . 

Since this study aims to minimize both of the above objectives, i.e., the total weekly cost and the 
average EEOI value of all deployed ships on all routes, this study applies a typical way to solve the 
problem, which is the weighted sum method. We use 𝜆 as a weighting factor for the bi-objective 
programming which reveals the relative importance between the above two objective functions. Hence, 

the objective function of this problem is formulated as 𝜆 ∑ 𝑜𝛽 ∑ 𝑞 𝛾∈ 𝑎 𝜀∈

7𝑎 𝑒 𝛽 1 𝜆 ∑
∑ ∈ ∑ ∈

∈ ∑ 𝛽∈ . 

3.3. Model formulation 

Based on the above analysis of the objective function, this study formulates a nonlinear MIP 
model in this section. Before formulating the mathematical model for this problem, we list the 
notations used in this paper as follows. 
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Indices and sets: 
𝑅: set of all ship routes, 𝑟 ∈ 𝑅. 
𝐼 : set of all legs that do not cross Asian and European ports on ship route 𝑟, 𝑖 ∈ 𝐼 . 
𝐼 : set of all legs across Asian and European ports on ship route 𝑟, 𝑖 ∈ 𝐼 . 
𝑉 : set of all possible sailing speeds, 𝑣 ∈ 𝑉 , 𝑉 𝑣, 𝑣 0.1, … , 𝑣 0.1, 𝑣  , where 𝑣  and 𝑣 

represent the minimum and maximum speeds of ships on ship routes, respectively. 
𝑍 : set of all non-negative integers. 

Parameters: 
𝑎 , 𝑎 : unit prices of fuels consumed by the main and auxiliary engines, respectively (USD/ton). 
𝑐 , 𝑐 , 𝑐 : coefficients to calculate the unit fuel consumption for traveling per hour, which mainly 

depends on sailing speed and displacement (tons/hour). 
𝑑 : actual displacement of the ship during leg 𝑖 on ship route 𝑟 (tons).  
𝑒 : amount of fuel consumed by the auxiliary engine of a ship deployed on ship route 𝑟 per day 

(tons/day). 
𝑔 : amount of CO  released by a ship when burning one ton of fuel (tons). 
𝑙 : length of the 𝑖th leg if 𝑖 ∈ 𝐼  or length of the 𝑖th leg taking the Suez Canal route if 𝑖 ∈ 𝐼  

on ship route 𝑟 (n mile). 
𝑙 : length of the 𝑖th (𝑖 ∈ 𝐼 ) leg taking the Cape of Good Hope route on ship route 𝑟 (n mile). 
𝑚 : cargo load in leg 𝑖, 𝑖 ∈ 𝐼 ∪ 𝐼 , on ship route 𝑟 (tons). 
𝑜: weekly operating cost of one ship deployed on ship routes (USD). 
𝑞 : Suez Canal toll fee for a ship deployed on route 𝑟 (USD/ship). 
𝑠 : maximum number of ships that can be deployed on ship route 𝑟. 
𝑡 : total duration a ship dwells at all ports of call on ship route 𝑟 (hours). 
𝜆: weighting factor for the bi-objective programming. 

Variables: 
𝛼 : binary, equals 1 if and only if the speed of the ship sailing during leg 𝑖 on ship route 𝑟 is 

𝑣; 0 otherwise. 
𝛾 : binary, equals 1 if and only if the voyage option of leg 𝑖, 𝑖 ∈ 𝐼 , on ship route 𝑟 selects Suez 

Canal route; 0 if Cape of Good Hope route. 
𝛽 : integer, number of ships deployed on ship route 𝑟. 
𝜀 : continuous, weekly fuel consumption of the main engine of all deployed ships on ship route 

𝑟 (tons). 
Mathematical model 

Based on the above definitions of parameters and variables, a nonlinear MIP model is formulated 
as follows. 
[M1]  Min 𝜆 ∑ 𝑜𝛽 ∑ 𝑞 𝛾∈ 𝑎 𝜀 7𝑎 𝑒 𝛽∈  

1 𝜆 ∑
∑ ∈ ∑ ∈

∈ ∑ 𝛽∈           (2) 

subject to 

1 𝛽 𝑠        ∀ 𝑟 ∈ 𝑅                         (3) 

∑ ∑ 𝛼∈ ∑ 𝛼∈∈ 𝑡 168𝛽    ∀ 𝑟 ∈ 𝑅   (4) 
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 𝜀 ∑ ∑ 𝑐 𝑣 𝛼 𝑑∈∈ ∑ ∑ 𝑐 𝑣 𝛼 𝑑∈  ∈  ∀ 𝑟 ∈ 𝑅   (5) 

∑ 𝛼∈ 1        ∀ 𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼 ∪ 𝐼                (6) 

𝛼 ∈ 0,1          ∀ 𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼 ∪ 𝐼 , 𝑣 ∈ 𝑉         (7) 

𝛽 ∈ 𝑍            ∀ 𝑟 ∈ 𝑅                        (8) 

𝛾 ∈ 0,1          ∀ 𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼 ∪ 𝐼                (9) 

𝜀 0.           ∀ 𝑟 ∈ 𝑅                       (10) 

Objective (2) minimizes the weighted sum of two objectives considered in this study. Constraint (3) 
guarantees that at least one ship and at most s  ships should be deployed on each route. Constraint (4) 
ensures that the total number of hours for a ship completing its travel on a route is the number of ships 
deployed on the route times 168, because all services follow the weekly arrival pattern, and one week 
has 168 hours. Constraint (5) calculates the weekly fuel consumption of the main engine of all 
deployed ships on ship route r. Constraint (6) ensures that sailing speeds of deployed ships during 
each leg on all ship routes satisfy the feasible speed range of ships. Constraints (7)–(10) state the ranges 
of the defined decision variables.  

4. Algorithm design 

It is challenging to solve the nonlinear model [M1], which contains multiple nonlinear parts, 
including objective function (2) and constraints (4) and (5). By reviewing several algorithms and their 
features in some existing fleet deployment studies, we find that specially tailored solution methods are 
usually designed for their models because these fleet deployment studies contain specific 
characteristics. For example, Zhen et al. [10] proposed a tailored dynamic linearization algorithm to 
solve a mixed-integer second-order cone programming model. In addition, considering specific 
characteristics of our problem, we find that nonlinear parts in model [M1] can be replaced by 
enumerating the possible values, and the model after the above transformation can be solved directly 
and effectively by Gurobi. Since the number of possible values of the nonlinear parts in model [M1] 
is small, this study designs an efficient exact algorithm based on the enumeration method to solve the 
model [M1]. Due to the efficiency and accuracy of the proposed algorithm, the proposed algorithm 
can quickly find the optimal solution of the model in a very short time. 

Before introducing our algorithm, one transformation of constraint (4) is first introduced. Since 
sailing speed is discretized, the feasibility of constraint (4), which contains the equality symbol, might 
be affected. Hence, constraint (4) is replaced with constraint (11). Here, notice that the equality symbol 
in constraint (4) is replaced with the less than or equal to symbol in constraint (11). 

∑ ∑ 𝛼∈ ∑ 𝛼∈∈ 𝑡 168𝛽  ∀ 𝑟 ∈ 𝑅.    (11) 

As a result, the final version of model [M1] becomes the following: 
[M2] objective (2) subject to constraints (3), (5)–(11). 

Finally, we design the following exact algorithm, whose framework is introduced in Algorithm 1 
to solve the model [M2]. The main difficulty in solving the model [M2] is the nonlinear part in 
objective (2). Two key techniques are applied to this nonlinear part. Specifically, the first one focuses 
on ∑ 𝛽∈  in the denominator. According to constraint (11), the number of ships deployed on route 
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𝑟 , denoted by 𝛽  , is at least 𝛽 ∑ ∈ ∑  ,
∈ 𝑡 168   (recall that 𝑣 

represents the maximum speed of ships on ship routes). Because constraint (3) guarantees that at most 
𝑠  ships could be deployed on route 𝑟, the value of ∑ 𝛽∈  ranges from ∑ 𝛽∈  to ∑ 𝑠∈ , 
which means we can directly enumerate the number of ships deployed on all ship routes. The other 

one is ∑ 𝑚 𝑙 𝛾 𝑙 1 𝛾∈ . In most cases, not all routes need to be reoptimized in terms 

of voyage option because these routes do not contain voyages across Asia and Europe. Even if all 
routes need to be reoptimized in terms of voyage option, the total number of voyage options on a single 

route is |𝐼 | , which means there are 2   permutations of the values of 𝛾   (∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼   for 

route 𝑟. Moreover, the value of |𝐼 | is either 0 or 2 because in real life, a liner route is either for a 
certain continent, or it only crosses Asian and European ports twice. Hence, the number of 
permutations is significantly small, and we can directly enumerate all permutations.  

Algorithm 1. Framework of the proposed exact algorithm for solving model [M2] 
𝑥 ← ∑ 𝛽∈   // 𝑥 records the number of ships deployed on all ship routes  

OBJ∗ ← ∞  //OBJ∗ records the incumbent objective function value of model [M2] 

𝑥, 𝛾 , ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼 ∗ ← null // 𝑥, 𝛾 , ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼 ∗  records the incumbent values of 
corresponding variables in [M2] 
While 𝑥 ∑ 𝑠∈  do 

 Add constraint ∑ 𝛽∈ 𝑥 to model [M2] 

 Obtain 2 2 ⋯ 2| | || permutations of (𝛾 , , 𝛾 , , 𝛾 , , 𝛾 , , … , 𝛾| |, , 𝛾| |, | |

 | |

) 

 𝑛 ← 1  //𝑛 is a counting number 

 While 𝑛 2 2 ⋯ 2| | || do
  Solve the updated model by Gurobi with given values 𝛾  , ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼   of the 𝑛

permutation 
   If model is feasible then 

    If OBJ OBJ∗ then  //OBJ records the current objective function value obtained by 
Gurobi 

     𝑥, 𝛾 , ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼 ∗ ← 𝑥, 𝛾 , ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼   

     OBJ∗ ← OBJ  

    End if 

   End if 

  𝑛 ← 𝑛 1  

 End while 

 Delete constraint ∑ 𝛽∈ 𝑥 from model [M2] 

 𝑥 ← 𝑥 1  

End while 

Solve model [M2] by Gurobi with given 𝑥, 𝛾 , ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼 ∗ 

Return the objective value and values of the variables 
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5. Computational experiments 

In order to evaluate the efficiency of the proposed algorithm, we performed a large number of 
computational experiments on a PC (4 CPU cores, 1.6 GHz, Memory 8 GB). The mathematical models 
and algorithms proposed in this study are implemented in Gurobi 9.0.1 (Anaconda, Python). This 
section first summarizes the setting of our parameters in Section 5.1, validates the proposed algorithm 
in Section 5.2 and describes sensitivity analyses to seek managerial insights in Section 5.3. 

5.1. Experimental setting 

Sailing distance data, including 𝑙  and 𝑙 , used in this study were obtained from the standard 
instances of LINER-LIB [33]. The value of the weekly fixed operating cost, i.e., 𝑜, is set to 180,000 
USD, which is in line with the setting used in previous studies [11,34]. In real life, main and auxiliary 
engines of a ship may use the same type of fuel, such as liquefied natural gas (LNG). Therefore, this 
study assumes that main and auxiliary engines use the same type of fuel when calculating fuel costs of 
the main and auxiliary engines for the sake of simplicity in the computational experiments. Therefore, 
unit prices of fuels (i.e., 𝑎  and 𝑎 ) are set to 544.5 USD/ton because the average price of very low 
sulfur fuel oil (VLSFO) in global 20 ports in 2021 is 544.5 USD/ton [35]. For the sake of simplicity, a 
ship can only adjust its speeds by at least one knot in this study. The minimum and maximum values 
of sailing speed (i.e., 𝑣 and 𝑣) are set to 8 and 22 knots, respectively, which are also consistent with 
the settings used in related works [36,37]. The values of 𝑐 , 𝑐  and 𝑐  are set to 0.00022, 2.5506 
and 0.2072, respectively, which are consistent with the settings in related studies [9,36]. The value of 
the total duration, i.e., 𝑡 , that a ship dwells at all ports of call on ship route 𝑟 is randomly selected 
from 24 |𝐼 | |𝐼 | , 48 |𝐼 | |𝐼 | . The value of 𝑠  (i.e., the maximum number of ships that 
can be deployed on ship route 𝑟) depends on the length of one cycle time, and it is set to 4 for regional 
ship routes or 10 for intercontinental shipping routes. The amount of CO  released by a ship when 
burning one ton of VLSFO, i.e., 𝑔, is set to 3.15 tons, which is in line with the realistic data from 
Lloyd’s List [38]. Some parameters are generated by sampling from some normal distributions. 
Specifically, values of Suez Canal toll fee (i.e., 𝑞 ) of a ship on all routes are uniformly distributed 
over (400,000, 700,000) (USD/ship), which is in line with actual Suez Canal toll fees [39]. The average 
value of daily fuel consumption for the auxiliary engines (𝑒 ) on all routes is set to 3 tons per day 
(normal distribution with standard deviation 0.5). The average value of cargo load (𝑚 ) on all legs is 
set to 180,000 tons (normal distribution with standard deviation 3000), and the value of actual 
displacement (𝑑 ) on all legs is set to 𝑚 20,000 tons. 

5.2. Performance of the algorithm 

We used the proposed exact algorithm to solve the model [M2] and conducted 11 sets of numerical 
experiments with different route compositions, which are summarized in Table 2. We first fixed 𝜆
0.5 and recorded computational results, including objective function value (OBJ ), CPU running time 
(Time) and selected voyage option (Voyage option) in Table 3. Since the difference between the two 
objective function values in our model is very large, we normalize these two objective functions by 
dividing them by their respective maximum values. To obtain the maximum values, we set 𝜆 (i.e., the 
weighting factor for the bi-objective programming) to 0 and solve all computational experiments of 



158 

Electronic Research Archive  Volume 31, Issue 1, 147-168. 

the model [M2] to get the maximum objective function value OBJ  15148529.7881. Similarly, 
we set 𝜆  to 1 and solve all computational experiments of the model [M2] to get the maximum 
objective function value OBJ  0.3384. From Table 3, we can see that the computing time increases 
with more routes, which is intuitive because more routes will bring more decision variables and 
constraints. Since the computing time of 6 routes is quick enough, case 10 is used for the following 
numerical experiments. The Suez Canal route was chosen in all experiments. This may be due to the 
fact that the Suez Canal route is more popular on trips because it saves more sailing time. Our algorithm 
has good performance because it can solve the numerical experiment with 7 ship routes and 32 legs in 
four minutes, which means our algorithm can be applied well to real problems and quickly provides 
optimal solutions for liner companies. 

Table 2. Summary of seven routes. 

Route 
ID 

Port rotation (city) 

1 Kaohsiung → Tokyo → Nagoya → Kaohsiung 

2 General Santos City → Manila → Singapore → General Santos City 

3 Hong Kong → Xiamen → Kaohsiung → Manila → Hong Kong 

4 Kaohsiung → Keelung → Shanghai → Tanjung Pelepas → Jakarta → Kaohsiung 

5 Laem Chabang → Colombo → Rotterdam → Hamburg → Singapore → Laem Chabang 

6 Qingdao → Shanghai → Hong Kong → Singapore → Rotterdam → Singapore → Qingdao 

7 Kaohsiung → Hong Kong → Singapore → Rotterdam → Singapore → Xiamen → Kaohsiung

Table 3. Computational results of the basic analysis. 

Case ID Route ID OBJ  Time (s) Voyage option 

1 1, 5 0.53 1.20 Suez Canal 
2 2, 6 0.61 1.51 Suez Canal 
3 3, 5, 6 0.52 13.34 Suez Canal 
4 4, 5, 6 0.56 14.38 Suez Canal 
5 2, 4, 5, 6 0.69 16.76 Suez Canal 
6 3, 4, 5, 6 0.70 18.54 Suez Canal 
7 1, 3, 4, 5, 6 0.79 20.79 Suez Canal 
8 2, 3, 4, 5, 6 0.84 24.40 Suez Canal 
9 1, 2, 3, 5, 6 0.85 25.40 Suez Canal 
10 1, 2, 3, 4, 5, 6 0.91 30.03 Suez Canal 
11 1, 2, 3, 4, 5, 6, 7 0.94 222.25 Suez Canal 

5.3. Sensitivity analyses 

The impact of 𝜆 on the bi-objective programming is first described in this section. The value of 
𝜆 ranged from 0 to 1. In Table 4, we show the normalized objective function value of model [M2] 
(OBJ ), the total weekly cost value (OBJ ), the average EEOI value of all deployed ships on all routes 
(OBJ ), the total number of deployed ships (∑ 𝛽∈ ), the selected voyage option (Voyage option) and 
the computing time (Time). It is obvious that OBJ  decreases with increasing 𝜆, which is reasonable 
because a larger 𝜆 indicates a larger weight on OBJ . However, OBJ  stays the same at the beginning, 
then goes down and finally goes up. In addition, the total number of deployed ships decreases as the 
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value of 𝜆 increases. Finally, the change of the value of 𝜆 does not affect the voyage option, and the 
change of the value of 𝜆 has no obvious effect on the solution time. Therefore, with increasing 𝜆 
(i.e., larger weight on the minimization of the total weekly cost), fewer ships are needed, which means 
that each deployed ship sails at a higher speed and releases more CO   (i.e., higher EEOI value). 
However, since the average EEOI value of all deployed ships on all routes is relatively small, the 
increase in the 𝜆 value in the early stage has no proportional effect on the second objective function 
value, i.e., OBJ . 

Table 4. Impact of the weighting factor 𝜆 for the bi-objective programming. 

𝜆 OBJ  OBJ  (USD) OBJ  (g/ton/n mile) ∑ 𝛽∈   Voyage option Time (s)

0.0 0.9460 11349298.0951 0.3592 36 Suez Canal route 32.85 
0.1 0.9514 11349298.0951 0.3592 36 Suez Canal route 31.37 
0.2 0.9568 11349298.0951 0.3592 36 Suez Canal route 31.39 
0.3 0.9622 11349298.0951 0.3592 36 Suez Canal route 33.15 
0.4 0.9676 11349298.0951 0.3592 36 Suez Canal route 32.88 
0.5 0.9572 11156852.8702 0.3536 35 Suez Canal route 32.13 
0.6 0.9491 10967201.7128 0.3505 34 Suez Canal route 32.25 
0.7 0.9434 10789871.1308 0.3517 33 Suez Canal route 31.02 
0.8 0.9352 10619882.8389 0.3542 32 Suez Canal route 30.75 
0.9 0.9311 10500058.7455 0.3737 31 Suez Canal route 31.25 
1.0 0.9201 10442771.8214 0.3796 30 Suez Canal route 28.62 

Notes: 1) “OBJ ,” “OBJ ,” “OBJ ” and “∑ 𝛽∈ ” represent the normalized OBJ value of model [M2], total 
weekly cost value, average EEOI value of all deployed ships on all routes and the total number of deployed 
ships, respectively. 2) “Voyage option” represents the voyage selection of deployed ships across Asian and 
European ports, i.e., Suez Canal route or Cape of Good Hope route. 3) “Time” represents CPU running time (s).  

Table 5. Impact of unit price of fuel on the operation decisions. 

𝑎 (USD/ton) OBJ  OBJ  (USD) OBJ  (g/ton/n mile) ∑ 𝛽∈   Voyage option 

200.00 0.8602 9,285,432.4798 0.3505 34 Suez Canal route 
300.00 0.8860 9,773,609.3254 0.3505 34 Suez Canal route 
400.00 0.9118 10,261,786.1709 0.3505 34 Suez Canal route 
500.00 0.9376 10,749,963.0165 0.3505 34 Suez Canal route 
600.00 0.9634 11,238,139.8621 0.3505 34 Suez Canal route 
700.00 0.9892 11,726,316.7077 0.3505 34 Suez Canal route 
800.00 1.0150 12,214,493.5533 0.3505 34 Suez Canal route 
900.00 1.0408 12,702,670.3988 0.3505 34 Suez Canal route 
1000.00 1.0666 13,190,847.2444 0.3505 34 Suez Canal route 
1100.00 1.0924 13,679,024.0900 0.3505 34 Suez Canal route 
1200.00 1.1183 14,167,200.9356 0.3505 34 Suez Canal route 

Notes: ① “OBJ ,” “OBJ ,” “OBJ ,” and “∑ 𝛽∈ ” represent the normalized OBJ value of model [M2], total 

weekly cost value, average EEOI value of all deployed ships on all routes and the total number of deployed 
ships, respectively. ② “Voyage option” represents the voyage selection of deployed ships across Asian and 

European ports, i.e., Suez Canal route or Cape of Good Hope route.  
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We next studied the impact of unit price of fuel on the operation decisions. According to S&B [35], 
the lowest and highest prices of VLSFO in global 20 ports from January 01, 2020, to July 14, 2022, 
were 211.25 USD/ton, and 1120.50 USD/ton, respectively. Hence, we set the value of 𝑎 from 200 
to 1200 USD/ton to investigate its influence. Relevant results, including OBJ , OBJ , OBJ , ∑ 𝛽∈  
and Voyage option, are presented in Table 5. In order to make the result more intuitive, we also give 
Figure 2, whose abscissa is the fuel price, and the primary and secondary ordinate axes are OBJ  and 
OBJ , respectively. When the unit price of fuel increases, both OBJ  and OBJ  increase because the 
weekly fuel cost increases, but OBJ  is not influenced by fuel price. In addition, changes in the fuel 
price do not affect fleet deployment and voyage option decisions. The above observations are 
reasonable because changes in the unit price of fuel do not cause changes in fleet deployment strategies 
and sailing speeds, resulting in no changes in CO  emissions and no changes in the value of the second 
objective function. However, the continuous increase in the unit price of fuel leads to an increase in 
the weekly fuel consumption cost, which eventually leads to an increase in the value of the first 
objective function. 

 

Figure 2. Comparison of OBJ  and OBJ  values under different values of 𝑎. 

 

Figure 3. Comparison of OBJ  and OBJ  values under different values of 𝑞 . 

Next, we discuss the impact of Suez Canal toll fee per ship on the operation decisions. According 
to HKTDC [39], Suez Canal toll fees for a ship range from 400,000 to 700,000 USD. Hence, we set 
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the Suez Canal toll fee for a ship from 350,000 to 750,000 USD/ship to investigate its influence. 
Relevant results, including OBJ , OBJ , OBJ , ∑ 𝛽∈  and Voyage option, are given in Table 6. In 
order to make the result more intuitive, we also give Figure 3, whose abscissa is the Suez Canal toll 
fee per ship, and the primary and secondary ordinate axes are OBJ  and OBJ , respectively. When the 
Suez Canal toll fee per ship increases, both OBJ  and OBJ  increase, but OBJ  does not change with 
increasing 𝑞 . In addition, changes in the Suez Canal toll fee per ship do not affect fleet deployment 
and voyage option decisions, which further makes the EEOI of each ship unchanged, as the ship’s 
CO  emissions and mileage do not change. The above observations are reasonable because the weekly 
Suez Canal toll fee is small compared to the weekly fuel consumption and operating costs of deployed 
ships. Therefore, the increase in the Suez Canal toll fee per ship does not lead to changes in fleet 
deployment, sailing speeds and voyage planning. 

Table 6. Impact of Suez Canal toll fee per ship on the operation decisions. 

𝑞  (USD/ship) OBJ  OBJ  (USD) OBJ  (g/ton/n mile) ∑ 𝛽∈   Voyage option 

350,000.00 0.8775 10,042,966.9490 0.3289 34 Suez Canal route 
400,000.00 0.8881 10,242,966.9490 0.3289 34 Suez Canal route 
450,000.00 0.8986 10,442,966.9490 0.3289 34 Suez Canal route 
500,000.00 0.9092 10,642,966.9490 0.3289 34 Suez Canal route 
550,000.00 0.9198 10,842,966.9490 0.3289 34 Suez Canal route 
600,000.00 0.9304 11,042,966.9490 0.3289 34 Suez Canal route 
650,000.00 0.9409 11,242,966.9490 0.3289 34 Suez Canal route 
700,000.00 0.9515 11,442,966.9490 0.3289 34 Suez Canal route 
750,000.00 0.9621 11,642,966.9490 0.3289 34 Suez Canal route 

Notes: 1) “OBJ ,” “OBJ ,” “OBJ ,” and “∑ 𝛽∈ ” represent the normalized OBJ value of model [M2], total 
weekly cost value, average EEOI value of all deployed ships on all routes and the total number of deployed 
ships, respectively. 2) “Voyage option” represents the voyage selection of deployed ships across Asian and 
European ports, i.e., Suez Canal route or Cape of Good Hope route.  

 

Figure 4. Comparison of OBJ  and OBJ  values under different values of 𝑜. 

In the basic experiment, the value of the weekly fixed operating cost (𝑜) was set to 180,000 USD. 
However, weekly operating costs may double several times due to outbreaks and other reasons. To 
analyze the impact of weekly fixed operating cost on the operation decisions, we set the value of 𝑜 
from 150,000 USD to 390,000 USD. Relevant results, including OBJ  , OBJ  , OBJ   ∑ 𝛽∈   and 
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Voyage option are given in Table 7. In order to make the result more intuitive, we also give Figure 4, 
whose abscissa is the weekly operating cost, and the primary and secondary ordinate axes are OBJ  
and OBJ  , respectively. When the weekly operating cost increases, all of OBJ  , OBJ   and OBJ  
increase, but OBJ  remains unchanged in the three intervals [150,000, 240,000], [270,000, 300,000] 
and [330,000, 390,000]. In addition, changes in the weekly fixed operating cost directly influence fleet 
deployment but do not affect voyage option decision. The above observations are reasonable because 
the weekly fixed operating cost accounts for a large proportion of the total weekly cost. The continuous 
increase in the weekly fixed operating cost causes liner companies to reduce the number of deployed 
ships, which causes ships to sail at higher speeds to maintain the weekly arrival pattern. Moreover, 
high speeds of deployed ships cause more CO  emissions. 

Table 7. Impact of weekly fixed operating cost on the operation decisions of ship fleets. 

𝑜 (USD) OBJ  OBJ  (USD) OBJ  (g/ton/n mile) ∑ 𝛽∈  Voyage option 

150,000.00 0.8952 9,947,201.7128 0.3505 34 Suez Canal route 
180,000.00 0.9491 10,967,201.7128 0.3505 34 Suez Canal route 
210,000.00 1.0030 11,987,201.7128 0.3505 34 Suez Canal route 
240,000.00 1.0569 13,007,201.7128 0.3505 34 Suez Canal route 
270,000.00 1.0980 13,759,871.1308 0.3517 33 Suez Canal route 
300,000.00 1.1503 14,749,871.1308 0.3517 33 Suez Canal route 
330,000.00 1.1884 15,419,882.8389 0.3542 32 Suez Canal route 
360,000.00 1.2392 16,379,882.8389 0.3542 32 Suez Canal route 
390,000.00 1.2899 17,339,882.8389 0.3542 32 Suez Canal route 

Notes: 1) “OBJ ,” “OBJ ,” “OBJ ” and “∑ 𝛽∈ ” represent the normalized OBJ value of model [M2], total weekly 

cost value, average EEOI value of all deployed ships on all routes and the total number of deployed ships, respectively. 

2) “Voyage option” represents the voyage selection of deployed ships across Asian and European ports, i.e., Suez 

Canal route or Cape of Good Hope route.  

 

Figure 5. Comparison of OBJ  and OBJ  values under different values of 𝑚 . 

Finally, we investigated the impact of cargo load on the operation decisions. In the basic experiment, 
the average value of cargo load (𝑚  ) was set to 180,000 tons (normal distribution with standard 
deviation 3000). Hence, we set the average value of cargo load in each leg from 80,000 to 240,000 
(normal distribution with standard deviation 3000) to investigate its influence. Relevant results, 



163 

Electronic Research Archive  Volume 31, Issue 1, 147-168. 

including OBJ , OBJ , OBJ , ∑ 𝛽∈  and Voyage option, are given in Table 8. In order to make the 
result more intuitive, we also give Figure 5, whose abscissa is the cargo load in each leg, and the 
primary and secondary ordinate axes are OBJ  and OBJ , respectively. When the cargo load in each 
leg increases, OBJ   and OBJ   increase, but OBJ   and the number of deployed ships decrease. 
However, voyage option decision is not influenced by changes in the cargo load. The above 
observations are reasonable because, with the increase in the cargo load, the product of the ship’s cargo 
transported and the total distance over a week becomes larger. Although the ship sails at a higher speed 
due to the fewer deployed ships, the increase in the product of the ship’s cargo transported and total 
distance over a week has a more significant impact on the expected EEOI value of all deployed ships 
than the increase in sailing speeds. Therefore, the average EEOI value of all deployed ships increases 
significantly with the increase in cargo load. 

Table 8. Impact of cargo load in each voyage on the operation decisions. 

𝑚  (ton) OBJ  OBJ  (USD) OBJ  (g/ton/n mile) ∑ 𝛽∈   Voyage option 

80,000.00 1.3500 10,919,422.4394 0.7334 35 Suez Canal route  
100,000.00 1.2115 10,978,604.3255 0.5990 35 Suez Canal route 
120,000.00 1.1185 11,030,417.9005 0.5082 35 Suez Canal route 
140,000.00 1.0375 10,887,008.8904 0.4385 34 Suez Canal route 
160,000.00 0.9879 10,928,874.5838 0.3892 34 Suez Canal route 
180,000.00 0.9491 10,967,201.7128 0.3505 34 Suez Canal route 
200,000.00 0.9180 11,002,602.1327 0.3192 34 Suez Canal route 
220,000.00 0.8925 11,035,537.2494 0.2934 34 Suez Canal route 
240,000.00 0.8713 11,066,364.2305 0.2717 34 Suez Canal route 

Notes: 1) “OBJ ,” “OBJ ,” “OBJ ” and “∑ 𝛽∈ ” represent the normalized OBJ value of model [M2], total weekly 

cost value, average EEOI value of all deployed ships on all routes and the total number of deployed ships, respectively. 

2) “Voyage option” represents the voyage selection of deployed ships across Asian and European ports, i.e., Suez 

Canal route or Cape of Good Hope route.  

In summary, this study investigated the impact of 𝜆 on the bi-objective programming and the 
impacts of unit price of fuel, Suez Canal toll fee per ship, weekly fixed operating cost and cargo load 
on the operation decisions. Specifically, with increasing 𝜆 (larger weight on the minimization of the 
total weekly cost), fewer ships are needed, which means that each deployed ship sails at a higher speed 
and releases more CO  (i.e., higher EEOI value). In addition, the increase in the 𝜆 value in the early 
stage has no significant effect on the second objective function value. For the impact of unit price of 
fuel on the operation decisions, if changes in the unit price of fuel do not cause changes in fleet 
deployment strategies and sailing speeds, the amount of CO  emissions and the expected EEOI value 
of all deployed ships will stay the same. However, the continuous increase in the unit price of fuel 
leads to an increase in the weekly fuel consumption cost, which eventually leads to an increase in the 
total weekly cost. For the impact of Suez Canal toll fee per ship on the operation decisions, since the 
weekly Suez Canal toll fee is less than the weekly fuel consumption and operating costs of deployed 
ships, the increase in the Suez Canal toll fee per ship does not lead to changes in fleet deployment, 
sailing speeds and voyage options. However, for the impact of the weekly fixed operating cost on the 
operation decisions, since the weekly fixed operating cost accounts for a large proportion of the total 
weekly cost, the continuous increase in the weekly fixed operating cost causes liner companies to 



164 

Electronic Research Archive  Volume 31, Issue 1, 147-168. 

reduce the number of deployed ships and causes ships to sail at higher speeds. Finally, for the impact 
of cargo load on the operation decisions, with the increase in the cargo load, the increase in the product 
of the ship’s cargo transported and total distance over a week has a more significant impact on the 
expected EEOI value of all deployed ships than the increase in sailing speeds. Therefore, the average 
EEOI value of all deployed ships increases significantly with the increase in cargo load. 

6. Conclusions 

The existing literature lacks research on the integrated optimization problem of fleet deployment, 
voyage planning and speed optimization with consideration of the influences of sailing speed, 
displacement and voyage option on fuel consumption. To fill this research gap, this study formulates 
a nonlinear MIP model capturing all these elements and designs a tailored exact algorithm for the 
model. Contributions of this paper are summarized from the following three aspects. 

1) A nonlinear MIP model is proposed for this problem with the aim of minimizing both the total 
weekly cost and the average EEOI value of all deployed ships on all routes by determining the optimal 
sailing speed during each leg, the voyage option between the Suez Canal route and Cape of Good Hope 
route and the number of ships deployed on each ship route. 2) To deal with the challenge of solving a 
nonlinear MIP model, a tailored exact algorithm is proposed by considering specific characteristics of 
our problem. Efficiency of the proposed algorithm for computational instances of different sizes is 
verified. 3) Sensitivity analyses with crucial parameters, including the weighting factor, unit price of 
fuel, Suez Canal toll fee per ship, weekly fixed operating cost and cargo load in each leg, are carried 
out to show the influences of these factors on the results to obtain managerial insights. For example, 
with increasing 𝜆 (i.e., larger weight on the minimization of the total weekly cost), fewer ships are 
needed, which means that each deployed ship needs to sail at a higher speed and releases more CO  
(i.e., higher EEOI value). 

In the future, uncertain shipping transportation in demand can be incorporated in the problem 
because shipping transportation demands change dramatically from time to time, and uncertainty 
affects the performance of transportation systems under different conditions [40–43]. In addition, 
container terminal planning [44–47] can be integrated into the fleet deployment problem. Additionally, 
fleet deployment with the consideration of subsidy design [48,49] can also be studied. Finally, several 
new techniques can be incorporated into the fleet deployment problem, such as computer vision 
algorithms [50], deep learning [51], blockchain technology [52], autonomous driving [53], cooling 
system management [54,55], combined prediction and optimization [56,57] and supply chain 
management [58]. 
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