Research article Special Issues

Revealing the spatial variation in vehicle travel time with weather and driver travel frequency impacts: Findings from the Guangdong–Hong Kong–Macao Greater Bay Area, China


  • Received: 15 June 2022 Revised: 18 July 2022 Accepted: 26 July 2022 Published: 08 August 2022
  • Vehicle travel time information is an essential location-based services that can be used to assess highway traffic conditions and provide valuable insights for transit agencies and travelers. To reveal the spatial variation in vehicle travel time with multiple factors, a multiple regression model and a geographically weighted regression model are used to investigate the associations between travel time and various factors. This study draws on freeway toll data in combination with local weather station records on Fridays over 12 months (286, 406 travel information data points), and the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), China, is used as a case study for examining the influence of weather and driver travel frequency on vehicle travel time. The results show that i) travel frequency along an origin-destination (OD) route has a significant effect on travel time, and this effect is approximately 3 to 100 times that of other explanatory variables; ii) rainfall significantly impacts travel time, with an effect that is 1.9 to 8.26 times that of other weather factors; and iii) both weather and driver travel frequency factors display spatial heterogeneity. These findings provide valuable insights for both traffic management and freeway travelers.

    Citation: Peiqun Lin, Xuanyi Liu, Mingyang Pei, Pan Wu. Revealing the spatial variation in vehicle travel time with weather and driver travel frequency impacts: Findings from the Guangdong–Hong Kong–Macao Greater Bay Area, China[J]. Electronic Research Archive, 2022, 30(10): 3711-3734. doi: 10.3934/era.2022190

    Related Papers:

  • Vehicle travel time information is an essential location-based services that can be used to assess highway traffic conditions and provide valuable insights for transit agencies and travelers. To reveal the spatial variation in vehicle travel time with multiple factors, a multiple regression model and a geographically weighted regression model are used to investigate the associations between travel time and various factors. This study draws on freeway toll data in combination with local weather station records on Fridays over 12 months (286, 406 travel information data points), and the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), China, is used as a case study for examining the influence of weather and driver travel frequency on vehicle travel time. The results show that i) travel frequency along an origin-destination (OD) route has a significant effect on travel time, and this effect is approximately 3 to 100 times that of other explanatory variables; ii) rainfall significantly impacts travel time, with an effect that is 1.9 to 8.26 times that of other weather factors; and iii) both weather and driver travel frequency factors display spatial heterogeneity. These findings provide valuable insights for both traffic management and freeway travelers.



    加载中


    [1] M. Yildirimoglu, N. Geroliminis, Experienced travel time prediction for congested freeways, Transp. Res. Part B Methodol., 53 (2013), 45–63. https://doi.org/10.1016/j.trb.2013.03.006 doi: 10.1016/j.trb.2013.03.006
    [2] X. Li, R. Ma, Y. Guo, W. Wang, B. Yan, J. Chen, Investigation of factors and their dynamic effects on intercity travel modes competition, Travel Behav. Soc., 23 (2021), 166–176. https://doi.org/10.1016/j.tbs.2021.01.003 doi: 10.1016/j.tbs.2021.01.003
    [3] X. Long, H. Zhao, M. Zhou, C. Hou, Switching threshold of commuting travelers' route choice under different patterns of information, Travel Behav. Soc., 23 (2021), 216–225. https://doi.org/10.1016/j.tbs.2021.01.005 doi: 10.1016/j.tbs.2021.01.005
    [4] S. Rasouli, H. Timmermans, Effects of travel time delay on multi-faceted activity scheduling under space-time constraints: A simulation study, Travel Behav. Soc., 1 (2014), 31–35. https://doi.org/10.1016/j.tbs.2013.10.002 doi: 10.1016/j.tbs.2013.10.002
    [5] J. Sophia, S. Althaf, N. Gautham, Predictive modeling: An attempt at predicting travel times in bengaluru accounting for geographic and economic effects, IOP Conf. Ser.: Mater. Sci. Eng., 1110 (2021), 012004. https://doi.org/10.1088/1757-899x/1110/1/012004 doi: 10.1088/1757-899x/1110/1/012004
    [6] E. H. Lee, S. Y. Kho, D. K. Kim, S. H. Cho, Travel time prediction using gated recurrent unit and spatio-temporal algorithm, Proc. Inst. Civ. Eng. Munic. Eng., 174 (2021), 88–96. https://doi.org/10.1680/jmuen.20.00004 doi: 10.1680/jmuen.20.00004
    [7] S. Yang, S. Qian, Understanding and predicting travel time with spatio-temporal features of network traffic flow, weather and incidents, IEEE Intell. Transp. Syst. Mag., 11 (2019), 12–28. https://doi.org/10.1109/mits.2019.2919615 doi: 10.1109/mits.2019.2919615
    [8] Y. Zou, X. Zhu, Y. Zhang, X. Zeng, A space-time diurnal method for short-term freeway travel time prediction, Transp. Res. C, 43 (2014), 33–49. https://doi.org/10.1016/j.trc.2013.10.007 doi: 10.1016/j.trc.2013.10.007
    [9] P. Colonna, P. Intini, N. Berloco, V. Ranieri, The influence of memory on driving behavior: How route familiarity is related to speed choice, An on-road study, Saf. Sci., 82 (2016), 456–468. https://doi.org/10.1016/j.ssci.2015.10.012 doi: 10.1016/j.ssci.2015.10.012
    [10] P. Intini, P. Colonna, N. Berloco, V. Ranieri, Measuring trade-offs between risk and travel time based on experimental speed data, Adv. Intell. Syst. Comput., (2016), 1103–1116. https://doi.org/10.1007/978-3-319-41682-3_90 doi: 10.1007/978-3-319-41682-3_90
    [11] M. Zolali, B. Mirbaha, M. Layegh, H. R. Behnood, Y. C. Lin, A behavioral model of drivers' mean speed influenced by weather conditions, road geometry, and driver characteristics using a driving simulator study, Adv. Civ. Eng., 2021 (2021), 1–18. https://doi.org/10.1155/2021/5542905 doi: 10.1155/2021/5542905
    [12] Hong Kong Government, News Archive, Available from: https://www.bayarea.gov.hk/en/about/overview.html.
    [13] MOT(Ministry of Transport of the People's Republic of China), News Archive, Available from: http://www.gov.cn/xinwen/2018-10/13/content_5330420.htm.
    [14] P. Lin, Y. He, M. Pei, R. Yang, Data-driven spatial-temporal analysis of highway traffic volume considering weather and festival impacts, Travel Behav. Soc., 29 (2022), 95–112. https://doi.org/10.1016/j.tbs.2022.06.001 doi: 10.1016/j.tbs.2022.06.001
    [15] E. C. M. Hui, X. Li, T. Chen, W. Lang, Deciphering the spatial structure of China's megacity region: A new bay area—the Guangdong-Hong Kong-Macao Greater Bay Area in the making, Cities, 105 (2020), 102168. https://doi.org/https://doi.org/10.1016/j.cities.2018.10.011
    [16] P. Lin, Y. He, M. Pei, Data-driven analysis of traffic volume and hub city evolution of cities in the Guangdong-Hong Kong-Macao Greater Bay Area, IEEE Access, 8 (2020), 12043–12056. https://doi.org/10.1109/access.2020.2963852 doi: 10.1109/access.2020.2963852
    [17] K. H. Tsoi, B. P. Y. Loo, G. Tal, D. Sperling, Pioneers of electric mobility: Lessons about transport decarbonisation from two bay areas, J. Cleaner Prod., 330 (2022). https://doi.org/10.1016/j.jclepro.2021.129866 doi: 10.1016/j.jclepro.2021.129866
    [18] X. Fei, C. C. Lu, K. Liu, A bayesian dynamic linear model approach for real-time short-term freeway travel time prediction, Transp. Res. C, 19 (2011), 1306–1318. https://doi.org/10.1016/j.trc.2010.10.005 doi: 10.1016/j.trc.2010.10.005
    [19] J. Yeon, L. Elefteriadou, S. Lawphongpanich, Travel time estimation on a freeway using discrete time markov chains, Transp. Res. Part B Methodol., 42 (2008), 325–338. https://doi.org/10.1016/j.trb.2007.08.005 doi: 10.1016/j.trb.2007.08.005
    [20] X. Zhang, J. A. Rice, Short-term travel time prediction, Transp. Res. C, 11 (2003), 187–210. https://doi.org/10.1016/s0968-090x(03)00026-3 doi: 10.1016/s0968-090x(03)00026-3
    [21] Q. Wang, H. Li, W. Xiong, Research on expressway travel time prediction based on exclusive disjunctive soft set, in 2019 8th International Conference on Transportation and Traffic Engineering (ICTTE 2019), 2020. https://doi.org/10.1051/matecconf/202030802005
    [22] H. Li, Q. Wang, W. Xiong, New model of travel-time prediction considering weather conditions: case study of urban expressway, J. Transp. Eng., 147 (2021), 04020161. https://doi.org/10.1061/jtepbs.0000491 doi: 10.1061/jtepbs.0000491
    [23] H. Caceres, H. Hwang, Q. He, Estimating freeway route travel time distributions with consideration to time-of-day, inclement weather, and traffic incidents, J. Adv. Transp., 50 (2016), 967–987. https://doi.org/10.1002/atr.1384 doi: 10.1002/atr.1384
    [24] Y. Zou, T. Zhu, Y. Xie, L. Li, Y. Chen, J. Tang, Examining the impact of adverse weather on travel time reliability of urban corridors in Shanghai, J. Adv. Transp., 2020 (2020), 1–11. https://doi.org/10.1155/2020/8860277 doi: 10.1155/2020/8860277
    [25] N. Wan, J. Xiong, F. X. Guo, Influence mechanism of travel information service level for drivers' travel time prediction error, Appl. Mech. Mater., 505 (2014), 1183–1188. https://doi.org/10.4028/www.scientific.net/AMM.505-506.1183 doi: 10.4028/www.scientific.net/AMM.505-506.1183
    [26] J. Pirc, G. Turk, M. Žura, Highway travel time estimation using multiple data sources, IET Intell. Transp. Syst., 10 (2016), 649–657. https://doi.org/10.1049/iet-its.2015.0211 doi: 10.1049/iet-its.2015.0211
    [27] O. Parent, J. P. LeSage, A spatial dynamic panel model with random effects applied to commuting times, Transp. Res. Part B Methodol., 44 (2010), 633–645. https://doi.org/10.1016/j.trb.2010.01.004 doi: 10.1016/j.trb.2010.01.004
    [28] C. Brunsdon, S. Fotheringham, M. Charlton, Geographically weighted regression-modelling spatial non-stationarity, J. Roy. Stat. Soc. Ser. D. (Stat.), 47 (1998), 431–443. https://doi.org/10.1111/1467-9884.00145 doi: 10.1111/1467-9884.00145
    [29] Y. Pan, S. Chen, S. Niu, Y. Ma, K. Tang, Investigating the impacts of built environment on traffic states incorporating spatial heterogeneity, J. Transp. Geogr., 83 (2020), 102663. https://doi.org/10.1016/j.jtrangeo.2020.102663 doi: 10.1016/j.jtrangeo.2020.102663
    [30] S. S. Pulugurtha, S. Mathew, Modeling aadt on local functionally classified roads using land use, road density, and nearest nonlocal road data, J. Transp. Geogr., 93 (2021), 103071. https://doi.org/10.1016/j.jtrangeo.2021.103071 doi: 10.1016/j.jtrangeo.2021.103071
    [31] F. Zhao, N. Park, Using geographically weighted regression models to estimate annual average daily traffic, Transp. Res. Rec., 1879 (2004), 99–107. https://doi.org/10.3141/1879-12 doi: 10.3141/1879-12
    [32] Y. Ye, Z. Zuo, X. Yuan, S. Zhang, X. Zeng, Y. An, et al., Geographically weighted regression model for urban traffic black-spot analysis, in 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2017 (2017), 4866–4869. https://doi.org/10.1109/IGARSS.2017.8128093
    [33] J. Tang, F. Gao, F. Liu, W. Zhang, Y. Qi, Understanding spatio-temporal characteristics of urban travel demand based on the combination of gwr and glm, Sustainability, 11 (2019), 5525. https://doi.org/10.3390/su11195525 doi: 10.3390/su11195525
    [34] Y. Huang, X. Wang, D. Patton, Examining spatial relationships between crashes and the built environment: A geographically weighted regression approach, J. Transp. Geogr., 69 (2018), 221–233. https://doi.org/10.1016/j.jtrangeo.2018.04.027 doi: 10.1016/j.jtrangeo.2018.04.027
    [35] S. Zhong, Z. Wang, Q. Wang, A. Liu, J. Cui, Exploring the spatially heterogeneous effects of urban built environment on road travel time variability, J. Transp. Eng., 147 (2021), 04020142. https://doi.org/10.1061/jtepbs.0000469 doi: 10.1061/jtepbs.0000469
    [36] Y. Qing, S. Wang, Multi-decadal convection-permitting climate projections for China's Greater Bay Area and surroundings, Clim. Dyn., 57 (2021), 415–434. https://doi.org/10.1007/s00382-021-05716-w doi: 10.1007/s00382-021-05716-w
    [37] M. M. Ahmed, A. Ghasemzadeh, The impacts of heavy rain on speed and headway behaviors: An investigation using the shrp2 naturalistic driving study data, Transp. Res. Part C Emerging Technol., 91 (2018), 371–384. https://doi.org/10.1016/j.trc.2018.04.012 doi: 10.1016/j.trc.2018.04.012
    [38] R. B. Chen, H. S. Mahmassani, Let it rain: Weather effects on activity stress and scheduling behavior, Travel Behav. Soc., 2 (2015), 55–64. https://doi.org/10.1016/j.tbs.2014.08.001 doi: 10.1016/j.tbs.2014.08.001
    [39] H. L. Khoo, K. S. Asitha, User requirements and route choice response to smart phone traffic applications (Apps), Travel Behav. Soc., 3 (2016), 59–70. https://doi.org/10.1016/j.tbs.2015.08.004 doi: 10.1016/j.tbs.2015.08.004
    [40] The Ministry of Public Security of the People's Republic of China, News Archive, Available from: https://www.mps.gov.cn/n2254098/n4904352/c6354939/content.html.
    [41] X. Qian, S. V. Ukkusuri, Spatial variation of the urban taxi ridership using gps data, Appl. Geogr., 59 (2015), 31–42. https://doi.org/10.1016/j.apgeog.2015.02.011 doi: 10.1016/j.apgeog.2015.02.011
    [42] Y. Gao, J. Zhao, L. Han, Exploring the spatial heterogeneity of urban heat island effect and its relationship to block morphology with the geographically weighted regression model, Sustainable Cities Soc., 76 (2022). https://doi.org/10.1016/j.scs.2021.103431 doi: 10.1016/j.scs.2021.103431
    [43] C. H. Wang, N. Chen, A geographically weighted regression approach to investigating the spatially varied built-environment effects on community opportunity, J. Transp. Geogr., 62 (2017), 136–147. https://doi.org/10.1016/j.jtrangeo.2017.05.011 doi: 10.1016/j.jtrangeo.2017.05.011
    [44] H. Yu, Z. R. Peng, Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted poisson regression, J. Transp. Geogr., 75 (2019), 147–163. https://doi.org/10.1016/j.jtrangeo.2019.01.004 doi: 10.1016/j.jtrangeo.2019.01.004
    [45] Y. Liu, C. Lyu, Y. Zhang, Z. Liu, W. Yu, X. Qu, Deeptsp: Deep traffic state prediction model based on large-scale empirical data, Commun. Transp. Res., 1 (2021). https://doi.org/10.1016/j.commtr.2021.100012 doi: 10.1016/j.commtr.2021.100012
    [46] B. Li, Z. Cai, L. Jiang, S. Su, X. Huang, Exploring urban taxi ridership and local associated factors using gps data and geographically weighted regression, Cities, 87 (2019), 68–86. https://doi.org/10.1016/j.cities.2018.12.033 doi: 10.1016/j.cities.2018.12.033
    [47] E. Chen, Z. Ye, C. Wang, W. Zhang, Discovering the spatio-temporal impacts of built environment on metro ridership using smart card data, Cities, 95 (2019), 14. https://doi.org/10.1016/j.cities.2019.05.028 doi: 10.1016/j.cities.2019.05.028
    [48] B. Mirbaha, M. Saffarzadeh, S. A. Beheshty, M. Aniran, M. Yazdani, B. Shirini, Predicting average vehicle speed in two lane highways considering weather condition and traffic characteristics, IOP Conf. Ser.: Mater. Sci. Eng., 245 (2017), 042024. https://doi.org/10.1088/1757-899x/245/4/042024 doi: 10.1088/1757-899x/245/4/042024
    [49] X. Zhao, X. Li, Y. Chen, H. Li, Y. Ding, Evaluation of fog warning system on driving under heavy fog condition based on driving simulator, J. Intell. Connected Veh., 4 (2021), 41–51. https://doi.org/10.1108/jicv-11-2020-0012 doi: 10.1108/jicv-11-2020-0012
    [50] M. Zolali, B. Mirbaha, Analysing the effect of foggy weather on drivers' speed choice in two-lane highways, Proc. Inst. Civ. Eng. Transp., 173 (2020), 171–183. https://doi.org/10.1680/jtran.17.00140 doi: 10.1680/jtran.17.00140
    [51] F. J. Camacho, A. García, E. Belda, Analysis of impact of adverse weather on freeway free-flow speed in Spain, Transp. Res. Rec., 2169 (2010), 150–159. https://doi.org/10.3141/2169-16 doi: 10.3141/2169-16
    [52] W. Lise, R. S. J. Tol, Impact of climate on tourist demand, Clim. Change, 55 (2002), 429–449. https://doi.org/10.1023/A:1020728021446 doi: 10.1023/A:1020728021446
    [53] N. A. Termida, Y. O. Susilo, J. P. Franklin, C. Liu, Understanding seasonal variation in individual's activity participation and trip generation by using four consecutive two-week travel diary, Travel Behav. Soc., 12 (2018), 52–63. https://doi.org/10.1016/j.tbs.2017.12.006 doi: 10.1016/j.tbs.2017.12.006
    [54] Y. Yan, H. Ju, S. Zhang, W. Jiang, Spatiotemporal patterns and driving forces of urban expansion in coastal areas: A study on urban agglomeration in the pearl river delta, China, Sustainability, 12 (2019). https://doi.org/10.3390/su12010191 doi: 10.3390/su12010191
    [55] F. Bella, A. Calvi, F. D'Amico, Analysis of driver speeds under night driving conditions using a driving simulator, J. Saf. Res., 49 (2014), 45–52. https://doi.org/10.1016/j.jsr.2014.02.007 doi: 10.1016/j.jsr.2014.02.007
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1554) PDF downloads(93) Cited by(1)

Article outline

Figures and Tables

Figures(8)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog