For an abelian group $ G $ and a positive integer $ n $, we set $ M(G, n) $ as a Moore space of type $ (G, n) $. In this paper, for a prime number $ p $, we are interested in the structure of homotopy comultiplications on the localization $ L_{(p)} $ of a wedge $ L: = \mathbb S^m \vee M(G, n) $ of the homotopy spheres and the Moore spaces for $ 2 \leq m < n $. We also provide a list of examples to examine the phenomena of homotopy comultiplications on $ L_{(p)} $.
Citation: Dae-Woong Lee. Homotopy comultiplications on the localization of a wedge of spheres and Moore spaces[J]. Electronic Research Archive, 2022, 30(6): 2033-2053. doi: 10.3934/era.2022103
For an abelian group $ G $ and a positive integer $ n $, we set $ M(G, n) $ as a Moore space of type $ (G, n) $. In this paper, for a prime number $ p $, we are interested in the structure of homotopy comultiplications on the localization $ L_{(p)} $ of a wedge $ L: = \mathbb S^m \vee M(G, n) $ of the homotopy spheres and the Moore spaces for $ 2 \leq m < n $. We also provide a list of examples to examine the phenomena of homotopy comultiplications on $ L_{(p)} $.
[1] | H. Hopf, Eine verallgemeinerung der euler-poincaréschen formel, in Selecta Heinz Hopf, (1964), 5–13. https://doi.org/10.1007/978-3-662-25046-4_2 |
[2] | M. Arkowitz, Introduction to Homotopy Theory, Springer, New York, 2011. https://doi.org/10.1007/978-1-4419-7329-0_1 |
[3] | P. D. Mitchener, B. Norouzizadeh, T. Schick, Coarse homotopy groups, Math. Nachr., 293 (2020), 1515–1533. https://doi.org/10.1002/mana.201800523 doi: 10.1002/mana.201800523 |
[4] | G. Boyde, Bounding size of homotopy groups of spheres, Proc. Edinburgh Math. Soc., 63 (2020), 1100–1105. https://doi.org/10.1017/S001309152000036X doi: 10.1017/S001309152000036X |
[5] | M. Golasiński, D. L. Gonçalves, P. Wong, Exponents of $[\Omega (\Bbb S^{r+1}), \Omega(Y)]$, in Algebraic Topology and Related Topics, (2019), 103–122. https://doi.org/10.1007/978-981-13-5742-8_7 |
[6] | I. Cinar, O. Ege, I. Karaca, The digital smash product, Electron. Res. Arch., 28 (2020), 459–469. https://doi.org/10.3934/era.2020026 doi: 10.3934/era.2020026 |
[7] | M. Arkowitz, D. W. Lee, Properties of comultiplications on a wedge of spheres, Topol. Appl., 157 (2010), 1607–1621. https://doi.org/10.1016/j.topol.2010.03.001 doi: 10.1016/j.topol.2010.03.001 |
[8] | M. Arkowitz, D. W. Lee, Comultiplications on a wedge of two spheres, Sci. China Math., 54 (2011), 9–22. https://doi.org/10.1007/s11425-010-4061-0 doi: 10.1007/s11425-010-4061-0 |
[9] | T. Ganea, Cogroups and suspensions, Inventiones Math., 9 (1970), 185–197. https://doi.org/10.1007/BF01404323 doi: 10.1007/BF01404323 |
[10] | M. Arkowitz, M. Gutierrez, Comultiplications on free groups and wedge of circles, Trans. Am. Math. Soc., 350 (1998), 1663–1680. https://doi.org/10.1090/S0002-9947-98-01916-3 doi: 10.1090/S0002-9947-98-01916-3 |
[11] | M. Golasiński, D. Gonçalves, Comultiplications of the wedge of two Moore spaces, Colloq. Math., 76 (1998), 229–242. https://doi.org/10.4064/cm-76-2-229-242 doi: 10.4064/cm-76-2-229-242 |
[12] | M. Arkowitz, G. Lupton, Rational co-H-spaces, Comment. Math. Helvetici, 66 (1991), 79–108. https://doi.org/10.1007/BF02566637 doi: 10.1007/BF02566637 |
[13] | M. Arkowitz, G. Lupton, Equivalence classes of homotopy-associative comultiplications of finite complexes, J. Pure Appl. Algebra, 102 (1995), 109–136. https://doi.org/10.1016/0022-4049(94)00074-S doi: 10.1016/0022-4049(94)00074-S |
[14] | C. M. Naylor, On the number of co-multiplications of a suspension, Illinois J. Math., 12 (1968), 620–622. https://doi.org/10.1215/ijm/1256053964 doi: 10.1215/ijm/1256053964 |
[15] | O. Ege, I. Karaca, Digital H-spaces, in Proceeding of 3rd International Symposium on Computing in Science and Engineering, (2013), 133–138. Available from: https://www.researchgate.net/publication/258837595_DIGITAL_H-SPACES. |
[16] | O. Ege, I. Karaca, Some properties of digital H-spaces, Turk. J. Electr. Eng. Comput. Sci., 24 (2016), 1930–1941. https://doi.org/10.3906/elk-1311-69 doi: 10.3906/elk-1311-69 |
[17] | O. Ege, I. Karaca, Digital co-Hopf spaces, Filomat, 34 (2020), 2705–2711. https://doi.org/10.2298/FIL2008705E doi: 10.2298/FIL2008705E |
[18] | D. W. Lee, Digital singular homology groups of digital images, Far East J. Math. Sci., 88 (2014), 39–63. Available from: https://www.researchgate.net/publication/287297331_Digital_singular_homology_groups_of_digital_images. |
[19] | D. W. Lee, On the digitally quasi comultiplications of digital images, Filomat, 31 (2017), 1875–1892. https://doi.org/10.2298/FIL1707875L doi: 10.2298/FIL1707875L |
[20] | D. W. Lee, Near-rings on digital Hopf groups, Appl. Algebra Eng. Commun. Comput., 29 (2018), 261–282. https://doi.org/10.1007/s00200-017-0341-z doi: 10.1007/s00200-017-0341-z |
[21] | D. W. Lee, Digital H-spaces and actions in the pointed digital homotopy category, Appl. Algebra Eng. Commun. Comput., 31 (2020), 149–169. https://doi.org/10.1007/s00200-019-00398-8 doi: 10.1007/s00200-019-00398-8 |
[22] | S. Lee, Y. Kim, J. E. Lim, D. W. Lee, On the digital Pontryagin algebras, Symmetry, 12 (2020), 875. https://doi.org/10.3390/sym12060875 doi: 10.3390/sym12060875 |
[23] | J. P. C. Greenlees, D. W. Lee, The representation-ring-graded local cohomology spectral sequence for $BP\Bbb R\langle 3 \rangle$, Commun. Algebra, 47 (2018), 2396–2411. https://doi.org/10.1080/00927872.2018.1427253 doi: 10.1080/00927872.2018.1427253 |
[24] | M. Arkowitz, Co-H-spaces, in Handbook of Algebraic Topology, North-Holland, New York, 1995, 1143–1173. https://doi.org/10.1016/B978-044481779-2/50024-9 |
[25] | M. Arkowitz, Binary operations for homotopy groups with coefficients, Sci. China Math., 61 (2018), 1543–1552. https://doi.org/10.1007/s11425-016-9141-6 doi: 10.1007/s11425-016-9141-6 |
[26] | D. W. Lee, Phantom maps and the Gray index, Topol. Appl., 138 (2004), 265–275. https://doi.org/10.1016/j.topol.2003.02.001 doi: 10.1016/j.topol.2003.02.001 |
[27] | D. W. Lee, On the same $n$-type conjecture for the suspension of the infinite complex projective space, Proc. Am. Math. Soc., 137 (2009), 1161–1168. https://doi.org/10.1090/S0002-9939-08-09666-4 doi: 10.1090/S0002-9939-08-09666-4 |
[28] | D. W. Lee, On the same $n$-type structure for the suspension of the Eilenberg-MacLane spaces, J. Pure Appl. Algebra, 214 (2010), 2027–2032. https://doi.org/10.1016/j.jpaa.2010.02.007 doi: 10.1016/j.jpaa.2010.02.007 |
[29] | D. W. Lee, On the generalized same $N$-type conjecture, Math. Proc. Cambridge Philos. Soc. 157 (2014), 329–344. https://doi.org/10.1017/S0305004114000346 doi: 10.1017/S0305004114000346 |
[30] | D. W. Lee, On the same $N$-types for the wedges of the Eilenberg-MacLane spaces, Chin. Ann. Math. Ser. B, 37 (2016), 951–962. https://doi.org/10.1007/s11401-016-1037-6 doi: 10.1007/s11401-016-1037-6 |
[31] | D. P. Sullivan, Geometric Topology: Localization, Periodicity and Galois Symmetry, 2005. Available from: https://www.maths.ed.ac.uk/v1ranick/surgery/gtop.pdf. |
[32] | P. Hilton, G. Mislin, J. Roitberg, Localization of Nilpotent Groups and Spaces, North Holland, 1975. |
[33] | J. P. May, K. Ponto, More Concise Algebraic Topology, Localization, Completion, and Model Categories, University of Chicago Press, Chicago, IL, 2012. |
[34] | M. Arkowitz, M. Golasiński, Co-H-structures on Moore spaces of type $(G, 2)$, Can. J. Math., 46 (1994), 673–686. https://doi.org/10.4153/CJM-1994-037-0 doi: 10.4153/CJM-1994-037-0 |
[35] | H. Scheerer, On rationalized H- and co-H-spaces with an appendix on decomposable H- and co-H-spaces, Manuscripta Math., 51 (1985), 63–87. https://doi.org/10.1007/BF01168347 doi: 10.1007/BF01168347 |
[36] | A. Zabrodsky, Homotopy associativity and finite CW-complexes, Topology, 9 (1970), 121–128. https://doi.org/10.1016/0040-9383(70)90032-7 doi: 10.1016/0040-9383(70)90032-7 |
[37] | D. W. Lee, Comultiplication structures for a wedge of spheres, Filomat, 30 (2016), 3525–3546. https://doi.org/10.2298/FIL1613525L doi: 10.2298/FIL1613525L |
[38] | D. W. Lee, S. Lee, Homotopy comultiplications on the $k$-fold wedge of spheres, Topol. Appl., 254 (2019), 145–170. https://doi.org/10.1016/j.topol.2019.01.001 doi: 10.1016/j.topol.2019.01.001 |
[39] | P. J. Hilton, On the homotopy groups of the union of spheres, J. London Math. Soc., 30 (1955), 154–172. https://doi.org/10.1112/jlms/s1-30.2.154 doi: 10.1112/jlms/s1-30.2.154 |
[40] | J. W. Milnor, On the construction FK, in Algebraic Topology: A Student's Guide, Cambridge University Press, (1972), 118–136. https://doi.org/10.1017/CBO9780511662584.011 |
[41] | A. K. Bousfield, D. M. Kan, Homotopy Limits, Completions and Localizations, 1972. https://doi.org/10.1007/978-3-540-38117-4 |
[42] | D. W. Lee, Comultiplications on the localized spheres and Moore spaces, Mathematics, 8 (2020), 86. https://doi.org/10.3390/math8010086 doi: 10.3390/math8010086 |
[43] | G. W. Whitehead, Elements of Homotopy Theory, Springer-Verlag, 1978. https://doi.org/10.1007/978-1-4612-6318-0 |
[44] | P. J. Hilton, Homotopy Theory and Duality, Gordon and Breach, New York, 1965. |
[45] | M. A. Arkowitz, The generalized Whitehead product, Pacific J. Math., 12 (1962), 7–23. https://doi.org/10.2140/pjm.1962.12.7 doi: 10.2140/pjm.1962.12.7 |
[46] | H. Toda, Composition Methods in Homotopy Groups of Spheres, Princeton University Press, Princeton, 1962. |