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Abstract: For an abelian group G and a positive integer n, we set M(G, n) as a Moore space of
type (G, n). In this paper, for a prime number p, we are interested in the structure of homotopy
comultiplications on the localization L(p) of a wedge L := Sm ∨ M(G, n) of the homotopy spheres and
the Moore spaces for 2 ≤ m < n. We also provide a list of examples to examine the phenomena of
homotopy comultiplications on L(p).
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1. Introduction

1.1. An H-space and a co-H-space

An H-space (or a Hopf space) was named after Heinz Hopf [1] as the Eckmann-Hilton dual of a
co-H-space (or a co-Hopf space); it is a pointed topological space with a homotopy multiplication for
an H-space and a homotopy comultiplication for a co-H-space [2]. An H-space with a multiplication
and a co-H-space with a comultiplication play a pivotal role in classical homotopy theory; see [3] for
the relationship between coarse homotopy groups and classical homotopy groups, [4] for the bounding
size of homotopy groups of the odd dimensional spheres, [5] for the exponents of the total Cohen
groups [J(Sr),Ω(Y)], and [6] for digital smash products.

In general, there are many homotopy comultiplications on a co-H-space X with many distinctive
properties, therefore, the calculation of the cardinality of the set C(X) of homotopy comultiplications
as a subset of the set (or group) [X, X ∨ X] of homotopy classes of base point preserving continuous
maps from a co-H-space X to the wedge product X ∨ X is complicated; see [7–9].

An exploration of homotopy comultiplications on the wedge product of circles and the wedge sum
of two Moore spaces was conducted using the methods of group theory in [10] and homological alge-

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2022103


2034

bra in [11], respectively; see [12, 13] for some rational results for finite 1-connected co-H-spaces, [14]
for the cardinality of comultiplications on a suspension of a space, and [15–22] for digital versions
of H-spaces and co-H-spaces. From the equivariant homotopy theoretic viewpoint, an explicit ex-
pression of the behavior of the local cohomology spectral sequence graded on the representation ring
was developed with many pictures in [23]. The study of homotopy comultiplications and the same n-
type structures of co-H-spaces with standard comultiplications has been developed by several authors;
see [24–30].

1.2. Localization

The localization of a space or a spectrum at some prime numbers is a homotopical analogue of the
notion of the localization of a commutative ring or a module, specifically the ring Z of integers at a
set of prime numbers. In addition, a nilpotent CW-complex can be topologically (or homotopically)
localized at a prime similar to the localization for a commutative ring at a prime.

The concept of localization of a nilpotent CW-space in homotopy theory was explicitly formulated
by Sullivan [31]. In fact, there are many types of localization theories in mathematics and the sciences
such as localization of a category, localization of a ring and a module, localization of a topological
space and so on; see [32] for the standard reference. Regarding non-nilpotent spaces, there are multiple
inequivalent definitions of localization [33].

1.3. Sphere and Moore space

The m-sphere Sm, m ≥ 2 is known to have a unique comultiplication ϕ : Sm → Sm ∨ Sm and
ϕ = i1 + i2, where i1, i2 : Sm → Sm ∨ Sm are the inclusion maps and + denotes the sum of two maps
coming from the standard (or suspension) comultiplication ϕ on Sm; see [24, Proposition 3.1].

Given an abelian group G and an integer n ≥ 1, a CW-complex X is uniquely determined up to
homotopy such that the reduced homology satisfies the following:

H̃m(X) =

G if m = n;
0 if m , n.

The CW-space having the same homotopy type of X is said to be a Moore space M(G, n) of type
(G, n). A Moore space is the homology analogue of the Eilenberg-MacLane space of homotopy theory;
they are dual notions with one another.

In general, detecting the cardinality of the set C(X) ⊆ [X; X ∨ X] of all homotopy classes of homo-
topy comultiplications on X is difficult. As a particular example, it was shown in [34] that the set of
homotopy comultiplications C(M(G, 2)) is in one-one correspondence with the group Ext(G,G ⊗ G)
set-theoretically, and that if n ≥ 3, then C(M(G, n)) is the set consisting of only one element as the
homotopy class of the standard comultiplication; that is, all homotopy comultiplications on the Moore
space M(G, n) are homotopic.

1.4. Goal and organization

Regarding the aforementioned statements, there is a question: How can the structure of homotopy
comultiplications of the localization of a wedge of the sphere and the Moore space be developed? In
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the current study, we provide an answer to this question and, in particular, we examine the structure of
the set of all comultiplications up to homotopy on the localization L(p) of a wedge L := Sm ∨ M(G, n)
of the homotopy spheres and the Moore spaces, where G is an abelian group and 2 ≤ m < n.

The paper is organized as follows: In Section 2, we describe the pivotal ideas of homotopy comul-
tiplications and the localized counterparts of Hilton-Milnor formulae. In Section 3, we explore the
fundamental concepts of the types of homotopy comultiplications on the localization L(p) of a wedge
L := Sm ∨ M(G, n) of the homotopy spheres and the Moore spaces of type (G, n). In Section 4, we
provide examples for determining the homotopy phenomena of homotopy comultiplications on L(p)

for a prime p. In this article, we mostly use ‘'’ and ‘�’ for a homotopy relation and an isomorphism
between homotopy groups, respectively.

2. Preliminaries

A pair (X, ψ) consisting of a pointed space X := (X, x0) and a base point preserving continuous map
ψ : X → X ∨ X is called a co-H-space if π1 ◦ ψ ' 1X and π2 ◦ ψ ' 1X, where 1X is the identity map
of X and π1, π2 : X ∨ X → X are the first and second projections, respectively. In the current case,
the map ψ : X → X ∨ X is called a homotopy comultiplication on X. A co-H-space with a homotopy
comultiplication is an Eckmann-Hilton dual notion of an H-space with a homotopy multiplication;
see [9], [35] and [36]. The pair (X, ψ) is known to be a co-H-space if the composite

i ◦ ψ : X
ψ // X ∨ X �

� i // X × X

is homotopic to the diagonal map ∆ : X → X × X.
Let X := Sm1 ∨ Sm2 ∨ · · · ∨ Smk be a wedge of spheres, and let the canonical inclusion maps α j :

Sm j → X, j = 1, 2, . . . , k be the basic Whitehead products of weight n = 1 which are ordered by
α1 < α2 < · · · < αk. Using mathematical induction on n as a positive integer, we can provide a
concrete definition of the basic Whitehead products w1,w2, . . . ,ws, . . . of weight n ≥ 2 and the heights
hws of the basic Whitehead products ws, s = 1, 2, . . .; see [7, 8, 37, 38] for more details.

Hilton’s formula [39] is shown as follows.

Theorem 2.1. Let hws , s = 1, 2, 3, . . . be the heights of the basic Whitehead products

ws : Shws → X, s = 1, 2, 3, . . .

of a wedge of spheres X = Sm1 ∨ Sm2 ∨ · · · ∨ Smk . Then, for all n, we have

πn(X) �
∞⊕

s=1

πn(Shws ). (2.1)

Here, the isomorphism ξ :
⊕∞

s=1 πn(Shws ) → πn(X) is given by the homomorphism between homotopy
groups

ξ|πn(Shws ) = ws∗ : πn(Shws )→ πn(X)

induced by the basic Whitehead products ws, s = 1, 2, 3, . . ..
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We can see that, for each positive integer n, the direct sum in (2.1) is finite because the heights hws

of the basic Whitehead products ws, s = 1, 2, 3, . . . go to infinity as the positive integer ‘s’ becomes
large enough that the nth homotopy groups are trivial; that is,

πn(Shws ) = 0

for a sufficiently large number of positive integers ‘s’.
Hilton’s formula was generalized by Milnor [40] as follows:

Theorem 2.2. If A and B are connected CW-complexes, then there is a homotopy equivalence

ΩΣ(A ∨ B) ' ΩΣA ×ΩΣ
(∨

i≥0

A∧i ∧ B
)
. (2.2)

Proof. See [40] for more details.

In commutative algebra and algebraic geometry, a localization is a formal method for introduction
of the denominators to a given ring or module as the field of fractions. In topology, the localization
of a nilpotent CW-space was introduced by Sullivan [31] who stated that a nilpotent CW-complex
can be topologically (or homotopically) localized at a prime similar to the localization of a ring or an
R-module at a prime, where R is a commutative ring with identity.

Let P be a collection of prime numbers which may be the empty set φ. A group G is then said to be
a P-local group if the rth power map

r : G → G

defined by

r(g) = gr = g × g × · · · × g︸            ︷︷            ︸
r−times

is a bijection as sets for all r ∈ Pc, the complement of P. In the topological sense, a nilpotent CW-
complex X is said to be P-local if the nth homotopy group πn(X), n ≥ 1, is a P-local group; see [31,41]
for the localization of a nilpotent CW-space similar to the localization of a ring at a prime number.

As usual, the localization of a nilpotent CW-space X at a collection P of prime numbers is denoted
as XP, and similarly, as a special case P = {p} (resp. P = φ), the localization (resp. the rationalization)
of a nilpotent CW-space X at a prime number p (resp. the empty set φ) is denoted as X(p) (resp. XQ).

3. Homotopy comultiplications on localizations

In this section, we examine the structure of all the homotopy comultiplications of the localization
L(p) of a wedge L := Sm ∨ M(G, n) of the homotopy spheres and the Moore spaces, where G is an
abelian group and 2 ≤ m < n. It is noted that the localization of a nilpotent CW-space is uniquely
determined up to homotopy using the classical Whitehead theorem.
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3.1. Localized Hilton-Milnor formulae

Let X be a nilpotent CW-space and X(p) the localization of X at a prime number p. It is well known
that if f : X → Y is a base point preserving continuous map between nilpotent CW-spaces, then there
exists a unique map

f(p) : X(p) → Y(p)

such that the following diagram

X

l
��

f // Y

l
��

X(p)
f(p) // Y(p)

is commutative in the homotopy category of nilpotent CW-spaces, where l : X → X(p) is a p-localizing
map. Similarly for the category of nilpotent groups and group homomorphisms.

We can see that the localization of any simply connected co-H-space with a homotopy comultipli-
cation preserves the structure of the co-H-space with the localization of a homotopy comultiplication
in the category of simply connected CW-spaces; that is, if X is a simply connected co-H-space, then
the localization X(p) of X at a prime p is also a simply connected co-H-space.

We examine the localized counterparts of Hilton-Milnor formulae described in Theorems 2.1 and
2.2 of Section 2 as follows; see also [42, Theorem 2].

Proposition 3.1. Let X(p) be the localization of the wedge sum of spheres X := Sm1 ∨ Sm2 ∨ · · · ∨ Smk at
a prime p. Then, for all n, we have an isomorphism

πn(X(p)) �
∞⊕

s=1

πn(Shws
(p) ), (3.1)

where hws is the height of the basic Whitehead product ws for all s ≥ 1. More generally,

[W, X(p)] �
∞⊕

s=1

[W,Shws
(p) ] (3.2)

for any nilpotent CW-complex W.

Proof. It should be noted that the localization preserves the wedge product in the pointed homotopy
category of pointed nilpotent CW-complexes in the following sense:

(X ∨ Y)(p) ' X(p) ∨ Y(p).

Because the localizations of abelian groups commute with finite direct sums, by Theorem 2.1, we
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have the first Eq (3.1) as follows:

πn(X(p)) � πn(Sm1 ∨ Sm2 ∨ · · · ∨ Smk)(p)

� πn(Sm1 ∨ Sm2 ∨ · · · ∨ Smk) ⊗ Z(p)

�
( ∞⊕

s=1

πn(Shws )
)
⊗ Z(p)

�
∞⊕

s=1

(
πn(Shws ) ⊗ Z(p)

)
�

∞⊕
s=1

πn(Shws
(p) ),

where Z(p) is the localization of the ring Z of integers at the prime p.
Milnor’s Theorem 2.2 asserts that the second Eq (3.2) holds.

The localization Z(p) of the ring Z of integers at the singleton set {p} should not conflict with the
other common usage Zp = Z/pZ, the group of integers modulo p, with the similar notation.

3.2. Localization of a wedge of spheres and Moore spaces

Let G be an abelian group and n a positive integer. As mentioned previously, a Moore space M(G, n)
is uniquely determined up to homotopy; that is, any two Moore spaces of type (G, n) have the same
homotopy type. We note that the Moore space M(G, n) is simply-connected for n ≥ 2. We can see
that the Moore space M(G, n) has only one homotopy comultiplication as the standard (or suspension)
comultiplication for n ≥ 3.

Explicitly, if G = Zp, the group of integers modulo p, then the Moore space M(Zp, n) is a CW-
complex with a cell structure as follows:

M(Zp, n) ' Sn ∪p en+1,

where p : Sn → Sn is the degree p-map; that is, M(Zp, n) is the sphere Sn with an (n + 1)-cell en+1

attached by the map p : Sn → Sn of degree p. More generally, the Moore space M(T, n) can also be
constructed for a finite abelian group

T := Zp1
s1 ⊕ Zp2

s2 ⊕ · · · ⊕ Zpk
sk , (3.3)

where

• p1, p2, . . . , pk are (not necessarily distinct) prime numbers;
• s1, s2, . . . , sk are (not necessarily distinct) positive integers; and
• Zpi

si is the group of integers modulo pi
si for i = 1, 2, . . . , k.

The fundamental theorem of a finitely generated abelian group G asserts that it can be decomposed
as

G � F ⊕ T, (3.4)

where F is a free abelian group of finite rank r as a free Z-module, and T is a torsion subgroup of G as
in (3.3).

Notation. The following notation is used throughout this paper.
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• G is a finitely generated abelian group decomposed as in (3.4); that is,

G � Z ⊕ Z ⊕ · · · ⊕ Z︸             ︷︷             ︸
a free abelian group F of rank r

⊕Zp1
s1 ⊕ Zp2

s2 ⊕ · · · ⊕ Zpk
sk︸                          ︷︷                          ︸

a finite subgroup T

. (3.5)

• L := Sm ∨ M(G, n), where 2 ≤ m < n.
• α : Sm → L is the map sending x to (x, y0), where y0 is the base point of M(G, n).
• β : M(G, n)→ L is the map sending y to (x0, y), where x0 is the base point of Sm.
• j1 : Sm → Sm ∨ Sm is the map sending s to (s, s0), where s0 is the base point of Sm.
• j2 : Sm → Sm ∨ Sm is the map sending s to (s0, s), where s0 is the base point of Sm.
• ι1 : L→ L ∨ L are the map sending x to (x, x0), where x0 is the base point of L.
• ι2 : L→ L ∨ L are the map sending x to (x0, x), where x0 is the base point of L.
• π1, π2 : L ∨ L→ L are the first and second projections, respectively.
• p is a prime number.
• X(p) indicates the localization of a nilpotent CW-space (or a simply connected CW-space) X.
• f(p) : X(p) → Y(p) is the p-localization of a map f : X → Y between connected nilpotent CW-

spaces (or simply connected CW-spaces).
• C(L) ⊆ [L; L ∨ L] is the set of all homotopy classes of homotopy comultiplications on a simply

connected CW-space L := Sm ∨ M(G, n), or its localizations.

We now determine the homotopy classes of all the homotopy comultiplications on the p-localization
L(p) := Sm

(p) ∨ M(G, n)(p) of L at a prime p as follows.

Proposition 3.2. Let G = F ⊕ T be a finitely generated abelian group decomposed as in (3.5), and let
L(p) := Sm

(p) ∨M(G, n)(p) with 2 ≤ m < n. If p and pi are relatively prime for all i = 1, 2, . . . , k, then any
homotopy comultiplication

ψ : L(p) → L(p) ∨ L(p)

has the following typeψ ◦ α(p) ' ι1(p) ◦ α(p) + ι2(p) ◦ α(p),

ψ ◦ β(p)|M(Zt ,n)(p) ' ι1(p) ◦ β(p)|M(Zt ,n)(p) + ι2(p) ◦ β(p)|M(Zt ,n)(p) + Qt
(3.6)

for some homotopy class
Qt : M(Zt, n)(p) → L(p) ∨ L(p)

such that
π1

(p) ◦ Qt ' 0 ' π2
(p) ◦ Qt

for all t = 1, 2, . . . , r. Here,

• the first addition in (3.6) is the homotopy addition in the homotopy group;
• the second and third additions in (3.6) are originated from the suspension structures on the Moore

spaces M(Zt, n) ' ΣM(Zt, n − 1) with Zt = Z for all t = 1, 2, . . . , r;
• π1

(p), π
1
(p) : L(p) ∨ L(p) → L(p) are the first and second projections which are the localizations of the

first and second projections π1, π2 : L ∨ L→ L, respectively; and
• r is the rank of the free Z-module F.
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Proof. It should be noted that the Moore space M(Zpi
si , n) is the mapping cone C fi of the map

fi = pi
si : Sn −→ Sn

of degree pi
si for each i = 1, 2, . . . , k; that is, the Moore space M(Zpi

si , n) can be obtained as the
homotopy pushout:

Sn fi //

��

Sn

��
en+1 // C fi ' M(Zpi

si , n),

where the vertical maps are inclusions and en+1 is the unit ball in dimension n + 1 as the (n + 1)-cell.
Therefore, the cell structure of M(Zpi

si , n) has the form of

M(Zpi
si , n) ' Sn ∪pi

si en+1

for each i = 1, 2, . . . , k. More generally, the Moore space M(G, n) has the CW-decomposition as
follows:

M(G, n) ' (Sn ∨ Sn ∨ · · · ∨ Sn)︸                   ︷︷                   ︸
r−times

∨(Sn ∪p1
s1 en+1 ∨ Sn ∪p2

s2 en+1 ∨ · · · ∨ Sn ∪pk
sk en+1).

Because (p, pi) = 1 for all i = 1, 2, . . . , k, we observe that the p-localizing map

( fi)(p) = (pi
si)(p) : Sn

(p) −→ S
n
(p)

is invertible for all i = 1, 2, . . . , k; that is, it has the unique inverse map. Therefore, the p-localization
M(Zpi

si , n)(p) of the Moore space has the homotopy type of a one point set for all i = 1, 2, . . . , k. Indeed,
we have

M(Zpi
si , n)(p) ' M(Zpi

si ⊗ Z(p), n) ' a contractible space

for all i = 1, 2, . . . , k. Because the localization of a connected nilpotent CW-space preserves the wedge
product, we have

L(p) ' (Sm ∨ M(G, n))(p)

' Sm
(p) ∨ M(G, n)(p)

' Sm
(p) ∨ M(F ⊕ T, n)(p)

' Sm
(p) ∨ M(F, n)(p) ∨ M(T, n)(p)

' Sm
(p) ∨ (Sn

(p) ∨ S
n
(p) ∨ · · · ∨ S

n
(p))︸                        ︷︷                        ︸

r−times

∨(the one point space up to homotopy).

Because the localization L(p) of L at a prime p has the CW-structure, the Cellular Approximation
Theorem [43, page 77] asserts that the base point preserving continuous map

ψ : L(p) → L(p) ∨ L(p)
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is homotopic to a cellular map
ψ(c) : L(p) → L(p) ∨ L(p);

that is,
ψ ' ψ(c).

Because the m-sphere Sm,m ≥ 2 has the unique comultiplication structure as the standard (or sus-
pension) comultiplication, we can see that the cellular map ψ(c) and the convolution product induce a
unique homotopy comultiplication

ϕ = j1
(p) + j2

(p) : Sm
(p) → S

m
(p) ∨ S

m
(p)

on the p-local m-sphere Sm
(p), where the addition + is the suspension addition originated from the

suspension of the the p-local (m − 1)-sphere; that is,

Sm
(p) ' (ΣSm−1)(p) ' Σ(Sm−1

(p) ).

Therefore, the following commutative diagram

Sm
(p)

α(p)

��

ϕ // Sm
(p) ∨ S

m
(p)

α(p)∨α(p)
��

L(p)
ψ(c) // L(p) ∨ L(p)

asserts that

ψ ◦ α(p) ' ψ(c) ◦ α(p) ' (α(p) ∨ α(p)) ◦ ϕ ' (α(p) ∨ α(p)) ◦ ( j1
(p) + j2

(p)) ' ι
1
(p) ◦ α(p) + ι2(p) ◦ α(p).

This proves the first line of (3.6).
Using the suspension structure on the p-localization

M(G, n)(p) ' (ΣM(G, n − 1))(p) ' Σ(M(G, n − 1))(p) (3.7)

of the Moore space M(G, n), we define a homotopy class

Qt : M(Zt, n)(p) → L(p) ∨ L(p)

by
Qt = ψ ◦ β(p)|M(Zt ,n)(p) − ι

1
(p) ◦ β(p)|M(Zt ,n)(p) − ι

2
(p) ◦ β(p)|M(Zt ,n)(p) ,

where Zt = Z for all t = 1, 2, . . . , r, and the binary operations are originated from the suspension
structure on the p-localization M(Zt, n)(p) of the Moore space as in (3.7) for all t = 1, 2, . . . , r. Note
that the set [M(Z, n)(p), L(p)∨L(p)] of homotopy classes of continuous maps from M(Z, n)(p) to L(p)∨L(p)

under the binary operation induced by the suspension comultiplication is an abelian group. We now
obtain

π1
(p) ◦ Qt = π1

(p) ◦ ψ ◦ β(p)|M(Zt ,n)(p) − π
1
(p) ◦ ι

1
(p) ◦ β(p)|M(Zt ,n)(p)

−π1
(p) ◦ ι

2
(p) ◦ β(p)|M(Zt ,n)(p)

= β(p)|M(Zt ,n)(p) − β(p)|M(Zt ,n)(p) − 0
= 0

up to homotopy for all t = 1, 2, . . . , r and, similarly, π2
(p)◦Qt is also the identity element as the homotopy

class in [M(Zt, n)(p), L(p)] for all t = 1, 2, . . . , r, as required.

Electronic Research Archive Volume 30, Issue 6, 2033–2053.



2042

Remark 3.3. The relation between the wedge product of pointed CW-spaces and the direct sum
of homotopy groups demonstrates that the homotopy element Qt : M(Zt, n)(p) → L(p) ∨ L(p) of
[M(Zt, n)(p), L(p) ∨ L(p)] for all t = 1, 2, . . . , r in (3.6) can lead to the homotopy class expressed as

Q = (Q1,Q2, . . . ,Qt, . . . ,Qr) : M(G, n)(p) → L(p) ∨ L(p),

where Zt = Z for all t = 1, 2, . . . , r. In addition, if the image of Q : M(G, n)(p) → L(p) ∨ L(p) under the
homomorphisms

(π1
(p))], (π

2
(p))] : [M(G, n)(p), L(p) ∨ L(p)]→ [M(G, n)(p), L(p)]

induced by the the first and second projections π1
(p), π

2
(p) : L(p)∨ L(p) → L(p) is the identity element, then

we can see that the map
ψ : L(p) → L(p) ∨ L(p)

given by the Eq (3.6) is a homotopy comultiplication on L(p).

Definition 3.4. The homotopy class

Q = (Q1,Q2, . . . ,Qt, . . . ,Qr) : M(G, n)(p) → L(p) ∨ L(p)

in Proposition 3.2 and Remark 3.3 is said to be a homotopy perturbation of the homotopy comultipli-
cation ψ : L(p) → L(p) ∨ L(p).

Lemma 3.5. Let Q = (Q1,Q2, . . . ,Qt, . . . ,Qr) be a homotopy perturbation of the homotopy comulti-
plication ψ : L(p) → L(p) ∨ L(p) in Proposition 3.2 such that

π1
(p)]

(Q) = 0 = π2
(p)]

(Q).

We can then construct a unique homotopy element R of [M(G, n)(p),S
m
(p) ∨ S

m
(p)] satisfying

Q ' (α(p) ∨ α(p)) ◦ R

and
q1

(p) ◦ R ' 0 ' q2
(p) ◦ R,

where q1
(p), q

2
(p) : Sm

(p) ∨ S
m
(p) → S

m
(p) are the first and second projections, respectively.

Proof. The cofibration sequence is considered as follows:

Sm
(p) ∨ S

m
(p)

α(p)∨α(p) // L(p) ∨ L(p)
q(p)∨q(p) // M(G, n)(p) ∨ M(G, n)(p),

where q(p) : L(p) → M(G, n)(p) is the projection. Let

i : Sm
(p) ∨ S

m
(p) → S

m
(p) × S

m
(p),

j : L(p) ∨ L(p) → L(p) × L(p)

and
k : M(G, n)(p) ∨ M(G, n)(p) → M(G, n)(p) × M(G, n)(p)
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be the inclusion maps. We can then see that the following diagram

[M(G, n)(p),S
m
(p) ∨ S

m
(p)]

(α(p)∨α(p))]//

i]
��

[M(G, n)(p), L(p) ∨ L(p)]
(q(p)∨q(p))]//

j]
��

[M(G, n)(p),M(G, n)(p) ∨ M(G, n)(p)]

k]
��

[M(G, n)(p),S
m
(p) × S

m
(p)]

(α(p)×α(p))]// [M(G, n)(p), L(p) × L(p)]
(q(p)×q(p))]// [M(G, n)(p),M(G, n)(p) × M(G, n)(p)]

(3.8)
is strictly commutative. Here, i], j] and l] are group homomorphisms between homotopy groups in-
duced by inclusion maps i, j and k, respectively. Because the localization L(p) ∨ L(p) of L ∨ L at a
prime p is (m − 1)-connected and M(G, n)(p) ∨ M(G, n)(p) is (n − 1)-connected, by the Blakers-Massey
Theorem (see [44, page 48] and [43, page 368]), the first line in the commutative diagram (3.8) shown
above is an exact sequence of homotopy groups.

If Q = (Q1,Q2, . . . ,Qt, . . . ,Qr) is a homotopy element of [M(G, n)(p), L(p) ∨ L(p)] satisfying that

π1
(p) ◦ Q ' 0 ' π2

(p) ◦ Q,

then j](Q) is the identity element of [M(G, n)(p), L(p) × L(p)]. Therefore, we have

k] ◦ (q(p) ∨ q(p))](Q) = (q(p) × q(p))] ◦ j](Q) = (q(p) × q(p))](0) = 0.

The Cellular Approximation Theorem [43, page 77] asserts that k] is a group monomorphism, we
thus have

(q(p) ∨ q(p))](Q) = 0.

Since
(α(p) ∨ α(p))] : [M(G, n)(p),S

m
(p) ∨ S

m
(p)]→ [M(G, n)(p), L(p) ∨ L(p)]

is a monomorphism between homotopy groups, the exactness of the first line of the commutative
diagram (3.8) shown above indicates that there is a uniquely determined homotopy class R in the group
[M(G, n)(p),S

m
(p) ∨ S

m
(p)] such that

(α(p) ∨ α(p))](R) = Q.

The commutative diagram (3.8) shows that

(α(p) × α(p))] ◦ i](R) = j] ◦ (α(p) ∨ α(p))](R) = j](Q) = 0.

This implies that i](R) is the identity element of [M(G, n)(p),S
m
(p) ×S

m
(p)] because the homomorphism

(α(p) × α(p))] is a group monomorphism between homotopy groups. Therefore, we have

q1
(p) ◦ R ' 0 ' q2

(p) ◦ R,

as required.

Remark 3.6. In Lemma 3.5, the homotopy class R of [M(G, n)(p),S
m
(p) ∨ S

m
(p)] can be displayed as

R = (R1,R2, . . . ,Rt, . . . ,Rr) : M(G, n)(p) −→ S
m
(p) ∨ S

m
(p),

where Rt is the homotopy class of [M(Zt, n)(p),S
m
(p) ∨ S

m
(p)] with Zt = Z for all t = 1, 2, . . . , r.
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Note that if
l : S3m−2 → S3m−2

(p)

is the p-localizing map, then the homomorphism

l∗ : [S3m−2
(p) ;Sm

(p) ∨ S
m
(p)]

� // [S3m−2;Sm
(p) ∨ S

m
(p)]

induced by ‘l’ is an isomorphism of homotopy groups.
The functorial property of the localization of base point preserving continuous maps between simply

connected CW-spaces asserts that the localization of the Whitehead product is equal to the generalized
Whitehead product of localizations, e.g.,

[ j1, [ j1, j2]](p) = [ j1
(p), [ j1

(p), j2
(p)]], (3.9)

where the right-hand side of (3.9) is the generalized Whitehead product in the sense of Arkowitz [45,
Definition 2.2].

Example 3.7. Let γ : M(Z, n)(p) → S
3m−2
(p) be the homotopy class of a base point preserving continuous

map. We define an element Qt, t = 1, 2, . . . , r of [M(Zt, n)(p), L(p) ∨ L(p)] as the composition

M(Zt, n)(p)
γ // S3m−2

(p)

[ j1,[ j1, j2]](p)// Sm
(p) ∨ S

m
(p)

α(p)∨α(p) // L(p) ∨ L(p)

of continuous maps; that is,

Qt = (α(p) ∨ α(p)) ◦ [ j1, [ j1, j2]](p) ◦ γ = [ι1(p) ◦ α(p), [ι1(p) ◦ α(p), ι
2
(p) ◦ α(p)]] ◦ γ,

where Zt = Z for all t = 1, 2, . . . , r and [ j1, [ j1, j2]](p) is the localization of the Whitehead product
[ j1, [ j1, j2]]. It can be shown that ψQ : L(p) → L(p) ∨ L(p) given byψ ◦ α(p) ' ι1(p) ◦ α(p) + ι2(p) ◦ α(p),

ψ ◦ β(p)|M(Zt ,n)(p) ' ι1(p) ◦ β(p)|M(Zt ,n)(p) + ι2(p) ◦ β(p)|M(Zt ,n)(p) + Qt

with Zt = Z for all t = 1, 2, . . . , r is a homotopy comultiplication whose homotopy perturbation is the
homotopy class Q = (Q1,Q2, . . . ,Qt, . . . ,Qr). Indeed, we can see that

π1
(p) ◦ Qt ' 0 ' π2

(p) ◦ Qt

for all t = 1, 2, . . . , r.

To examine the pivotal property of homotopy comultiplications on the wedge product of the ho-
motopy spheres and the Moore spaces, all of the possible homotopy perturbations should be studied
in order to investigate homotopy comultiplications. This raises a question: Is there a general method
for construction of the homotopy perturbation of a homotopy comultiplication on the localizations of
a wedge of the homotopy spheres and the Moore spaces? The following theorem provides an answer
to this query.

Let
j1
(p), j2

(p) : Sm
(p) → S

m
(p) ∨ S

m
(p)

be the first and second inclusion maps, respectively. Let w1,w2, . . . ,ws, . . . be the generalized basic
Whitehead products and let hws be the height of ws for each s = 1, 2, 3, . . .. We then have the following.
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Theorem 3.8. Let L := Sm ∨M(G, n) with 2 ≤ m < n, where G = F ⊕ T is a finitely generated abelian
group decomposed as in (3.4) and (3.5) such that p and pi are relatively prime for all i = 1, 2, . . . , k.
Then, every comultiplication ψ : L(p) → L(p) ∨ L(p) can be expressed as follows:ψ ◦ α(p) ' ι1(p) ◦ α(p) + ι2(p) ◦ α(p),

ψ ◦ β(p) ' ι1(p) ◦ β(p) + ι2(p) ◦ β(p) + (Q1,Q2, . . . ,Qt, . . . ,Qr).
(3.10)

Here,

• Qt = (α(p) ∨ α(p))](
∑∞

s=3 ws ◦ vs) for all t = 1, 2, . . . , r;
• ws is the sth generalized Whitehead product consisting of at least one homotopy class j1

(p) and at
least one homotopy class j2

(p) as a factor, localized at p; and

• vs is any homotopy class in the homotopy group [M(Z, n)(p),S
hws
(p) ] for s = 3, 4, 5, . . ..

Proof. It should be noted that

Qt = Q|M(Z,n)(p) : M(Z, n)(p) ' S
n
(p) → L(p) ∨ L(p)

and the expression of Qt is independent of the choice of t = 1, 2, . . . , r. By using Proposition 3.2,
Remark 3.3 and Lemma 3.5, we observe that every homotopy comultiplication ψ : L(p) → L(p) ∨ L(p)

has the form of (3.10) satisfying that

π1
(p) ◦ Qt ' 0 ' π2

(p) ◦ Qt

for all t = 1, 2, . . . , r. Using Proposition 3.1, we obtain

[M(Z, n)(p),S
m
(p) ∨ S

m
(p)] � [Sn

(p),S
m
(p) ∨ S

m
(p)]

� [Sn,Sm
(p) ∨ S

m
(p)]

� πn(Sm
(p) ∨ S

m
(p))

�
∞⊕

s=1

πn(Shws
(p) )

� πn(Sm
(p)) ⊕ πn(Sm

(p)) ⊕
∞⊕

s=3

πm(Shws
(p) ).

We note that

[M(G, n)(p), L(p) ∨ L(p)] � [Sn
(p) ∨ S

n
(p) ∨ · · · ∨ S

n
(p)︸                      ︷︷                      ︸

r−times

, L(p) ∨ L(p)]

� [Sn
(p), L(p) ∨ L(p)] ⊕ [Sn

(p), L(p) ∨ L(p)] ⊕ · · · ⊕ [Sn
(p), L(p) ∨ L(p)]︸                                                                          ︷︷                                                                          ︸

r−times
� πn(L(p) ∨ L(p)) ⊕ πn(L(p) ∨ L(p)) ⊕ · · · ⊕ πn(L(p) ∨ L(p))︸                                                                ︷︷                                                                ︸

r−times

.

In addition, for any homotopy class

Qt = Q|M(Z,n)(p) : M(Z, n)(p) → L(p) ∨ L(p)
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in the homotopy group [M(Z, n)(p), L(p) ∨ L(p)], Lemma 3.5 demonstrates that there exists a uniquely
determined homotopy class

R = (R1,R2, . . . ,Rt, . . . ,Rr) : M(G, n)(p) → S
m
(p) ∨ S

m
(p)

such that
Qt = (α(p) ∨ α(p))](Rt)

and
q1

(p) ◦ Rt ' 0 ' q2
(p) ◦ Rt

for all t = 1, 2, . . . , r. The Proposition 3.1 states that the homotopy class Rt can be expressed uniquely
as

Rt = j1
(p) ◦ v1 + j2

(p) ◦ v2 +

∞∑
s=3

ws ◦ vs

in the homotopy group [M(Z, n)(p),S
m
(p) ∨ S

m
(p)] for all t = 1, 2, . . . , r. Here,

• v1 and v2 are homotopy elements in [M(Z, n)(p),S
m
(p)] � [Sn

(p),S
m
(p)] � πn(Sm

(p));

• vs is any homotopy element in [M(Z, n)(p),S
hws
(p) ] for all integers s ≥ 3; and

• ws is the generalized basic Whitehead product for all integers s ≥ 3.

We recall that
w1 = j1

(p) : Sm
(p) → S

m
(p) ∨ S

m
(p)

and
w2 = j2

(p) : Sm
(p) → S

m
(p) ∨ S

m
(p),

and that all of the generalized Whitehead products ws consist of at least one homotopy class

j1
(p) : Sm

(p) → S
m
(p) ∨ S

m
(p)

and at least one homotopy class
j2
(p) : Sm

(p) → S
m
(p) ∨ S

m
(p)

as the localizations of the basic Whitehead products for all s = 3, 4, 5, . . .. For example,

• w3 = [ j1
(p), j2

(p)];
• w4 = [ j1

(p), [ j1
(p), j2

(p)]];
• w5 = [ j2

(p), [ j1
(p), j2

(p)]];
• w6 = [ j1

(p), [ j1
(p), [ j1

(p), j2
(p)]]];

• w7 = [ j2
(p), [ j1

(p), [ j1
(p), j2

(p)]]] and so on.

We now have
0 = q1

(p) ◦ Rt

= q1
(p) ◦ ( j1

(p) ◦ v1 + j2
(p) ◦ v2 +

∞∑
s=3

ws ◦ vs)

= v1 + 0 + 0 + · · ·

= v1

(3.11)
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and
0 = q2

(p) ◦ Rt

= q2
(p) ◦ ( j1

(p) ◦ v1 + j2
(p) ◦ v2 +

∞∑
s=3

ws ◦ vs)

= 0 + v2 + 0 + 0 + · · ·

= v2

(3.12)

up to homotopy for all t = 1, 2, . . . , r so that v1 and v2 are the trivial (identity) elements of πn(Sm
(p)),

where 0 is the trivial homotopy element of the homotopy group, as required.

We now present a method for calculating the cardinality of the set consisting of homotopy co-
multiplications via homotopy perturbations on the localization of the wedge product of the homotopy
spheres and the Moore spaces as follows.

Corollary 3.9. Under the hypotheses of Theorem 3.8, the number of homotopy comultiplications on
the homotopy localization L(p) of L := Sm ∨ M(G, n) at a prime p is

∞∏
s=3

|πn(Shws
(p) )| ×

∞∏
s=3

|πn(Shws
(p) )| × · · · ×

∞∏
s=3

|πn(Shws
(p) )|︸                                                           ︷︷                                                           ︸

r−times

, (3.13)

where |X| is the cardinality of a set X.

Proof. By Theorem 3.8, we have the proof.

The aforementioned results raise the following question: What will happen if the prime number p
is equal to one of the pi’s for i = 1, 2, . . . , k? The following gives an answer to this query.

Theorem 3.10. Let L := Sm ∨ M(G, n) with 2 ≤ m < n, where G = F ⊕ T is a finitely generated
abelian group decomposed as in (3.4) and (3.5) such that the prime p is equal to one (or more) of the
primes p1, p2, . . . , pk which are not necessarily distinct prime numbers. Then, every comultiplication
ψ : L(p) → L(p) ∨ L(p) can be expressed as follows:ψ ◦ α(p) ' ι1(p) ◦ α(p) + ι2(p) ◦ α(p),

ψ ◦ β(p) ' ι1(p) ◦ β(p) + ι2(p) ◦ β(p) + (Q1,Q2, . . . ,Qt, . . . ,Qr,QT ).
(3.14)

Here,

• QT is the homotopy class in the homotopy group [M(T(p), n), L(p) ∨ L(p)] given by (α(p) ∨

α(p))](
∑∞

s=3 ws ◦ xs);
• xs is any homotopy class in [M(T(p), n),Shws

(p) ] for s = 3, 4, 5, . . .;
• T(p) is the localization of the torsion subgroup T of G = F ⊕ T at the prime p; and
• other notations are the same as in Theorem 3.8.

Proof. Since the prime number p equals one (or more) of the primes p1, p2, . . . , pk which are not
necessarily distinct prime numbers, we see that the p-localization T(p) of the torsion part T of G = F⊕T
is nontrivial finite group whose order is the power of p. Thus, the localization M(T(p), n) of the Moore
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space at the prime p is not contractible so that the homotopy perturbation part corresponding to this
localized Moore space should be added, namely,

QT ' β(p)|M(T(p),n) : M(T(p), n) −→ L(p) ∨ L(p)

as one of the coordinate of the homotopy perturbation

Q = (Q1,Q2, . . . ,Qt, . . . ,Qr,QT ) : M(G(p), n) −→ L(p) ∨ L(p)

of the homotopy comultiplication ψ : L(p) → L(p) ∨ L(p). Now argue as for Theorem 3.8.

More generally, we now calculate the number of homotopy comultiplications on the homotopy
localization L(p) of L := Sm ∨ M(G, n) at a prime p as follows.

Corollary 3.11. Under the hypotheses of Theorem 3.10, the number of homotopy comultiplications on
the homotopy localization L(p) of L := Sm ∨ M(G, n) at a prime p is

∞∏
s=3

|πn(Shws
(p) )| ×

∞∏
s=3

|πn(Shws
(p) )| × · · · ×

∞∏
s=3

|πn(Shws
(p) )|︸                                                           ︷︷                                                           ︸

r−times

×

∞∏
s=3

|[M(T(p), n),Shws
(p) ]|, (3.15)

where |X| is the cardinality of a set X.

Proof. By Theorem 3.10, we have the proof.

Note that if p and pi are relatively prime for all i = 1, 2, . . . , k, then the last term of (3.15) should be
wiped out due to Theorem 3.8 being the formula (3.13) in the computation of the number of homotopy
comultiplications on L(p) because the p-localization T(p) of the torsion part T of G = F ⊕ T is a trivial
group so that the localization M(T(p), n) of the Moore space at the prime p is a one-point space up to
homotopy.

4. Examples

In this section, we provide a list of examples for development of the structure of homotopy comul-
tiplications on the localization L(p) (or the rationalization LQ) of a wedge of the homotopy spheres and
the Moore spaces L := Sm ∨ M(G, n), where 2 ≤ m < n.

In Tables 1 and 2,

• C(L(p)) is the set (or group) consisting of all the homotopy comultiplications on the localization
L(p) of L at a prime p.
• Each group (or ring) in the last columns in Tables 1 and 2 is in one-to-one correspondence with

the set C(L(p)); that is, they are of the same cardinality.
• ‘1’ is the trivial group.
• Zn is the group of integers modulo n.
• Z(p) is the p-localization of the ring of integers.
• φ is the empty set, and C(L(p)) = C(LQ) in this case.

Electronic Research Archive Volume 30, Issue 6, 2033–2053.



2049

Table 1. In the finite group cases for L := Sm ∨ M(G, n).

m G n p C(L(p))
2 Z2 3 3 1
2 Z2 ⊕ Z3 3 5 1
2 Z2 ⊕ Z3 ⊕ Z5 3 7 1
3 Z2 ⊕ Z3 ⊕ Z5 4 2 Z2

3 Z2 ⊕ Z3 ⊕ Z6 4 3 Z3 ⊕ Z3

3 Z2 ⊕ Z3 ⊕ Z7 4 2 Z2

3 Z2 ⊕ Z3 ⊕ Z7 4 3 Z3

3 Z2 ⊕ Z3 ⊕ Z7 4 7 Z7

4 Z2 ⊕ Z5 ⊕ Z11 6 5 Z5

4 Z2 ⊕ Z5 ⊕ Z22 6 11 Z11

4 Z2 ⊕ Z5 ⊕ Z22 6 13 1
4 Z2 ⊕ Z7 ⊕ Z13 6 13 Z13

m ≥ 2 all finite groups n > m φ 1

Table 2. In the infinite group cases for L := Sm ∨ M(G, n).

m G n p C(L(p))
2 Z ⊕ Z2 3 3 Z(3)

2 Z ⊕ Z3 3 5 Z(5)

2 Z ⊕ Z2 ⊕ Z3 4 5 1
2 Z ⊕ Z3 ⊕ Z5 5 2 Z2

2 Z ⊕ Z2 ⊕ Z3 5 7 1
3 Z ⊕ Z2 ⊕ Z3 5 5 Z(5)

3 Z ⊕ Z2 ⊕ Z3 5 7 Z(7)

3 Z ⊕ Z ⊕ Z3 5 7 Z(7) ⊕ Z(7)

4 Z ⊕ Z3 ⊕ Z3 9 2 Z2

4 Z ⊕ Z ⊕ Z5 9 2 Z2 ⊕ Z2

4 Z ⊕ Z ⊕ Z5 9 φ 1
5 Z ⊕ Z ⊕ Z7 8 7 Z7

5 Z ⊕ Z ⊕ Z11 9 φ Q ⊕ Q

Proof. For a finite group case, if L := S4 ∨ M(Z2 ⊕ Z5 ⊕ Z22, 6), we then have

L(13) ' S
4
(13) ∨ M(Z2 ⊕ Z5 ⊕ Z22, 6)(13)

' S4
(13) ∨ M(Z2 ⊕ Z5 ⊕ Z2 ⊕ Z11, 6)(13)

' S4
(13) ∨ M(Z2, 6)(13) ∨ M(Z5, 6)(13) ∨ M(Z2, 6)(13) ∨ M(Z11, 6)(13)

' S4
(13).

Therefore, by [24, Propostion 3.1], we can see that the group of homotopy comultiplications on L(13)
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is the trivial group; that is, the set C(L(13)) of homotopy comultiplications of L(13) is a set consisting of
only one homotopy class of the standard comultiplication on S4

(13).
In the case of an infinite group, if L := S4 ∨ M(Z ⊕ Z ⊕ Z5, 9), we then obtain

L(2) ' S
4
(2) ∨ M(Z ⊕ Z ⊕ Z5, 9)(2)

' S4
(2) ∨ M(Z, 9)(2) ∨ M(Z, 9)(2) ∨ M(Z5, 9)(2)

' S4
(2) ∨ S

9
(2) ∨ S

9
(2).

Theorem 3.8 and Corollary 3.9 assert that the cardinality |C(L(2))| of the set C(L(2)) of homotopy
comultiplications on L(2) is

|C(L(2))| = |π9(S7
(2))| × |π9(S7

(2))| × |π9(S10
(2))| × |π9(S10

(2))| × · · ·
= |Z2 ⊗ Z(2)| × |Z2 ⊗ Z(2)| × |1| × |1| × · · ·
= |Z2 ⊗ Z(2)| × |Z2 ⊗ Z(2)|

= |Z2| × |Z2|.

Similarly, the remaining portions would be proved by the previous results and the various formulas
in algebraic topology such as the universal coefficient theorem in cohomology, the Hopf-Whitney
theorem [43, page 244], the cellular approximation theorem, the cohomotopy group, and the homotopy
group of spheres [46].

5. Conclusions

A co-H-space with a comultiplication as the Eckmann-Hilton dual of an H-space with a multiplica-
tion plays a pivotal role in classical homotopy theory. In general, there are many homotopy comulti-
plications on a co-H-space with many distinctive properties. The localization of a nilpotent CW-space
or a spectrum at a collection of prime numbers is a homotopical analogue of the localization of a
commutative ring or a module, specifically the ring Z of integers at a collection of prime numbers.

In this paper, we have described the pivotal ideas of homotopy comultiplications on co-H-spaces and
the localized counterparts of Hilton-Milnor formulae. This study focused on the structure of homotopy
comultiplications on the localization L(p) of a wedge L := Sm∨M(G, n) of the homotopy spheres Sm and
the Moore spaces M(G, n), where G is an abelian group and 2 ≤ m < n. We have provided examples
for determining the homotopy phenomena of homotopy comultiplications on L(p) for a prime p.

We hope that our methods will be used to study the advantages of co-H-spaces along with various
homotopy comultiplications and will be valuable in the field of computational topology. We also
hope that the results will be applied to the concepts of algebra comultiplications with many kinds of
perturbations on the algebraic objects in many areas of algebra as well as algebraic topology.
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