In this work, we present existence results for some problems which arise in image processing namely image restoration. Our essential tools are Picard's fixed point theorem for a strict contraction and Mountain-pass Theorem for critical point.
Citation: Souad Ayadi, Ozgur Ege. Image restoration via Picard's and Mountain-pass Theorems[J]. Electronic Research Archive, 2022, 30(3): 1052-1061. doi: 10.3934/era.2022055
In this work, we present existence results for some problems which arise in image processing namely image restoration. Our essential tools are Picard's fixed point theorem for a strict contraction and Mountain-pass Theorem for critical point.
[1] | G. Aubert, P. Kornprobst, Mathematical Problems in Image Processing Partial Differential Equations and the Calculus of Variation, Applied Mathematical Sciences, Springer, 2006. https://doi.org/10.1007/978-0-387-44588-5 |
[2] | B. Dacorogna, Direct Methods in Calculus of Variations, Springer, 2008. https://doi.org/10.1007/978-0-387-55249-1 |
[3] | L. Boxer, O. Ege, I. Karaca, J. Lopez, J. Louwsma, Digital fixed points, approximate fixed points, and universal functions, Appl. Gen. Topol., 17 (2016), 159–172. https://doi.org/10.4995/agt.2016.4704 doi: 10.4995/agt.2016.4704 |
[4] | H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011. https://doi.org/10.1007/978-0-387-70914-7 |
[5] | A. Mihail, R. Miculescu, Applications of fixed point theorems in the theory of generalized IFS, J. Fixed Point Theory Appl., 2008 (2008), 312876. https://doi.org/10.1155/2008/312876 doi: 10.1155/2008/312876 |
[6] | A. Rosenfeld, Digital topology, Amer. Math. Monthly, 86 (1979), 76–87. https://doi.org/10.2307/2321290 doi: 10.2307/2321290 |
[7] | P. Debnath, N. Konwar, S. Radenović, Metric Fixed Point Theory: Applications in Science, Engineering and Behavioural Sciences, Springer Nature, Singapore, 2021. https://doi.org/10.1007/978-981-16-4896-0 |
[8] | T. Došenović, H. Koppelaar, S. Radenović, On some known fixed point results in the complex domain: survey, Mil. Tech. Cour., 66 (2018), 563–579. https://doi.org/10.5937/vojtehg66-17103 doi: 10.5937/vojtehg66-17103 |
[9] | V. Todorčević, Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics, Springer Nature Switzerland AG, 2019. https://doi.org/10.1007/978-3-030-22591-9 |
[10] | K. S. Kim, J. H. Yun, Image restoration using a fixed-point method for a TVL2 regularization problem, Algorithms, 13 (2020), 1–15. https://doi.org/10.3390/a13010001 doi: 10.3390/a13010001 |
[11] | J. H. Yun, H. J. Lin, Image restoration using fixed-point-like for new TVL1 variational problems, Electronics, 9 (2020), 735. https://doi.org/10.3390/electronics9050735 doi: 10.3390/electronics9050735 |
[12] | H. Le Dret, Equations aux Derivees Partielles Elliptiques non Lineaires, Universite de Pierre et Marie Curie, Springer, 2013. https://doi.org/10.1007/978-3-642-36175-3 |
[13] | Z. Belyacine, Etude d'une Equation aux Derivees Partielles Completement non Lineaire avec resonance dans $\mathbb{R^{n}}$, Ph.D thesis, Universite Badji Mokhtar Annaba, 2013. |
[14] | M. Badiale, E. Serra, Semilinear Elliptic Equations for Beginners, Springer-Verlag, London Limited, 2011. https://doi.org/10.1007/978-0-85729-227-8 |
[15] | T. Kavian, Introduction a la Theorie des Points Critiques et Applications aux Problemes Elliptiques, Springer-Verlag, 1993. |
[16] | J. Chabrowski, Variational Methods for Potential Operator Equations, Mathematisch Centrum, Amsterdam, 1979. |
[17] | C. V. Groesen, Variational methods for nonlinear operator equation, in Nonlinear Analysis, Proceeding of the lectures of a Colloquium Nonlinear Analysis, Mathematisch Centrum, Amsterdam, (1976), 100–191. |