In this paper, the transition from anti-phase spike synchronization to in-phase spike synchronization within mixed bursters is investigated in a two-coupled pre-Bözinger complex (pre-BötC) network. In this two-coupled neuronal network, the communication between two pre-BötC networks is based on electrical and synaptic coupling. The results show that the electrical coupling accelerates in-phase spike synchronization within mixed bursters, but synaptic coupling postpones this kind of synchronization. Synaptic coupling promotes anti-phase spike synchronization when electrical coupling is weak. At the same time, the in-phase spike synchronization within dendritic bursters occurs earlier than that within somatic bursters. Asymmetric periodic somatic bursters appear in the transition state from anti-phase spikes to in-phase spikes. We also use fast/slow decomposition and bifurcation analysis to clarify the dynamic mechanism for the two types of synchronization.
Citation: Moutian Liu, Lixia Duan. In-phase and anti-phase spikes synchronization within mixed Bursters of the pre-Bözinger complex[J]. Electronic Research Archive, 2022, 30(3): 961-977. doi: 10.3934/era.2022050
In this paper, the transition from anti-phase spike synchronization to in-phase spike synchronization within mixed bursters is investigated in a two-coupled pre-Bözinger complex (pre-BötC) network. In this two-coupled neuronal network, the communication between two pre-BötC networks is based on electrical and synaptic coupling. The results show that the electrical coupling accelerates in-phase spike synchronization within mixed bursters, but synaptic coupling postpones this kind of synchronization. Synaptic coupling promotes anti-phase spike synchronization when electrical coupling is weak. At the same time, the in-phase spike synchronization within dendritic bursters occurs earlier than that within somatic bursters. Asymmetric periodic somatic bursters appear in the transition state from anti-phase spikes to in-phase spikes. We also use fast/slow decomposition and bifurcation analysis to clarify the dynamic mechanism for the two types of synchronization.
[1] | A. E. Pereda, Electrical synapses and their functional interactions with chemical synapses, Nature Rev. Neurosci., 15 (2014), 250–263. https://doi.org/10.1038/nrn3708 doi: 10.1038/nrn3708 |
[2] | M. V. Bennett, R. S. Zukin, Electrical coupling and neuronal synchronization in the mammalian brain, Neuron, 41 (2004), 495–511. https://doi.org/10.1016/S0896-6273(04)00043-1 doi: 10.1016/S0896-6273(04)00043-1 |
[3] | B. W. Connors, M. A. Long, Electrical synapses in the mammalian brain, Annu. Rev. Neurosci., 27 (2004), 393–418. https://doi.org/10.1146/annurev.neuro.26.041002.131128 doi: 10.1146/annurev.neuro.26.041002.131128 |
[4] | S. Curti, G. Hoge, J. I. Nagy, Synergy between electrical coupling and membrane properties promotes strong synchronization of neurons of the mesencephalic trigeminal nucleus, J. Neurosci., 32 (2012), 4341–4359. https://doi.org/10.1523/JNEUROSCI.6216-11.2012 doi: 10.1523/JNEUROSCI.6216-11.2012 |
[5] | P. A. Getting, Modification of neuron properties by electrotonic synapses. Ⅰ. Input resistance, time constant, and integration, J. Neurophysiol., 37 (1974), 846–857. https://doi.org/10.1152/jn.1974.37.5.846 doi: 10.1152/jn.1974.37.5.846 |
[6] | M. Galarreta, S. Hestrin, Spike transmission and synchrony detection in networks of GABAergic interneurons, Science, 292 (2001), 2295–2299. https://doi.org/10.1126/science.1061395 doi: 10.1126/science.1061395 |
[7] | D. H. Mathalon, , V. S. Sohal, Neural oscillations and synchrony in brain dysfunction and neuropsychiatric disorders: it's about time, JAMA Psychiatry, 72 (2015), 840–844. https://doi.org/10.1001/jamapsychiatry.2015.0483 doi: 10.1001/jamapsychiatry.2015.0483 |
[8] | S. Rakshit, B. K. Bera, D. Ghosh, Synchronization in a temporal multiplex neuronal hypernetwork, Phys. Rev. E, 98 (2018), 032305. https://doi.org/10.1103/PhysRevE.98.032305 doi: 10.1103/PhysRevE.98.032305 |
[9] | Q. Wang, M. Perc, Z. Duan, G. Chen, Synchronization transitions on scale-free neuronal networks due to finite information transmission delays, Phys. Rev. E, 80 (2009), 026206. https://doi.org/10.1103/PhysRevE.80.026206 doi: 10.1103/PhysRevE.80.026206 |
[10] | M. Jalili, Spike phase synchronization in multiplex cortical neural networks, Physica A, 466 (2017), 325–333. https://doi.org/10.1016/j.physa.2016.09.030 doi: 10.1016/j.physa.2016.09.030 |
[11] | M. Shafiei, S. Jafari, F. Parastesh, Time delayed chemical synapses and synchronization in multilayer neuronal networks with ephaptic inter-layer coupling, Commun. Nonlinear Sci. Numer. Simul., 84 (2020), 105175. https://doi.org/10.1016/j.cnsns.2020.105175 doi: 10.1016/j.cnsns.2020.105175 |
[12] | N. Toporikova, T. H. Tsao, T. M. Wright, Conflicting effects of excitatory synaptic and electric coupling on the dynamics of square-wave bursters, J. Comput. Neurosci., 31 (2011), 701–711. https://doi.org/10.1007/s10827-011-0340-1 doi: 10.1007/s10827-011-0340-1 |
[13] | A. Sherman, Anti-phase, asymmetric and aperiodic oscillations in excitable cells—Ⅰ. Coupled bursters, Bull. Math. Biol., 56 (1994), 811–835. https://doi.org/10.1016/S0092-8240(05)80292-7 doi: 10.1016/S0092-8240(05)80292-7 |
[14] | G. D. Vries, A. Sherman, H. R. Zhu, Diffusively coupled bursters: effects of cell heterogeneity, Bull. Math. Biol., 60 (1998), 1167–1200. https://doi.org/10.1006/bulm.1998.0057 doi: 10.1006/bulm.1998.0057 |
[15] | L. Yang, I. R. Epstein, Symmetric, asymmetric, and antiphase Turing patterns in a model system with two identical coupled layers, Phys. Rev. E, 69 (2004), 026211. https://doi.org/10.1103/PhysRevE.69.026211 doi: 10.1103/PhysRevE.69.026211 |
[16] | Z. Wang, L. Duan, Q. Cao, Multi-stability involved mixed bursting within the coupled pre-Bötzinger complex neurons, Chin. Phys. B, 27 (2018), 070502. https://doi.org/10.1088/1674-1056/27/7/070502 doi: 10.1088/1674-1056/27/7/070502 |
[17] | L. Duan, J. Liu, X. Chen, P. Xiao, Y. Zhao, Dynamics of in-phase and anti-phase bursting in the coupled pre-Bötzinger complex cells, Cogn. Neurodyn., 11 (2017), 91–97 https://doi.org/10.1007/s11571-016-9411-3 doi: 10.1007/s11571-016-9411-3 |
[18] | Y. Zhao, M. Liu, Y. Zhao, L. Duan, Dynamics of mixed bursting in coupled pre-Bötzinger complex, Acta Phys. Sinca, 70 (2021), 120501. https://doi.org/10.7498/aps.70.20210093 doi: 10.7498/aps.70.20210093 |
[19] | X. Mao, W. Ding, X. Zhou, Complexity in time-delay networks of multiple interacting neural groups, Electron. Res. Archive, 29 (2021), 2973–2985. https://doi.org/10.3934/era.2021022 doi: 10.3934/era.2021022 |
[20] | Q. Wen, S. Liu, B. Lu, Firing patterns and bifurcation analysis of neurons under electromagnetic induction, Electron. Res. Archive, 29 (2021), 3205–3226. https://doi.org/10.3934/era.2021034 doi: 10.3934/era.2021034 |
[21] | X. Wang, H. Gu, B. Lu, Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron, Electron. Res. Archive, 29 (2021), 2987–3015. https://doi.org/10.3934/era.2021023 doi: 10.3934/era.2021023 |
[22] | C. Park, J. E. Rubin, Cooperation of intrinsic bursting and calcium oscillations underlying activity patterns of model pre-Bötzinger complex neurons, J. Comput. Neurosci., 34 (2013), 345–366. https://doi.org/10.1007/s10827-012-0425-5 doi: 10.1007/s10827-012-0425-5 |
[23] | E. M. Izhikevich, Neural excitability, spiking and bursting, Int. J. Bifurcat. Chaos, 10 (2000), 1171–1266. https://doi.org/10.1142/S0218127400000840 doi: 10.1142/S0218127400000840 |