Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Research article

Multi-step ahead ozone level forecasting using a component-based technique: A case study in Lima, Peru

  • Received: 28 November 2023 Revised: 02 April 2024 Accepted: 09 May 2024 Published: 31 May 2024
  • The rise in global ozone levels over the last few decades has harmed human health. This problem exists in several cities throughout South America due to dangerous levels of particulate matter in the air, particularly during the winter season, making it a public health issue. Lima, Peru, is one of the ten cities in South America with the worst levels of air pollution. Thus, efficient and precise modeling and forecasting are critical for ozone concentrations in Lima. The focus is on developing precise forecasting models to anticipate ozone concentrations, providing timely information for adequate public health protection and environmental management. This work used hourly O3 data in metropolitan areas for multi-step-ahead (one-, two-, three-, and seven-day-ahead) O3 forecasts. A multiple linear regression model was used to represent the deterministic portion, and four-time series models, autoregressive, nonparametric autoregressive, autoregressive moving average, and nonlinear neural network autoregressive, were used to describe the stochastic component. The various horizon out-of-sample forecast results for the considered data suggest that the proposed component-based forecasting technique gives a highly consistent, accurate, and efficient gain. This may be expanded to other districts of Lima, different regions of Peru, and even the global level to assess the efficacy of the proposed component-based modeling and forecasting approach. Finally, no analysis has been undertaken using a component-based estimation to forecast ozone concentrations in Lima in a multi-step-ahead manner.

    Citation: Flor Quispe, Eddy Salcedo, Hasnain Iftikhar, Aimel Zafar, Murad Khan, Josué E. Turpo-Chaparro, Paulo Canas Rodrigues, Javier Linkolk López-Gonzales. Multi-step ahead ozone level forecasting using a component-based technique: A case study in Lima, Peru[J]. AIMS Environmental Science, 2024, 11(3): 401-425. doi: 10.3934/environsci.2024020

    Related Papers:

    [1] Ismail Ben Abdallah, Yassine Bouteraa, Saleh Mobayen, Omar Kahouli, Ali Aloui, Mouldi Ben Amara, Maher JEBALI . Fuzzy logic-based vehicle safety estimation using V2V communications and on-board embedded ROS-based architecture for safe traffic management system in hail city. Electronic Research Archive, 2023, 31(8): 5083-5103. doi: 10.3934/era.2023260
    [2] Miao Luo, Yousong Chen, Dawei Gao, Lijun Wang . Inversion study of vehicle frontal collision and front bumper collision. Electronic Research Archive, 2023, 31(2): 776-792. doi: 10.3934/era.2023039
    [3] Miguel Ferreira, Luís Moreira, António Lopes . Differential drive kinematics and odometry for a mobile robot using TwinCAT. Electronic Research Archive, 2023, 31(4): 1789-1803. doi: 10.3934/era.2023092
    [4] Longchao Da, Hua Wei . CrowdGAIL: A spatiotemporal aware method for agent navigation. Electronic Research Archive, 2023, 31(2): 1134-1146. doi: 10.3934/era.2023057
    [5] Hyunju Shin, Jieun Ko, Gunwoo Lee, Cheol Oh . Evaluating the environmental impact on connected vehicles during freeway accidents using VISSIM with probe vehicle data. Electronic Research Archive, 2024, 32(4): 2955-2975. doi: 10.3934/era.2024135
    [6] Lingling Zhang . Vibration analysis and multi-state feedback control of maglev vehicle-guideway coupling system. Electronic Research Archive, 2022, 30(10): 3887-3901. doi: 10.3934/era.2022198
    [7] Zhen-Zhen Tao, Bing Sun . A feedback design for numerical solution to optimal control problems based on Hamilton-Jacobi-Bellman equation. Electronic Research Archive, 2021, 29(5): 3429-3447. doi: 10.3934/era.2021046
    [8] Shuang Zhang, Songwen Gu, Yucong Zhou, Lei Shi, Huilong Jin . Energy efficient resource allocation of IRS-Assisted UAV network. Electronic Research Archive, 2024, 32(7): 4753-4771. doi: 10.3934/era.2024217
    [9] Hao Li, Zhengwu Wang, Shuiwang Chen, Weiyao Xu, Lu Hu, Shuai Huang . Integrated optimization of planning and operation of a shared automated electric vehicle system considering the trip selection and opportunity cost. Electronic Research Archive, 2024, 32(1): 41-71. doi: 10.3934/era.2024003
    [10] Xiaoxiao Wang, Liangjie Xu . Factors influencing drivers' queue-jumping behavior at urban intersections: A covariance-based structural equation modeling analysis. Electronic Research Archive, 2024, 32(3): 1439-1470. doi: 10.3934/era.2024067
  • The rise in global ozone levels over the last few decades has harmed human health. This problem exists in several cities throughout South America due to dangerous levels of particulate matter in the air, particularly during the winter season, making it a public health issue. Lima, Peru, is one of the ten cities in South America with the worst levels of air pollution. Thus, efficient and precise modeling and forecasting are critical for ozone concentrations in Lima. The focus is on developing precise forecasting models to anticipate ozone concentrations, providing timely information for adequate public health protection and environmental management. This work used hourly O3 data in metropolitan areas for multi-step-ahead (one-, two-, three-, and seven-day-ahead) O3 forecasts. A multiple linear regression model was used to represent the deterministic portion, and four-time series models, autoregressive, nonparametric autoregressive, autoregressive moving average, and nonlinear neural network autoregressive, were used to describe the stochastic component. The various horizon out-of-sample forecast results for the considered data suggest that the proposed component-based forecasting technique gives a highly consistent, accurate, and efficient gain. This may be expanded to other districts of Lima, different regions of Peru, and even the global level to assess the efficacy of the proposed component-based modeling and forecasting approach. Finally, no analysis has been undertaken using a component-based estimation to forecast ozone concentrations in Lima in a multi-step-ahead manner.



    Epidemics are widespread around the world, and always jeopardize public lives and health, such as COVID-19, malaria, severe acute respiratory syndrome (SARS), influenza and so on. The public has taken all kinds of measures to struggle against the different infectious epidemics. Various of mathematical models are established to research dynamics and influences of prevention and control for different epidemics [12,23,22,10,9,15]. Recently, both the popularization of knowledge about infectious diseases and the improvement of treatment have built a solid foundation for epidemics' prevention. This popularization can also lead to the strengthening in public self-protection. For instance, since Chinese had owned strongly self-protection and governments of China had taken efficient treatments, COVID-19 was first under effective control in China [11,17,13]. As a result, it is necessary to integrate self-protection and treatment into epidemic models. Because epidemics are always discovered at one location and then spread to other areas [21], reaction-diffusion models become essential to describe this spatial spread. Simultaneously, epidemic models with spatial spread usually can result in a development from a diseases-free state to an infective state, which can be predicted a wave for this evolution of epidemics. Consequently, traveling wave solution becomes critical to study the spatial spread of epidemics [7,8,18,20].

    Many people have analyzed traveling wave solution and the asymptotic speed of propagation of classic compartmental epidemic models [16,26,1,4,30,28,32,25]. Ducrot and Magal [3] studied the existence and the non-existence of traveling wave solution satisfying a diffusive epidemic model with age-structure and constant recruitment, and constructed a suitable Lyapunov functional to discuss their asymptotic behavior at infinity. Li et al. [14] found that the existence and the non-existence of traveling wave solution for the system which is a nonlocal dispersal delayed SIR model with constant recruitment and Holling-slowromancapii@ incidence rate are determined via both the minimal wave speed and the basic reproduction number R0 defined by the corresponding reaction system. Zhang et al.[29] considered the existence of traveling wave solution satisfying a influenza model with treatment for infectious individuals. Zhao et al. [31] proved the existence and non-existence of traveling wave solution for a SIR model with multiple parallel infectious stages which own same diffusion coefficients. Then Zhao et al. [33] established a two-groups reaction-diffusion epidemic model to research the influence of host heterogeneity in spread of disease by applying the traveling wave solution. However, human self-protection for susceptible individuals and treatment for infectious individuals were not considered together in a SEIR diffusion epidemic model.

    In this paper, we firstly integrate self-protection into the classical reaction-diffusion SEIR model with constant recruitment, so susceptible individuals are divided into two groups: susceptible individuals S1 without self-protection and susceptible people S2 with self-protection. Next, the treatment for infectious individuals is considered such that I1 represents the infectious with treatment and I2 means the infectious without it. Therefore, a reaction-diffusion SEIR model is constructed as system (1), where tR+ and xR. In this model, Si(x, t) and Ii(x, t) (i=1, 2) represent the density of two groups of susceptible and infectious individuals above determined, respectively. E(x, t) represents the density of individuals who are infected without infectivity. R(x, t) represents the density of individuals who recover and own permanent immunity. d1, d2, D0, D1, D2, and D represent diffusion coefficients of S1, S2, E, I1, I2 and R, respectively. Λ is constant recruitment. β is bilinear incidence. μ is the sum of the mortality rate. αi is the recovery rate of Ii (i=1, 2), respectively. γ is the reciprocal of latency. qi is the proportion of individuals entering Ii (i=1, 2), respectively. ρ is the migration rate from S1 to S2. σ is the rate which susceptible individuals with self-protection reduce contacts with infectious. θ represents the rate that the treatment for the infectious reduce their contacts with others.

    {S1(x,t)t=d1ΔS1(x, t)+ΛβS1(x, t)[θI1(x, t)+I2(x, t)](ρ+μ)S1(x, t),S2(x, t)t=d2ΔS2(x, t)+ρS1(x, t)βσS2(x, t)[θI1(x, t)+I2(x, t)]μS2(x, t),E(x, t)t=D0ΔE(x, t)+β[S1(x, t)+σS2(x, t)][θI1(x, t)+I2(x, t)](μ+γ)E(x, t),I1(x, t)t=D1ΔI1(x, t)+q1γE(x, t)(μ+α1)I1(x, t),I2(x, t)t=D2ΔI2(x, t)+q2γE(x, t)(μ+α2)I2(x, t),R(x, t)t=DΔR(x, t)+α1I1(x, t)+α2I2(x, t)μR(x, t). (1)

    Throughout this aritcle, we make the following assumption:

    (A) d1=d2:=d, d>D0>Di>0, Λ, β, θ, ρ, μ, σ, γ, q1, q2, αi>0, q1+q2=1,θ(0, 1], σ(0,1] for i=1, 2.

    In fact, for making a living, the susceptible has to move, and their diffusion is almost same without special cases. Especially, the susceptible with self-protection may take some methods, such as wearing masks, avoiding crowed public places and so on, to decrease the likelihood of connects with the infectious. The infectious could reduce going out owing to discomfort by disease. Thus, the assumption can better close to reality. In mathematical analysis of this model, the assumption (A) also can help us get an upper bound for the different susceptible and infected components to research the asymptotic behavior as x+.

    Since the equations Si(x, t), E(x, t) and Ii(x, t) (i=1, 2) are fully decoupled from R(x, t), we only need to study the sub-system:

    {S1(x, t)t=dΔS1(x, t)+ΛβS1(x, t)[θI1(x, t)+I2(x, t)](ρ+μ)S1(x, t),S2(x, t)t=dΔS2(x, t)+ρS1(x, t)βσS2(x, t)[θI1(x, t)+I2(x, t)]μS2(x, t),E(x, t)t=D0ΔE(x, t)+β[S1(x, t)+σS2(x, t)][θI1(x, t)+I2(x, t)](μ+γ)E(x, t),I1(x, t)t=D1ΔI1(x, t)+q1γE(x, t)(μ+α1)I1(x, t),I2(x, t)t=D2ΔI2(x, t)+q2γE(x, t)(μ+α2)I2(x, t), (2)

    where tR+ and xR.

    The structure of this article is as follows. In Section 2, we firstly obtain the basic reproduction number R0 and two non-negative constant equilibriums for the corresponding reaction system, and these equilibriums are also two non-negative constant equilibriums for system (2). Then, we find a c>0 called as the minimal spread speed. Next, as R0>1 and the spread speed c>c, we prove that system (2) admits non-trivial and non-negative traveling wave solution by applying the Schauder fixed point theorem. Meanwhile, a suitable Lyapunov functional is used to prove the asymptotic behavior of traveling wave solution at x+. At last, we obtain the existence of traveling wave solution connecting two non-negative constant equilibriums when R0>1 and c=c. In Section 3, we firstly prove the non-existence of non-trivial and non-negative traveling wave solution connecting two non-negative constant equilibriums as R01. In particular, when R0>1 and c(0, c), we also study the non-existence via the two-sided Laplace transform. In Section 4, we take advantage of numerical simulations to display the existence of traveling wave solution connecting two non-negative constant equilibriums. Simultaneously, we also conclude that self-protection and treatment can decrease the spread speed for an epidemic via numerical simulations.

    In order to research traveling wave solution of system (2), the first step is to find what kind of constant equilibriums of system (2) exist. It is well known that there always exists an equilibrium (S01, S02, 0, 0, 0)=(Λρ+μ, ρΛμ(μ+ρ), 0, 0, 0) named as the disease-free equilibrium of system (2). We can also find a positive equilibrium by the following system,

    {dS1(t)dt=ΛβS1(t)[θI1(t)+I2(t)](ρ+μ)S1(t),dS2(t)dt=ρS1(t)βσS2(t)[θI1(t)+I2(t)]μS2(t),dE(t)dt=β[S1(t)+σS2(t)][θI1(t)+I2(t)](μ+γ)E(t),dI1(t)dt=q1γE(t)(μ+α1)I1(t),dI2(t)dt=q2γE(t)(μ+α2)I2(t). (3)

    The point (S01, S02, 0, 0, 0) is also the disease-free equilibrium of system (3). Via the next generation matrix method formulated in [24], the basic reproduction number for system (3) denoted by R0 can be expressed as

    R0=[q1γθβ(μ+γ)(μ+α1)+q2γβ(μ+γ)(μ+α2)](S01+σS02).

    Furthermore, taking advantage of the direct Lyapunov functional method, which is similar in [15], can claim the below theorem.

    Theorem 2.1. If R01, then there exists a unique constant equilibrium of system (3) which is the disease-free equilibrium (S01, S02, 0, 0, 0), and it is globally asymptotically stable. If R0>1, system (3) admits a positive equilibrium which is the endemic equilibrium (S1,S2, E, I1, I2), and it is globally asymptotically stable.

    In the rest of Section 2, we always assume R0>1. Then system (2) exists two constant equilibriums: the disease-free equilibrium (S01, S02, 0, 0, 0) and the endemic equilibrium (S1, S2, E, I1, I2). So we research the existence of traveling wave solution satisfying system (2) and connecting (S01, S02, 0, 0, 0) and (S1, S2, E, I1, I2). Now, we show that traveling wave solution of system (2) is special solution with the form as

    (S1(ξ), S2(ξ), E(ξ), I1(ξ), I2(ξ)),ξ=x+ctR. (4)

    Substitute formula (4) into systmen (2), and we can obtain the wave form equations as follows:

    {dS1(ξ)cS1(ξ)+ΛβS1(ξ)[θI1(ξ)+I2(ξ)](ρ+μ)S1(ξ)=0,dS2(ξ)cS2(ξ)+ρS1(ξ)βσS2(ξ)[θI1(ξ)+I2(ξ)]μS2(ξ)=0,D0E(ξ)cE(ξ)+β[θI1(ξ)+I2(ξ)][S1(ξ)+σS2(ξ)](μ+γ)E(ξ)=0,D1I1(ξ)cI1(ξ)+q1γE(ξ)(μ+α1)I1(ξ)=0,D2I2(ξ)cI2(ξ)+q2γE(ξ)(μ+α2)I2(ξ)=0, (5)

    for ξR, where and represent the first and the second derivative with respect to ξ, respectively. Since we would like to find positive traveling wave solution connecting two equilibria, we need the positive solution (S1(ξ), S2(ξ), E(ξ), I1(ξ), I2(ξ)) of system (5) with following boundary conditions

    Si()=S0i, E()=0, Ii()=0,Si(+)=Si, E(+)=E, Ii(+)=Ii,i=1, 2. (6)

    Linearizing the E-th and Ii-th equations of (5) at the disease-free equilibrium (S01, S02, 0, 0, 0) yields

    {D0E(ξ)cE(ξ)+β[θI1(ξ)+I2(ξ)](S01+σS02)(μ+γ)E(ξ)=0,D1I1(ξ)cI1(ξ)+q1γE(ξ)(μ+α1)I1(ξ)=0,D2I2(ξ)cI2(ξ)+q2γE(ξ)(μ+α2)I2(ξ)=0.

    Set (E(ξ), I1(ξ), I2(ξ))=(η0, η1, η2)eλξ and plug it into above equations, then we can obtain characteristic equations

    {D0η0λ2cη0λ+β(θη1+η2)(S01+σS02)(μ+γ)η0=0,D1η1λ2cη1λ+q1γη0(μ+α1)η1=0,D2η2λ2cη2λ+q2γη0(μ+α2)η2=0. (7)

    Let

    ˜A=(D0000D1000D2),˜B=(c000c000c),
    ˜V=(μ+γ000μ+α1000μ+α2),
    ˜F=(0βθ(S01+σS02)β(S01+σS02)q1γ00q2γ00).

    Denote Θ(λ, c)=λ2˜Aμ˜B˜V+˜F. Then system (7) can reduce to

    Θ(λ, c)(η0, η1, η2)T=0.

    And define A=˜V1˜A, B=˜V1˜B, F=˜V1˜F, then we yield that

    (Aλ2+Bλ+I)1Fη=η, (8)

    and

    (Aλ2+Bλ+I)1F=(0βθ(S01+σS02)m0(λ, c)β(S01+σS02)m0(λ, c)q1γm1(λ, c)00q2γm2(λ, c)00),

    where η=(η0, η1, η2)T, m0(λ, c)=D0λ2+cλ+μ+γ, m1(λ, c)=D1λ2+cλ+μ+α1, m2(λ, c)=D2λ2+cλ+μ+α2. Let M(λ, c)=(Aλ2+Bλ+I)1F, then equation (8) becomes

    M(λ, c)η=η.

    Let ρ(λ, c) be the principal eigenvalue of M(λ, c) and define

    λc=min{c+c24D0(μ+γ)2D0, c+c24D1(μ+α1)2D1,c+c24D2(μ+α2)2D2}.

    For c0 and λ[0, λc), a direct calculation indicates that

    ρ(λ, c)=[(βθq1γm0(λ, c)m1(λ, c)+βq2γm0(λ, c)m2(λ, c))(S01+σS02)]12. (9)

    Moreover, some properties of ρ(λ, c) can be described as the following lemma:

    Lemma 2.2. Below statements hold:

    (ⅰ) λc is strictly increasing in c[0,+), and limc+λc=+,

    (ⅱ) ρ(0, c)=R0 for any c[0, +), ρ(λ, 0) is strictly increasing in [0, λc), and ρ(λ, c)+ as λλc0 for any c0, where R0 is the basic reproduction number for system (3),

    (ⅲ) for λ(0,λc), cρ(λ, c)<0.

    Proof. It is well known that (ⅰ) is established, so we only prove (ⅱ) and (ⅲ). It follows from the definitions of both R0 and ρ(λ, c) that ρ(0, c)=R0 for any c[0, +). Due to ρ(λ, 0)>0 and mi(λ, 0)>0 for λ[0, λc) with i=0, 1, 2, it is the fact that

    ddλρ(λ, 0)=ρ12(λ, 0)(βθq1γ(S01+σS02)(D0λm1(λ, 0)+D1λm0(λ, 0))m20(λ, 0)m21(λ, 0)+βq2γ(S01+σS02)(D0λm2(λ, 0)+D2λm0(λ, 0))m20(λ, 0)m22(λ, 0))>0

    for λ[0, λc). In addition, we can indicate limλλc0mi(λ, c)=0 (i=0, 1, 2), respectively, so the principal eigenvalue ρ(λ, c) tends to + as λλc0. The direct derivative of the spread speed c can show that

    cρ(λ, c)=12λρ12(λ, c)(βθq1γ(S01+σS02)m20(λ, c)m21(λ, c)+βq2γ(S01+σS02)m20(λ, c)m22(λ, c))<0,

    for λ[0, λc). The proof is complete.

    According to Lemma 2.2, we define

    ˆλ(c)=minλ[0, λc)ρ(λ, c),c0.

    Then we conclude ˆλ(0)=R0 and limc+ˆλ(c)=0. Meanwhile, ˆλ(c) is continuous and strictly decreasing in c0. Assume that R0>1, then there exists a c>0 such that ˆλ(c)=1, ˆλ(c)>1 for c[0, c) and ˆλ(c)<1 for c(c, +). Let

    λ=inf{λ[0, λc): ρ(λ, c)=1},

    it indicates that ρ(λ, c)=1 and ρ(λ, c)<1 for any c>c. Define

    λ1(c)=sup{λ(0, λ): ρ(λ, c)=1, ρ(λ, c)1, λ(0, λ)}.

    Because of ρ(λ, c)<1 for c>c, we claim that the following lemma is established.

    Lemma 2.3. Assume that R0>1, then there exist c>0, named as the minimal spread speed, and λ(0, λc) such that

    (ⅰ) ρ(λ, c)>1 for any c[0, c) and λ(0, λc),

    (ⅱ) ρ(λ, c)=1, ρ(λ, c)>1 for any λ(0, λ) and ρ(λ, c)1 for any λ(0, λc),

    (ⅲ) as c>c, there exists λ1(c)(0, λ) such that ρ(λ1(c), c)=1, ρ(λ, c)1 for λ(0, λ1(c)) and ρ(λ1(c)+εn(c), c)<1 for some decreasing sequence {εn(c)} satisfying limn+εn=0 and λ1(c)+εn(c)<λ (nZ). Especially, λ1(c) is strictly decreasing in c>c.

    Since the M(λ, c) is non-negative and irreducible for λ[0, λc), the bleow lemma holds with utilizing the Perron-Frobenius theorem.

    Lemma 2.4. Assume that R0>1, for c>c, there are positive unit vectors η(c)=(η0(c), η1(c),η2(c))T and ζn(c)=(ζn0(c), ζn1(c), ζn2(c))T for nZ such that

    M(λ1(c), c)η(c)=η(c),
    M(λ1(c)+εn(c), c)ζn(c)=ρ(λ1(c)+εn(c), c)ζn(c).

    Fix c>c and let λ1(c), η(c)=(η0(c), η1(c), η2(c))T and ζn(c)=(ζn0(c), ζn1(c),ζn2(c))T (nZ) own same definitions in Lemma 2.3 and Lemma 2.4. For convenience, we use λ1, εn, η=(η0, η1, η2)T and ζn=(ζn0, ζn1, ζn2)T (nZ) instant of them, respectively. It follows from Lemma 2.4 and ρ(λ1+εn, c)<1 that following equations and inequalities are established for nZ

    {m0(λ1, c)η0+(S01+σS02)(θη1+η2)=0,m1(λ1, c)η1+q1γη0=0,m2(λ1, c)η2+q2γη0=0, (10)

    and

    {m0(λ1+εn, c)ζn0+(S01+σS02)(θζn1+ζn2)<0,m1(λ1+εn, c)ζn1+q1γζn0<0,m2(λ1+εn, c)ζn2+q2γζn0<0. (11)

    According to the above argument, we can construct suitable sub- and super-solutions which are defined in below lemmas. And then the local existence of solution for system (5) is proved via the Schauder fixed point theorem.

    Lemma 2.5. Let the vector function P(ξ)=(p0(ξ), p1(ξ), p2(ξ))T with pi(ξ)=ηi(ξ)eλ1ξ for ξR and i=0, 1, 2, and it satisfies

    {D0p0(ξ)cp0(ξ)+β(S01+σS02)(θp1(ξ)+p2(ξ))(μ+γ)p0(ξ)=0,D1p1(ξ)cp1(ξ)+q1γp0(ξ)(μ+α1)p1(ξ)=0,D2p2(ξ)cp2(ξ)+q2γp0(ξ)(μ+α2)p2(ξ)=0.

    Lemma 2.6. For each ω>0 small enough with ω<min{λ1,cd} and M>1 sufficiently large, the vector function S(ξ)=(S1(ξ),S2(ξ))T defined by Si(ξ)=max{S0i(1Meωξ), 0} (i=1, 2) satisfies

    cS1(ξ)dS1(ξ)+Λ(μ+ρ)S1(ξ)βS1(ξ)(θp1(ξ)+p2(ξ)), (12)
    cS2(ξ)dS2(ξ)+ρS1(ξ)μS2(ξ)βσS2(ξ)(θp1(ξ)+p2(ξ)), (13)

    for ξR and ξ1ωlnM.

    Proof. When ξ>1ωlnM, Si(ξ)=0 for i=1, 2, and inequalities (12)-(13) hold. When ξ<1ωlnM, it implies that Si(ξ)=S0i(1Meωξ and pi(ξ)=ηieλ1ξ. Due to ω<cd and eλ1ωωlnM0 as M+, it is shown that

    (dω+c)S01ωMeωξ+Λ(μ+ρ)S01(1Meωξ)β(θη1+η2)S01(1Meωξ)eλ1ξ=(dω+c)S01ωMeωξ+(μ+ρ)S01Meωξβ(θη1+η2)S01(1Meωξ)eλ1ξ[(dω+c)S01ωM+(μ+ρ)S01Mβ(θη1+η2)S01eλ1ωωlnM]eωξ0,

    so the inequality (12) is established. Furthermore,

    (dω+c)S02ωMeωξ+ρS01(1Meωξ)βσ(θη1+η2)S02(1Meωξ)eλ1ξμS02(1Meωξ)=(dω+c)S02ωMeωξβσ(θη1+η2)S02(1Meωξ)eλ1ξ[(dω+c)S01ωMβσ(θη1+η2)S01eλ1ωωlnM]eωξ0,

    and the inequality (13) is set up. The lemma is completely proved.

    Lemma 2.7. Let 0<ϵ<ω2 with ϵ=εn0 for some n0Z, and the eigenvector ζn0=(ζn00, ζn01, ζn02)T is defined by ζ=(ζ0, ζ1, ζ2)T. We define the vector map H(ξ)=(h0(ξ), h1(ξ), h2(ξ))T with hi(ξ)=max{ηieλ1ξKζie(λ1+ϵ)ξ, 0}, where ηi and ζi are defined in Lemma 2.4 with i=0, 1, 2, respectively. For K>0 large enough such that

    min{1ϵlnKζ0η0, 1ϵlnKζ1η1, 1ϵlnKζ2η2}>1ωlnM,

    then the vector map H(ξ) satisfies

    ch0(ξ)D0h0(ξ)(μ+γ)h0(ξ)+β(S1(ξ)+σS2(ξ))(θh1(ξ)+h2(ξ)),ξ<1ϵlnη0Kζ0, (14)
    ch1(ξ)D1h1(ξ)+q1γh0(ξ)(μ+α1)h1(ξ), ξ<1ϵlnη1Kζ1, (15)
    ch2(ξ)D2h2(ξ)+q2γh0(ξ)(μ+α2)h2(ξ), ξ<1ϵlnη2Kζ2. (16)

    Proof. Firstly, we prove the inequality (14). For ξ<1ϵlnη0Kζ0, we yield h0(ξ)=η0eλ1ξKζ0e(λ1+ϵ)ξ, S1(ξ)=S01(1Meωξ), and S2(ξ)=S02(1Meωξ). To prove the inequality (14), it is sufficient to show the following inequality:

    K[D0ζ0(λ1+ϵ)2+cζ0(λ1+ϵ)+(μ+γ)ζ0]e(λ1+ϵ)ξ+β(S1+σS2)[θh1(ξ)+h2(ξ)]+D0η0λ21eλ1ξcη0λ1eλ1ξ(μ+γ)η0eλ1ξ0, (17)

    which is

    Kζ0m0(λ1+ϵ, c)e(λ1+ϵ)ξ+η0m0(λ1, c)eλ1ξβ(S1+σS2)[θh1(ξ)+h2(ξ)]0.

    According to equations (10), the proof of the inequality (17) can be replaced by proving

    Kζ0m0(λ1+ϵ, c)e(λ1+ϵ)ξ+β(S01+σS02)(θη1+η2)eλ1ξβ(S1+σS2)[θh1(ξ)+h2(ξ)]0. (18)

    Because S0iSiS0iMeωξ and ηieλ1ξhi(ξ)Kζie(λ1+ϵ)ξ for i=1, 2, it is obtained that

    β(S01+σS02)(θη1+η2)eλ1ξβ(S1+σS2)[θh1(ξ)+h2(ξ)]=β(S01+σS02)(θη1+η2)eλ1ξβ(S01+σS02)[θh1(ξ)+h2(ξ)]+β(S01+σS02)[θh1(ξ)+h2(ξ)]β(S1+σS2)[θh1(ξ)+h2(ξ)]=β(S01+σS02)[θ(η1eλ1ξh1(ξ))+(η2eλ1ξ)h2(ξ)]+β[θh1(ξ)+h2(ξ)][(S01S1)+σ(S02S2)]β(S01+σS02)(θKζ1e(λ1+ω)ξ+Kζ2e(λ1+ω)ξ)+β[θh1(ξ)+h2(ξ)](S01Meωξ+σS02Meωξ).

    Thus, for the proof of the inequality (18), we only need to prove

    Ke(λ1+ϵ)ξ[m0(λ1+ϵ)ζ0+β(S01+σS02)(θζ1+ζ2)]+Mβ(S01+σS02)[θh1(ξ)+h2(ξ)]eωξ0,

    which is

    K[m0(λ1+ϵ)ζ0+β(S01+σS02)(θζ1+ζ2)]+Mβ(S01+σS02)[θη1(ξ)+η2(ξ)]e(ωϵ)ξ0. (19)

    For ξ<1ϵlnη0Kζ0, it is the fact that e(ωϵ)ξ0 as K+. Thus, combining inequalities (11), the inequality (19) is obtained, and the inequality (14) is established. Finally, we can prove inequalities (15) and (16) via the similar way in the proof of the inequality (14). The proof is complete.

    Now, we set X>max{1ϵlnη0Kζ0, 1ϵlnη1Kζ1, 1ϵlnη2Kζ2}. Define

    ΓX={χ1(), χ2(), φ0(), φ1(), φ2()C([X, X], R5)|χi(±X)=Si(±X),φj(±X)=hj(±X),Si(ξ)χi(ξ)S0i,hj(ξ)φj(ξ)pj(ξ),}

    where i=1, 2 and j=0, 1, 2. And it is well known that ΓX is closed and convex.

    For any

    (χ1(), χ2(), φ0(), φ1(), φ2())ΓX,

    we consider the following boundary-value problem for ξ(X, X),

    {dS1,X(ξ)+cS1,X(ξ)Λ+(μ+ρ)S1,X(ξ)+βS1,X(ξ)[θφ1(ξ)+φ2(ξ)]=0,dS2,X(ξ)+cS2,X(ξ)ρχ1(ξ)+μS2,X(ξ)+βσS2,X(ξ)[θφ1(ξ)+φ2(ξ)]=0,D0EX(ξ)+cEX(ξ)β[χ1(ξ)+σχ2(ξ)][θφ1(ξ)+φ2(ξ)]+(μ+γ)EX(ξ)=0,D1I1,X(ξ)+cI1,X(ξ)q1γφ0(ξ)+(μ+α1)I1,X(ξ)=0,D2I2,X(ξ)+cI2,X(ξ)q2γφ0(ξ)+(μ+α2)I2,X(ξ)=0, (20)

    satisfying the below boundary condition:

    S1,X(±X)=S1(±X), S2,X(±X)=S2(±X),EX(±X)=h0(±X), I1,X(±X)=h1(±X), I2,X(±X)=h2(±X). (21)

    Applying the Gilbarg and Trudinger's Corollary 9.18 in [6], we can claim that there exists a unique solution

    (S1,X, S2,X, EX, I1,X, I2,X),

    satisfying the problems (20)-(21), where

    (S1,X, S2,X, EX, I1,X, I2,X)W2,p((X, X), R5)C([X, X], R5),

    for p>1. And it is shown that (S1,X, S2,X, EX, I1,X, I2,X)W2,p((X, X), R5) C1,α([X, X], R5) for some α(0. 1) via the embedding theorem (see Gilbarg and Trudinger's Theorem 7.26 in [6]). Define the operator T=(T1, T2, T3, T4, T5) on ΓX such that

    S1,X=T1(χ1, χ2, φ0, φ1, φ2),S2,X=T2(χ1, χ2, φ0, φ1, φ2),EX=T3(χ1, χ2, φ0, φ1, φ2),I1,X=T4(χ1, χ2, φ0, φ1, φ2),I1,X=T5(χ1, χ2, φ0, φ1, φ2),

    for any (χ1, χ2, φ0, φ1, φ2)ΓX.

    Lemma 2.8. The operator T maps ΓX into ΓX.

    Proof. Firstly, we consider Si(ξ) (i=1, 2). It is well known that 0 is the sub-solution of the Si-th equation in equation ({20}), respectively. S01 and S02 are super-solutions of Si-th equations in equation ({20}), respectively. According to 0<Si,X(X)=Si(X)<S0i and 0=Si,X(X)=Si(X)<S0i, while combining the maximum principle in [19], it is the fact that 0Si,X(ξ)S0i for ξ[X, X]. Due to Lemma 2.6, it yields that Si(ξ) satisfies

    0dS1(ξ)+cS1(ξ)Λ+(μ+ρ)S1(ξ)+βS1(ξ)(θp1(ξ)+p2(ξ))dS1(ξ)+cS1(ξ)Λ+(μ+ρ)S1(ξ)+βS1(ξ)(θφ1(ξ)+φ2(ξ)),

    and

    0dS2(ξ)+cS2(ξ)ρS1(ξ)+μS2(ξ)+βσS2(ξ)(θp1(ξ)+p2(ξ))dS2(ξ)+cS2(ξ)ρχ1(ξ)+μS2(ξ)+βσS2(ξ)(θφ1(ξ)+φ2(ξ)).

    for any ξ[X, X] with X=1ωlnM. Because of Si,X(X)=Si(X) and Si,X(X)Si(X)=0, it is concluded that Si(ξ)Si,X(ξ) for ξ[X, X] by the maximum principle. Therefore, we claim that Si(ξ)Si,X(ξ)S0i for ξ[X, X].

    Secondly, we consider about EX, I1,X and I2,X. It follows from the maximum principle that EX0, Ii,X0 for any ξ[X, X]. According to Lemma 2.5, it is obtained that

    0=D0p0(ξ)+cp0(ξ)β(S01+σS02)(θp1(ξ)+p2(ξ))+(μ+γ)p0(ξ)D0p0(ξ)+cp0(ξ)β(S01+σS02)(θφ1(ξ)+φ2(ξ))+(μ+γ)p0(ξ),0=D1p1(ξ)+cp1(ξ)q1γp0(ξ)+(μ+α1)p1(ξ)D1p1(ξ)+cp1(ξ)q1γφ0(ξ)+(μ+α1)p1(ξ),

    and

    0=D2p2(ξ)+cp2(ξ)q2γp0(ξ)+(μ+α2)p2(ξ)D2p2(ξ)+cp2(ξ)q2γφ0(ξ)+(μ+α2)p2(ξ),

    for any ξ[X, X]. So the maximum principle shows that EX(ξ)p0(ξ), I1,X(ξ) p1(ξ) and I2,X(ξ)p2(ξ). for ξ[X, X]. Furthermore, Lemma 2.7 implies that

    0D0h0(ξ)+ch0(ξ)+(μ+γ)h0(ξ)β(S1(ξ)+σS2)(ξ)(θh1(ξ)+h2(ξ))D0h0(ξ)+ch0(ξ)+(μ+γ)h0(ξ)β(χ1(ξ)+σχ2)(ξ)(θφ1(ξ)+φ2(ξ)),

    for ξ[X,X0] with X0=1ϵlnη0Kζ0,

    0D1h1(ξ)+ch1(ξ)q1γh0(ξ)+(μ+α1)h1(ξ)D1h1(ξ)+ch1(ξ)q1γφ0(ξ)+(μ+α1)h1(ξ),

    for ξ[X,X1] with X1=1ϵlnη1Kζ1, and

    0D2h2(ξ)+ch2(ξ)q2γh0(ξ)+(μ+α2)h2(ξ)D2h2(ξ)+ch2(ξ)q2γφ0(ξ)+(μ+α2)h2(ξ),

    for ξ[X,X2] with X2=1ϵlnη2Kζ2. Owing to EX(X)=h0(X), I1,X(X)=h1(X) and I2,X(X)=h2(X), while combining the fact EX(X0)h0(X0)=0, I1,X(X1)h1(X1)=0 and I2,X(X2)h2(X2)=0, we can implies that h0(ξ)EX(ξ), h1(ξ)I1,X(ξ) and h2(ξ)I2,X(ξ) for ξ[X, Xi] (i=0, 1, 2) by the maximum principle. Thus, one yields h0(ξ)EX(ξ)p0(ξ), h1(ξ)I1,X(ξ)p1(ξ) and h2(ξ)I2,X(ξ)p2(ξ) for ξ[X, X]. This completes the proof.

    By taking advantage of the classic embedding theorem, T is a compact operator from ΓX to ΓX. In fact, T: ΓXΓX is also a completely continuous operator (see [27]). Above all, the Schauder fixed point theorem implies that there exists a vector function (S1,X, S2,X, EX, I1,X, I2,X)ΓX satisfying

    (S1,X, S2,X, EX, I1,X, I2,X)=T(S1,X, S2,X, EX, I1,X, I2,X),

    for ξ[X, X], which includes that (S1,X, S2,X, EX, I1,X, I2,X) satisfies following equations for i=1, 2,

    {dS1,X(ξ)+cS1,X(ξ)Λ+(μ+ρ)S1,X(ξ)+βS1,X(ξ)[θI1,X(ξ)+I2,X(ξ)]=0,dS2,X(ξ)+cS2,X(ξ)ρS1,X(ξ)+μS2,X(ξ)+βσS2,X(ξ)[θI1,X(ξ)+I2,X(ξ)]=0,D0EX(ξ)+cEX(ξ)β[S1,X(ξ)+σS2,X(ξ)][θI1,X(ξ)+I2,X(ξ)]+(μ+γ)EX(ξ)=0,D1I1,X(ξ)+cI1,X(ξ)q1γEX(ξ)+(μ+α1)I1,X(ξ)=0,D2I2,X(ξ)+cI2,X(ξ)q2γEX(ξ)+(μ+α2)I2,X(ξ)=0,Si,X(±X)=Si(±X), EX(±X)=h0(±X), Ii,X(±X)=hi(±X). (22)

    We have proved the local existence of solution for system (5). In order to obtain the global existence, we need the following estimate.

    Lemma 2.9. For a given Y>0, there exist some positive constants NSi(Y),NE(Y) and NIi(Y) such that

    Si,XC3[Y, Y]NSi(Y), EXC3[Y, Y]NE(Y), Ii,XC3[Y, Y]NIi(Y), (23)

    with i=1, 2, and these positive constants are independent of

    X>max{Y, 1ωln1M, 1ϵlnη0Kζ0, 1ϵlnη1Kζ1, 1ϵlnη2Kζ2 }.

    Proof. We always set i=1, 2. The equation (22) can imply that Si,X(ξ)S0i, EX(ξ)η0eλ1Y^NE(Y), and Ii,X(ξ)ηieλ1Y^NIi(Y) for any ξ[Y, Y]. And applying Lp (p2) estimates of linear elliptic differential equations to Si,X, we can claim that

    S1,XW2,p(Y,Y)Ω1(Λ+βS01[θ^NI1(Y)+^NI2(Y)]+ϕ1W2,p(Y,Y)),

    and

    S2,XW2,p(Y,Y)Ω2(ρS01+βσS02[θ^NI1(Y)+^NI2(Y)]+ϕ2W2,p(Y,Y)),

    where Ωi is a constant depending on Y. ϕi can be considered as a linear function connecting points (Y, Si,X(Y)) and (Y, Si,X(Y)), respectively. Therefore, there exists a constant ^QSi(Y) such that Si,XW2,p(Y,Y)^QSi(Y) for any X>Y, respectively. Owing to W2,p(Y, Y)C1,α[Y, Y] for α=11p, it is shown that Si,XC1,α[Y, Y]~NSi(Y)Si,XWp,α(Y, Y) where ~NSi(Y) is a constant depending on Y, which can lead to Si,XC1,α[Y, Y]^NSi(Y) for ^NSi(Y)=^QSi(Y)~NSi(Y)>0. According to the first and second equations in equations (22), we also obtain Si,XC2[Y, Y]^NSi(Y) for ^NSi(Y)>0, respectively. Via the similar way, we further yield that EXC2[Y, Y]^NE(Y) and Ii,XC2[Y, Y]^NIi(Y). Finally, the estimate (23) is established with differentiating two sides of the first five equations in equations (22). The proof is finished.

    Set a sequence of positive numbers {Xm}m>0 satisfying Xm+ as m+. Thus, by Lemma 2.9, there exists a solution (S1, S2, E, I1, I2)C2(R, R5) of system (5) such that

    S1(ξ)S1(ξ)S01, S2(ξ)S2(ξ)S02,h0(ξ)E(ξ)p0(ξ), h1(ξ)I1(ξ)p1(ξ), h2(ξ)I2(ξ)p2(ξ) (24)

    with ξR. According to inequalities (24), we can gain

    limξS1(ξ)=S01, limξS2(ξ)=S02, limξE(ξ)=0, 
    limξI1(ξ)=0, limξI2(ξ)=0.

    Now, we need to show some estimates about solution (S1(ξ), S2(ξ), E(ξ), I1(ξ), I2(ξ)) in order to research the asymptotic behavior as ξ+.

    Lemma 2.10. Let rmin{μ, μ+α1, μ+α2}, then we have

    0E(ξ)+I1(ξ)+I2(ξ)dDminΛr (25)

    and

    Λμ+ρ+βdDminΛrS1(ξ)S01,ρΛ(μ+ρ+βdDminΛr)(μ+βσdDminΛr)S2(ξ)S02, (26)

    where Dmin=min{D0, D1, D2} and ξR.

    Proof. In this proof, we still set i=1, 2. As E(ξ), I1(ξ), I2(ξ) are non-negative and not identically zero, the strong maximum principle implies that E(ξ), I1(ξ), I2(ξ)>0 for any ξR and E(ξ)+I1(ξ)+I2(ξ)>0. Define

    m1(ξ)=ρS1(ξ)+βS1(ξ)[θI1(ξ)+I2(ξ)], m2(ξ)=ρS1(ξ)βσS2(ξ)[θI1(ξ)+I2(ξ)],

    and

    n1(ξ)=q1γE(ξ), n2(ξ)=q1γE(ξ).

    Due to the define of r, it then follows that

    {dS1(ξ)+cS1(ξ)+rS1(ξ)Λm1(ξ),dS2(ξ)+cS2(ξ)+rS2(ξ)m2(xi),D0E(ξ)+cE(ξ)+rE(ξ)m1(ξ)m2(ξ)n1(ξ)n2(ξ),D1I1(ξ)+cI1(ξ)+rI1(ξ)n1(ξ),D2I2(ξ)+cI2(ξ)+rI2(ξ)n2(ξ). ξR, (27)

    So we need to consider the following Cauchy problems

    {tu1(t, ξ)dξ2u1(t, ξ)+cξu1(t, ξ)+ru1(t, ξ)=Λm1(ξ),u1(0, ξ)=S1(ξ),{tu2(t, ξ)dξ2u2(t, ξ)+cξu2(t, ξ)+ru2(t, ξ)=m2(ξ),u2(0, ξ)=S2(ξ),{tv0(t, ξ)dξ2v0(t, ξ)+cξv0(t, ξ)+rv0(t, ξ)=m1(ξ)m2(ξ)n1(ξ)n2(ξ),v0(0, ξ)=E(ξ),{tvi(t, ξ)dξ2vi(t, ξ)+cξvi(t, ξ)+rvi(t, ξ)=ni(ξ),vi(0, ξ)=Ii(ξ),

    for t>0, ξR. Then, via the Theorem 12 and the Theorem 16 in [5], we can indicate

    u1(t, ξ)=ertR14πdte(ξcty)24dtS1(y)dy+t0Rers4πdse(ξcty)24ds(Λm1(y))dyds,u2(t, ξ)=ertR14πdte(ξcty)24dtS2(y)dy+t0Rers4πdse(ξcty)24dsm2(y)dyds,v0(t, ξ)=ertR14πD0te(ξcty)24D0tE(y)dy+t0Rers4πD0se(ξcty)24D0s(m1(y)m2(y)n(y)n(y))dyds,vi(t, ξ)=ertR14πDite(ξcty)24DitIi(y)dy+t0Rers4πDise(ξcty)24Disni(y)dyds,

    for t>0, ξR. Applying the comparison principle in [19] concludes

    Si(ξ)ui(t, ξ), E(ξ)v0(t, ξ), Ii(ξ)vi(t, ξ), t>0, ξR.

    Let t+, then one yields

    S1(ξ)Λrf1(ξ), S2(ξ)f2(ξ), E(ξ)f0(ξ)g0(ξ), Ii(ξ)gi(ξ),

    for t>0, ξR, where

    fi(ξ)=+0ert4πdt+mi(ξyct)ey24dtdydt,f0(ξ)=+0ert4πD0t+[m1(ξyct)m2(ξyct)]ey24D0tdydt,g0(ξ)=+0ert4πD0t+[n1(ξyct)+n2(ξyct)]ey24D0tdydt,gi(ξ)=+0ert4πDit+ni(ξyct)ey24Ditdydt.

    Owing to dD0Di, we yield

    D0g0(ξ)D1g1(ξ)+D2g2(ξ)

    and

    d[f1(ξ)f2(ξ)]D0f0(ξ)

    for any ξR. We also have DiIi(ξ)Digi(ξ). Consequently, it is shown that

    E(ξ)+D1D0I1(ξ)+D2D0I2(ξ)f0(ξ)dD0f1(ξ)dD0f2(ξ)dD0[λrS1(ξ)]dD0S2(ξ)dD0Λr,

    which implies

    E(ξ)+I1(ξ)+I2(ξ)D0DminE(ξ)+D1DminI1(ξ)+D2DminI2(ξ)dDminΛr,

    for Dmin=min{D0, D1, D2} and any ξR.

    On the other hand, one has

    dS1(ξ)cS1(ξ)+ΛβS1(ξ)dDminΛr(μ+ρ)S1(ξ).

    for any ξR. Then the maximum principle implies that

    Λμ+ρ+βdDminΛrS1(ξ), ξR.

    Via the similar argument on S1(ξ), we can indicate

    ρΛ(μ+ρ+βdDminΛr)(μ+βσdDminΛr)S2(ξ), ξR.

    This lemma is completely proved.

    Since the system consisted by E-th and Ii-th equations in system (5) is cooperation and irreducible, the Theorem 2.2 in [2] and Lemma 2.10 can claim that there exists a positive constant M1 such that

    max{max[ξ1,ξ+1]E, max[ξ1,ξ+1]I1, max[ξ1,ξ+1]I2}M1min{min[ξ1,ξ+1]E, min[ξ1,ξ+1]I1, min[ξ1,ξ+1]I2}. (28)

    Furthermore, there exists a constant ˆM>0 such that

    |E(ξ)E(ξ)|+|I1(ξ)I1(ξ)|+|I2(ξ)I2(ξ)|ˆM, (29)

    for ξR. Actually, Lp interior estimate shows there exists a positive constant M2>0 satisfying

    max{EW2,p(ξ12,ξ+12), I1W2,p(ξ12,ξ+12), I2W2,p(ξ12,ξ+12)}M2{ELp(ξ1,ξ+1)+I1Lp(ξ1,ξ+1)+I2Lp(ξ1,ξ+1)}6M2max{max[ξ1,ξ+1]E, max[ξ1,ξ+1]I1, max[ξ1,ξ+1]I2},

    for any ξR and p>1. The above inequality, combining the embedding theorem, can conclude that there exists a positive costant M3 satisfying

    max{EC[x12,x+12], I1C[x12,x+12], I2C[x12,x+12]}M3max{max[x1,x+1]E, max[x1,x+1]I1, max[x1,x+1]I2}.ξR. (30)

    Set ˆM=M1M3, then the inequality (29) is established via the estimate (30).

    In order to take advantage of a suitable Lyapunov functional to research the asymptotic behavior of (S1(ξ), S2(ξ), E(ξ), I1(ξ), I2(ξ)) as ξ+, we define

    ˆE={S1(), S2(), E(), I1(), I2()C1(R, (0, +))××C1(R, (0, +)),S1()>0, S2()>0, E()>0, I1()>0, I2()>0,ˆM>0, |E(ξ)E(ξ)|+|I1(ξ)I1(ξ)|+|I2(ξ)I2(ξ)|ˆM.},

    Let g(x)=x1lnx and define a suitable Lyapunov functional

    V(S1, S2, E, I1, I2)(ξ)=S1[dS1(1S1(ξ)1S1)+cg(S1(ξ)S1)]+S2[dS2(1S2(ξ)1S2)+cg(S2(ξ)S2)]+E[D0E(1E(ξ)1E)+cg(E(ξ)E)]+C1I1[D1I1(1I1(ξ)1I1)+cg(I1(ξ)I1)]+C2I2[D2I2(1I2(ξ)1I2)+cg(I2(ξ)I2)], (31)

    where

    C1=βθI1(S1+σS2)q1γE,C2=βI2(S1+σS2)q2γE,

    for each (S1(), S2(), E(), I1(), I2())ˆE. Then we claim the below lemma.

    Lemma 2.11. Let (A) be satisfied and (S1(), S2(), E(), I1(), I2()) be a positive solution of system (5) satisfying

    1NSi(ξ)Si, (32)
    E(ξ)NE, (33)
    Ii(ξ)NIi, (34)

    and

    |E(ξ)E(ξ)|+|I1(ξ)I1(ξ)|+|I2(ξ)I2(ξ)|N (35)

    for any ξR and i=1, 2, where N is a positive constant. Then there exists a constant m>0, depending on N, such that

    mV(ξ)<+,ξR, (36)

    where the map V(ξ) is defined as formula (31). Moreover, the map V(ξ) is not increasing. In particular, Si(ξ)=Si, E(ξ)=E, Ii(ξ)=Ii as the map V(ξ) is a constant.

    Proof. The previous description has shown S1 and S2 are bounded in C2(R). Via inequalities (32)-(35), we can conclude that for any ξR

    |d2i=1SiSi(ξ)(1Si(ξ)1Si)+D0EE(ξ)(1E(ξ)1E)+2i=1CiIiDiIi(xi)(1Ii(ξ)1Ii)|d2i=1SiSi(N+1Si)+ˆDˆCN+ˆDˆC(|E(ξ)E|+|I1(ξ)I1|+|I2(ξ)I2|)d2i=1SiSi(N+1Si)+ˆDˆCN+ˆDˆCN2, (37)

    where ˆD=max{D0E, D1I1 D2I2}, and ˆC=max{1, C1, C2}. Let

    Φ(ξ)=cg(S1(ξ)S1)+cg(S2(ξ)S2)+cg(E(ξ)E)+cC1g(I1(ξ)I1)+cC2g(I2(ξ)I2). (38)

    According to both the definition of g() and (32)-(34), it is shown that 0Φ(ξ)<+,ξR. Then, by combining the inequality (37), the inequality (36) holds.

    Since a direct calculation with letting x1=S1(ξ)S1, x2=S2(ξ)S2, x3=E(ξ)E, x4=I1(ξ)I1, x5=I2(ξ)I2 leads to

    dV(ξ)dξ=(ΛβθS1I1βS1I2ρS1)(2x11x1)+(ρS1βσθS2I1βσS2I2)(31x1x2x1x2)+βθS1I1(31x1x1x4x3x3x4)+βS1I2(31x1x1x5x3x3x5)+βσθS2I1(41x1x1x2x2x4x3x3x4)+βσS2I2(41x1x1x2x2x5x3x3x5).

    Therefore, via the mean inequality, we conclude that

    dV(ξ)dξ0,ξR,

    which implies that the map V(ξ) is non-increasing. Especially, when

    dV(ξ)dξ=0,ξR,

    the map V(ξ) is a constant, which indicates that

    S1(ξ)S1, S2(ξ)S2, E(ξ)E, I1(ξ)I1, I2(ξ)I2,ξR.

    This completes the proof.

    Now, we gain the first theorem for existence of traveling wave solution for system (2) as below:

    Theorem 2.12. If (A) and R0>1 hold, system (2) admits a non-trivial and non-negative traveling wave solution (S1(ξ), S2(ξ), E(ξ), I1(ξ), I2(ξ)) satisfying the boundary condition (6) for each c>c, where c is the minimal spread speed and R0 is the basic reproduction number for system (3).

    Proof. We still set i=1, 2 in this proof. It follows from the previous argument that there exists a vector function

    (S1(ξ), S2(ξ), E(ξ), I1(ξ), I2(ξ))

    satisfying system (5), and

    limξS1(ξ)=S01, limξS2(ξ)=S02, limξE(ξ)=0,limξI1(ξ)=0, limξI2(ξ)=0,

    for any ξR. Therefore we only need to show that

    limξ+S1(ξ)=S1, limξ+S2(ξ)=S2, limξ+E(ξ)=E,limξ+I1(ξ)=I1, limξ+I2(ξ)=I2,

    Take an arbitrary increasing sequence {ξm} with ξm>0 and m0 such that ξm+ as m+. Define

    Si,m(ξ)=Si(ξ+ξm), Em(ξ)=E(ξ+ξm), Ii,m(ξ)=Ii(ξ+ξm).

    Via the elliptic estimate, it may assume that the sequence (S1,m, S2,m, Em, I1,m,I2,m) converges towards (S1,, S2,, E, I1,, I2,) in C1loc(R)××C1loc(R). As a result, (S1,, S2,, E, I1,,I2,) is also a solution of system (5). In addition, the map V(ξ) defined as the formula (31) is not increasing, then we yield

    V(S1,m, S2,m, Em, I1,m, I2,m)(ξ)V(S1, S2, Em, I1, I2)(ξ)

    for any ξR. Since the map V(ξ) is bounded via Lemma 2.11, there exists a constant ˆGR such that

    limm+V(S1,m, S2,m, Em, I1,m, I2,m)(ξ)=ˆG,ξR,

    which implies that

    V(S1,, S2,, E, I1,, I2,)(ξ)ˆG

    in C1loc(R). Combining Lemma 2.11, we can claim that

    Si,=Si, E=E, Ii,=Ii,Si,=0, E=0, Ii,=0.

    Via the arbitrariness of the sequence {ξm}, we finally indicate

    limξ+Si(ξ)=Si, limξ+E(ξ)=E, limξ+Ii(ξ)=Ii.

    The proof is completed.

    Furthermore, the second theorem of existence for traveling wave solution for system (2) is stated as below:

    Theorem 2.13. Assume that (A) is satisfied and R0>1. Then for c=c, system (2) also admits a non-trivial and non-negative traveling wave solution (S1(ξ), S2(ξ), E(ξ), I1(ξ), I2(ξ)) satisfying the boundary condition (6), where c is the minimal spread speed and R0 is the basic reproduction number for system (3).

    Proof. Step 1. Take a decreasing sequence {cm}(c, c+1) with limm+cm=c. It follows from Theorem 2.12 that there exists a solution (S1,m, S2,m, Em, I1,m, I2,m) of system (5) for each cm satisfying conditions (6), (25), (26), (28) and (29). Since (S1,m(+a), S2,m(+a), Em(+a), I1,m(+a), I2,m(+a)) is also the solution of system (5) satisfying equations (6) for any aR, we can let

    S1,m(0)=S01+S12.

    The interior elliptic estimates, Arzela-Ascoli theorem and a diagonalization argument can indicate a subsequence of {(S1,m, S2,m, Em, I1,m. I2,m)} defined again by {(S1,m, S2,m, Em, I1,m. I2,m)} satisfies

    (S1,m, S2,m, Em, I1,m. I2,m)(S1, S2, E, I1. I2)

    as m+ in C2loc(R, R5). And it is well known that (S1, S2, E, I1. I2) satisfies system (5) and

    S1(0)=S01+S12, (39)

    which implies that

    (S_{1},\ S_{2},\ E,\ I_{1}.\ I_{2})\not\equiv(S_{1}^0,\ S_{2}^0,\ 0,\ 0,\ 0).

    Moreover, we yield S_i>0,\ E>0,\ I_i>0. Above all, it is concluded that (S_{1},\ S_{2},\ E,\ I_{1}.\ I_{2}) satisfies estimates (25), (26), (28) and (29). Via Lemma 2.11, one gains

    \begin{equation*} S_i(+\infty) = S_i^*,\ E(+\infty) = E^*,\ I_i(+\infty) = I_i^*,\ i = 1,\ 2. \end{equation*}

    Next, we need to prove what the solution converges to as \xi\rightarrow-\infty. Since Lemma 2.11 implies V(\xi) defined as the formula (31) is non-increasing, then we can obtain either

    \begin{equation} \lim\limits_{\xi\rightarrow-\infty}V(\xi) = L < +\infty, \end{equation} (40)

    or

    \begin{equation} \lim\limits_{\xi\rightarrow-\infty}V(\xi) = +\infty. \end{equation} (41)

    If the formula (40) holds, via the similar way in Lemma 2.11, it can claim that

    \begin{equation*} S_i(-\infty) = S_i^*,E(-\infty) = E^*,\ I_i(-\infty) = I^*,\ i = 1,\ 2, \end{equation*}

    and then L = 0, which implies that V\equiv0 for any \xi\in\mathbb{R}. Consequently, applying Lemma 2.11 concludes that

    \begin{equation*} S_i(\xi)\equiv S_i^*,\ E(\xi)\equiv E^*,\ I_i(\xi)\equiv I_i^*,\ \forall\xi\in\mathbb{R},\ i = 1,\ 2, \end{equation*}

    which contradicts the equation (39). Thus, the equation (41) must be only workable. Due to the inequality (37), it is shown that

    \begin{equation} \lim\limits_{\xi\rightarrow-\infty}\Phi(\xi) = +\infty, \end{equation} (42)

    where \Phi(\xi) is defined as the formula (38) in the proof of Lemma 2.11. Now, we firstly show that

    \begin{equation} \lim\limits_{\xi\rightarrow-\infty}\inf E(\xi) = 0. \end{equation} (43)

    On the contrary, if E(\xi)>\delta in \xi\in\mathbb{R} for some \delta>0. According to E(+\infty) = E^*, then it follows from the estimate (28) that there exists a constant \hat\delta>0 such that

    I_i(\xi) > \hat\delta,\quad\forall\xi\in\mathbb{R},

    which indicates that

    \begin{equation*} \lim\limits_{\xi\rightarrow-\infty}\Phi(\xi) < +\infty, \end{equation*}

    and contradicts the equation (42). Therefore, the equation (43) holds. Secondly, we prove that

    \lim\limits_{\xi\rightarrow-\infty}E(\xi) = 0.

    If

    \begin{equation*} \lim\limits_{\xi\rightarrow-\infty}\sup E(\xi) = \delta > 0, \end{equation*}

    there exists a sequence \{\xi_j\} satisfying

    \begin{equation*} \lim\limits_{j\rightarrow\infty}E(\xi_j) = \delta, \end{equation*}

    Via the estimate (28), we can have

    I_i(\xi_j)\leq\frac{1}{2M_1}\delta,\quad i = 1,\ 2.

    Then, it is implied that

    \begin{equation*} \lim\limits_{j\rightarrow\infty}\sup V(\xi_j) < +\infty, \end{equation*}

    which contradicts the equation (41). Therefore,

    \begin{equation*} \lim\limits_{\xi\rightarrow-\infty}E(\xi) = 0. \end{equation*}

    In the similar way, we can also claim that

    \begin{equation*} \lim\limits_{\xi\rightarrow-\infty}I_i(\xi) = 0. \end{equation*}

    Finally, set i = 1,\ 2 and we show that

    \begin{equation*} \lim\limits_{\xi\rightarrow-\infty}S_i(\xi) = S_i^0 \end{equation*}

    In order to hit the target, we firstly prove the existence of \lim_{\xi\rightarrow-\infty}S_i(\xi). On the contrary, we assume that one of \lim_{\xi\rightarrow-\infty}S_i(\xi) does not exist. Since S_i(\xi) satisfies (26), we obtain

    \begin{equation*} \lim\limits_{\xi\rightarrow-\infty}\inf\{S_1(\xi)+S_2(\xi)\} < \lim\limits_{\xi\rightarrow-\infty}\sup\{S_1(\xi)+S_2(\xi)\}\leq \frac{\Lambda}{\mu}. \end{equation*}

    Take a sequence \{\xi_n\} satisfies \xi_n\rightarrow-\infty as n\rightarrow+\infty and

    \begin{align} &\lim\limits_{n\rightarrow+\infty}[S_1(\xi_n)+S_2(\xi_n)] = \lim\limits_{\xi\rightarrow-\infty}\inf\{S_1(\xi)+S_2(\xi)\} < \frac{\Lambda}{\mu},\\ &\frac{\mathrm{d}}{\mathrm{d}\xi_n}[S_1(\xi_n)+S_2(\xi_n)] = 0,\ \frac{\mathrm{d}^2}{\mathrm{d}\xi_n^2}[S_1(\xi_n)+S_2(\xi_n)]\leq0. \end{align} (44)

    Since \lim_{n\rightarrow+\infty}I_i(\xi_n) = 0, adding the S_1 -th equation and S_2 -th equation implies that

    \begin{equation*} \lim\limits_{n\rightarrow+\infty}[S_1(\xi_n)+S_2(\xi_n)]\geq\frac{\Lambda}{\mu}, \end{equation*}

    which leads to a contradiction to inequalities (44). Thus, \lim_{\xi\rightarrow-\infty}S_i(\xi) exists, respectively.

    Step 2. This step is to prove \lim_{\xi\rightarrow-\infty}S_i(\xi) = S_i^0 Let \lim_{\xi\rightarrow-\infty}S_i(\xi) = k_i. Utilizing the equation

    \begin{equation*} -dS_1^{''}(\xi)+cS_1^{'}(\xi)+(\mu+\rho)S_1(\xi) = \Lambda-\beta S_1(\xi)[\theta I_1(\xi)+I_2(\xi)],\quad\xi\in\mathbb{R}, \end{equation*}

    we can obtain that

    \begin{align*} S_1(\xi) = &\frac{1}{z}\int_{-\infty}^{\xi}e^{A_1(\xi-x)}[\lambda-\beta S_1(x)(\theta I_1(x)+I_2(x))]\mathrm{d}x\\ &+\frac{1}{z}\int_{\xi}^{+\infty}e^{A_2(\xi-x)}[\lambda-\beta S_1(x)(\theta I_1(x)+I_2(x))]\mathrm{d}x\\ = &\frac{1}{z}\int_{-\infty}^{0}e^{A_1x}[\lambda-\beta S_1(\xi-x)(\theta I_1(\xi-x)+I_2(\xi-x))]\mathrm{d}x\nonumber\\ &+\frac{1}{z}\int_{0}^{+\infty}e^{A_2x}[\lambda-\beta S_1(\xi-x)(\theta I_1(\xi-x)+I_2(\xi-x))]\mathrm{d}x, \end{align*}

    where

    \begin{equation*} z = d(A_1-A_2),\ A_1 = \frac{c-\sqrt{c^2+4d(\mu+\rho)}}{2},\ A_2 = \frac{c-\sqrt{c^2+4d(\mu+\rho)}}{2}. \end{equation*}

    As \xi\rightarrow-\infty, it follows from the Lebesgue dominated convergence theorem that

    \begin{equation*} k_1 = \frac{\Lambda}{z}\left(\int_{-\infty}^{0}s^{A_1x}\mathrm{d}x+\int_{0}^{+\infty}s^{A_2x}\mathrm{d}x\right), \end{equation*}

    which leads to

    k_1 = \frac{\Lambda}{\mu+\rho} = S_1^0.

    Via the similar argument on S_2(\xi) , we can get

    k_2 = \frac{\rho k_1}{\mu} = S_2^0.

    This completes the proof.

    The previous section has stated the existence of traveling wave solution connecting disease-free equilibrium and endemic equilibrium when R_0>1 and c\geq c^*. In this section, we aim to prove the non-existence of this solution in three cases: (1) R_0<1, (2) R_0 = 1, (3) R_0>1 and c\in(0,\ c^*).

    Theorem 3.1. If R_0<1, there does not exist a non-negative and non-trivial traveling wave solution of system (5) satisfying the boundary condition (6), where R_0 is the basic reproduction number for system (3).

    Proof. On the contrary, assume that there exists a solution (S_1(\xi),\ S_2(\xi),\ E(\xi), I_1(\xi),\ I_2(\xi)) satisfying system (5) and the boundary condition (6). Let E_{sup} = \sup_{\xi\in\mathbb{R}}E(\xi) and take i = 1,\ 2. We can yield from the I_i -th equation that

    \begin{equation*} D_iI_i^{''}(\xi)-cI_i^{'}(\xi)+q_i\gamma E_{\sup}-(\mu+\alpha_i)I_i(\xi)\geq0,\quad\forall\xi\in\mathbb{R}. \end{equation*}

    It follows from the comparison principle that

    \begin{equation*} I_i(\xi)\leq\frac{q_i\gamma E_{\sup}}{\mu+\alpha_i},\quad\forall\xi\in\mathbb{R}. \end{equation*}

    Next we research the following equation

    \begin{equation*} D_0\bar{E}^{''}(\xi)-c\bar{E}^{'}(\xi)+\bar{\Lambda}\beta\left(\theta\frac{q_1\gamma E_{\sup}}{\mu+\alpha_1}+\frac{q_2\gamma E_{\sup}}{\mu+\alpha_2}\right)-(\mu+\gamma)\bar{E}(\xi) = 0, \end{equation*}

    where \bar{\Lambda} = S_1^0+\sigma S_2^0. Via the comparison principle, we can show that

    \begin{equation*} E(\xi)\leq\bar{\Lambda}\left(\theta\frac{q_1\gamma}{\mu+\alpha_1}+\frac{q_2\gamma}{\mu+\alpha_2}\right)E_{\sup}, \end{equation*}

    which indicates

    \begin{equation*} \bar{\Lambda}\left(\theta\frac{q_1\gamma}{\mu+\alpha_1}+\frac{q_2\gamma}{\mu+\alpha_2}\right)\geq1. \end{equation*}

    and contradicts the fact R_0<1. Above all, there exists no non-negative and non-trivial traveling wave solution as R_0<1.

    Theorem 3.2. As R_0 = 1, there does not exist a non-negative and non-trivial traveling wave solution of system (5) satisfying the boundary condition (6), where R_0 is the basic reproduction number for system (3).

    Proof. Set a new sequence \{\xi_m\}\subset\mathbb{R} such that

    \begin{equation*} \lim\limits_{m\rightarrow+\infty}E(\xi_m) = \hat{B} = \sup\limits_{\xi\in\mathbb{R}}E(\xi). \end{equation*}

    Now, we need to show \hat{B} = 0 by contradiction. Assume \hat{B}>0, and we consider the function sequence (S_{1,m}(\xi),\ S_{2,m}(\xi),\ E_{m}(\xi),\ I_{1,m}(\xi),\ I_{2,m}(\xi)) = (S_{1}(\xi+\xi_m),\ S_{2}(\xi+\xi_m),\ E_{m}(\xi+\xi_m),\ I_{1}(\xi+\xi_m),\ I_{2}(\xi+\xi_m)). We take a function subsequence denoted again by (S_{1,m}(\xi),\ S_{2,m}(\xi),\ E_{m}(\xi),\ I_{1,m}(\xi),\\ I_{2,m}(\xi)), and utilizing elliptic estimates shows that

    \begin{equation*} (S_{1,m}(\xi),\ S_{2,m}(\xi),\ E_{m}(\xi),\ I_{1,m}(\xi),\ I_{2,m}(\xi))\rightarrow(\tilde{S_1}(\xi),\ \tilde{S_2}(\xi),\ \tilde{E}(\xi),\ \tilde{I_1}(\xi),\ \tilde{I_2}(\xi)), \end{equation*}

    as m\rightarrow+\infty in C_{loc}^2(\mathbb{E}) with (\tilde{S_1}(\xi),\ \tilde{S_2}(\xi),\ \tilde{E}(\xi),\ \tilde{I_1}(\xi),\ \tilde{I_2}(\xi)) satisfying

    \begin{equation*} \left\{ \begin{split} &d\tilde{S_1}^{''}(\xi)-c\tilde{S_1}^{'}(\xi)+\Lambda-\beta \tilde{S_1}(\xi)(\theta \tilde{I_1}(\xi)+\tilde{I_2}(\xi))-(\rho+\mu)\tilde{S_1}(\xi) = 0,\\ &d\tilde{S_2}^{''}(\xi)-c\tilde{S_2}^{'}(\xi)+\rho \tilde{S_1}(\xi)-\beta\sigma\tilde{S_2}(\xi)(\theta\tilde{I_1}(\xi)+\tilde{I_2}(\xi))-\mu \tilde{S_2}(\xi) = 0,\\ &D_0\tilde{E}^{''}(\xi)-c\tilde{E}^{'}(\xi)+\beta\left[\theta \tilde{I_1}(\xi)+\tilde{I_2}(\xi)\right]\left[\tilde{S_1}(\xi)+\sigma \tilde{S_2}(\xi)\right]-(\mu+\gamma)\tilde{E}(\xi) = 0,\\ &D_1\tilde{I_1}^{''}(\xi)-c\tilde{I_1}^{'}(\xi)+q_1\gamma \tilde{E}(\xi)-(\mu+\alpha_1)\tilde{I_1}(\xi) = 0,\\ &D_2\tilde{I_2}^{''}(\xi)-c\tilde{I_2}^{'}(\xi)+q_2\gamma \tilde{E}(\xi)-(\mu+\alpha_2)\tilde{I_2}(\xi) = 0,\\ &\tilde{E}(0) = \hat{B},\ \tilde{E}(\xi)\leq\hat{B},\\ &0\leq\tilde{S_i}(\xi)\leq S_i^0,\ i = 1,\ 2,\ \forall\xi\in\mathbb{R}.\\ \end{split} \right. \end{equation*}

    The maximum principle implies that

    \begin{equation*} \tilde{I_i}(\xi)\leq\frac{q_i\gamma\hat{B}}{\mu+\alpha_i}. \end{equation*}

    Moreover, we can yields

    \begin{equation*} 0\leq D_0\tilde{E}^{''}(0)+\beta[\tilde{S_1}(0)+\sigma\tilde{S_1}(0)]\left(\theta\frac{q_1\gamma}{\mu+\alpha_1}+\frac{q_2\gamma}{\mu+\alpha_2}\right)\tilde{B}-(\mu+\gamma)\tilde{B}. \end{equation*}

    Owing to \tilde{E}^{''}(0)\leq0 , \beta[\tilde{S_1}(0)+\sigma\tilde{S_1}(0)]\left(\theta\frac{q_1\gamma}{\mu+\alpha_1}+\frac{q_2\gamma}{\mu+\alpha_2}\right)\hat{B}-(\mu+\gamma)\hat{B}\geq0 and \tilde{S_i}\leq S_i^0, we must claim \beta[\tilde{S_1}(0)+\sigma\tilde{S_1}(0)]\left(\theta\frac{q_1\gamma}{\mu+\alpha_1}+\frac{q_2\gamma}{\mu+\alpha_2}\right)\hat{B}-(\mu+\gamma)\hat{B} = 0, which implies that \tilde{S_i}(0) = S_i^0. The minimal principle with combining the \tilde{S_i} -th equation can lead to \tilde{S_i}(\xi)\equiv S_i^0,\ \tilde{E}(\xi)\equiv0,\ \tilde{I_i}(\xi)\equiv 0,\ \forall\xi\in\mathbb{R}. Consequently, we have \hat{B} = 0 that contradicts \hat{B}>0. This case is completely proved.

    In this case, we attempt to utilize the two-sides Laplace transform to gain the non-existence of traveling wave solution for system (2). Therefore, we firstly need to imply the exponential boundedness for traveling wave solution via next two lemmas.

    Lemma 3.3. Assume that R_0>1, where R_0 is the basic reproduction number for system (3). For any c>0, if system (5) admits a non-trivial and non-negative solution (S_1(\xi),\ S_2(\xi),\ E(\xi),\ I_1(\xi), I_2(\xi)) satisfying the boundary condition (6), then there exist two constants \mathcal{J}>0 and G>0 large enough such that

    \begin{equation*} \int_{-\infty}^{\xi}E(x)\mathrm{d}x < \mathcal{J},\ \int_{-\infty}^{\xi}I_1(x)\mathrm{d}x < \mathcal{J},\ \int_{-\infty}^{\xi}I_2(x)\mathrm{d}x < \mathcal{J}, \end{equation*}

    for \xi<-2G.

    Proof. Set i = 1,\ 2. Let c>0 and (S_1(\xi),\ S_2(\xi),\ E(\xi),\ I_1(\xi),\ I_2(\xi)) be traveling wave solution of system (5) satisfying the boundary condition (6). Thus, we can claim there exist G>0 large enough and small \varepsilon\in(0,\ 1) such that

    S_i(\xi) > S_i^0(1-\varepsilon),\quad\xi\in(-\infty,\ -2G).

    For any \xi<-2G , we can yield

    \begin{align} \beta(S_1(\xi)+\sigma S_2(\xi))(\theta I_1(\xi)+I_2(\xi))-(\mu+\gamma)E(\xi)\geq&\beta(S_1^0+\sigma S_2^0)(1-\varepsilon)[\theta I_1(\xi)\\ &+I_2(\xi)]-(\mu+\gamma)E(\xi) \end{align} (45)

    For y<\xi<-2G, let

    \begin{equation*} \bar{J_0}(\xi,\ y) = \int_{y}^{\xi}E(x)\mathrm{d}x,\ \bar{J_1}(\xi,\ y) = \int_{y}^{\xi}I_1(x)\mathrm{d}x,\ \bar{J_2}(\xi,\ y) = \int_{y}^{\xi}I_2(x)\mathrm{d}x. \end{equation*}

    Integrate both sides of inequalities (45) from y to \xi, with y<\xi<-2G, and we can yield

    \begin{align} &\beta(S_1^0+\sigma S_2^0)(1-\varepsilon)(\theta\bar{J_1}(\xi,\ y)+\bar{J_2}(\xi,\ y))-(\mu+\gamma)\bar{J_0}(\xi,\ y)\\ &\leq\int_{y}^{\xi}[\beta(S_1(x)+\sigma S_2(x))(\theta I_1(x)+I_2(x))-(\mu+\gamma)E(x)]\mathrm{d}x. \end{align} (46)

    It follows from Lemma 2.10 and inequality (29) that

    \begin{equation} \parallel E(\cdot)\parallel_{C^2(\mathbb{R})}\leq\hat{P}, \parallel I_i(\cdot)\parallel_{C^2(\mathbb{R})}\leq\hat{P}, \end{equation} (47)

    and

    \begin{equation} \lim\limits_{\xi\rightarrow-\infty}E^{'}(\xi) = \lim\limits_{\xi\rightarrow-\infty}I_i^{'}(\xi) = 0, \end{equation} (48)

    where \hat{P} is a positive constant. Due to inequalities (47)-(48), we have

    \begin{align} &\int_{-\infty}^{\xi}[\beta(S_1(x)+\sigma S_2(x))(\theta I_1(x)+I_2(x))-(\mu+\gamma)E(x)]\mathrm{d}x \end{align} (49)
    \begin{align} &\qquad = \lim\limits_{y\rightarrow-\infty}\int_{y}^{\xi}[-D_0E^{''}(x)+cE^{'}(x)]\mathrm{d}x = -D_0E^{'}(\xi)+cE(\xi),\\ &\int_{-\infty}^{\xi}[q_i\gamma E(x)-(\mu+\alpha_i)I_i(x)]\mathrm{d}x = \lim\limits_{y\rightarrow-\infty}\int_{y}^{\xi}[-D_iI_i^{''}(x)+cI_i^{'}(x)]\mathrm{d}x\\ &\qquad = -D_iI_i^{'}(\xi)+cI_i(\xi). \end{align} (50)

    In the following, we aim to prove that there exists a constant \mathcal{J}>0 such that

    \begin{equation*} \int_{-\infty}^{\xi}E(x)\mathrm{d}x < \mathcal{J},\quad \int_{-\infty}^{\xi}I_i(x)\mathrm{d}x < \mathcal{J},\quad \forall\xi < -2G. \end{equation*}

    Let

    \begin{equation*} A = \left( \begin{array}{ccc} \mu+\gamma & \beta\theta(S_1^0+\sigma S_2^0)(1-\varepsilon) & \beta(S_1^0+\sigma S_2^0)(1-\varepsilon)\\ q_1\gamma & \mu+\alpha_1 & 0\\ q_2\gamma & \mu+\alpha_2 & 0\\ \end{array} \right), \end{equation*}

    and we conclude |A|<0 for \varepsilon>0 small enough on the basis of assumption R_0>1. Add

    \begin{align*} \bar{J}(\xi,\ y) = &-(\mu+\alpha_2)\beta\theta(S_1^0+\sigma S_2^0)(1-\varepsilon)(q_1\gamma\bar{J_0}(\xi,\ y)-(\mu+\alpha_1)\bar{J_1}(\xi,\ y))\\ &-(\mu+\alpha_1)\beta(S_1^0+\sigma S_2^0)(1-\varepsilon)(q_2\gamma\bar{J_0}(\xi,\ y)-(\mu+\alpha_2)\bar{J_2}(\xi,\ y)) \end{align*}

    to both sides of the inequality (46) multiplied by -(\mu+\alpha_1)(\mu+\alpha_2), and it is obtained that

    \begin{align} -|A|\bar{J_0}(\xi,\ y)\leq&(\mu+\alpha_1)(\mu+\alpha_2)\int_{y}^{\xi}[\beta(S_1(x)+\sigma S_2(x))(\theta I_1(x)+I_2(x))\\ &-(\mu+\gamma)E(x)]\mathrm{d}x-\bar{J}(\xi,\ y), \end{align} (51)

    for y<\xi<-2G. As y\rightarrow-\infty , the inequality (51), combining equations (49) and (50), leads to

    \begin{equation*} \int_{-\infty}^{\xi}E(x)\mathrm{d}x < \mathcal{J},\quad \forall\xi < -2G. \end{equation*}

    In the similar way, we also can claim that

    \begin{equation*} \int_{-\infty}^{\xi}I_i(x)\mathrm{d}x < \mathcal{J},\quad \forall\xi < -2G. \end{equation*}

    The proof is completed.

    Lemma 3.4. Assume that R_0>1, where R_0 is the basic reproduction number for system (3). For any c>0, if there exists a non-trivial and non-negative traveling wave solution (S_1(\xi),\ S_2(\xi),\ E(\xi), I_1(\xi),\ I_2(\xi)) of system (5) satisfying the boundary condition (6), a positive constant \mu_0 can be found and satisfies

    \begin{align} &\sup\limits_{\xi\in\mathbb{R}}E(\xi)e^{-\mu_0\xi} < \infty,\ \sup\limits_{\xi\in\mathbb{R}}|E^{'}(\xi)|e^{-\mu_0\xi} < \infty,\ \sup\limits_{\xi\in\mathbb{R}}|E^{''}(\xi)|e^{-\mu_0\xi} < \infty,\\ &\sup\limits_{\xi\in\mathbb{R}}I_1(\xi)e^{-\mu_0\xi} < \infty,\ \sup\limits_{\xi\in\mathbb{R}}|I_1^{'}(\xi)|e^{-\mu_0\xi} < \infty,\ \sup\limits_{\xi\in\mathbb{R}}|I_1^{''}(\xi)|e^{-\mu_0\xi} < \infty,\\ &\sup\limits_{\xi\in\mathbb{R}}I_2(\xi)e^{-\mu_0\xi} < \infty,\ \sup\limits_{\xi\in\mathbb{R}}|I_2^{'}(\xi)|e^{-\mu_0\xi} < \infty,\ \sup\limits_{\xi\in\mathbb{R}}|I_2^{''}(\xi)|e^{-\mu_0\xi} < \infty. \end{align} (52)

    Proof. Fix c>0. According to \varepsilon>0 and G>0 defined in Lemma 3.3, it is also shown that

    S_1(\xi) > S_1^0(1-\varepsilon),\quad S_2(\xi) > S_2^0(1-\varepsilon),\quad \forall\xi < -2G.

    And R_0>1 implies that

    \begin{equation} \frac{[q_1\gamma\beta\theta(\mu+\alpha_2)+q_2\gamma\beta(\mu+\alpha_1)](S_1^0+\sigma S_0^2)(1-\varepsilon)}{(\mu+\gamma)(\mu+\alpha_1)(\mu+\alpha_2)} > 1. \end{equation} (53)

    Thus, for any \xi<-2G, we yield that

    \begin{align} &cE^{'}(\xi)\geq D_0E^{''}(\xi)+\beta(S_1^0+S_2^0)(1-\varepsilon)[\theta I_1(\xi)+I_2(\xi)]-(\mu+\gamma)E(\xi), \end{align} (54)
    \begin{align} &cI_1^{'}(\xi) = D_1I_1^{''}(\xi)+q_1\gamma E(\xi)-(\mu+\alpha_1)I_1(\xi), \end{align} (55)
    \begin{align} &cI_2^{'}(\xi) = D_2I_2^{''}(\xi)+q_2\gamma E(\xi)-(\mu+\alpha_2)I_2(\xi). \end{align} (56)

    Set i = 1,\ 2 and remain in what follows. According to Lemma 3.3, it is indicated that

    \bar{J_0}(\xi) = \int_{-\infty}^{\xi}E(x)\mathrm{d}x < \mathcal{J},\ \bar{J_i}(\xi) = \int_{-\infty}^{\xi}I_i(x)\mathrm{d}x < \mathcal{J},

    for any \xi<-2G. Moreover, we integrate tow sides of the inequality (54) from -\infty to \xi and can obtain that

    \begin{equation} cE(\xi)\geq D_0E^{'}(\xi)+\beta(S_1^0+\sigma S_2^0)(1-\varepsilon)[\theta\bar{J_1}(\xi)+\bar{J_2}(\xi)]-(\mu+\gamma)\bar{J_0}(\xi). \end{equation} (57)

    Integrating two sides of the inequality (57) from -\infty to \xi with \xi<-2G indicates that

    \begin{align} &\beta(S_1^0+\sigma S_2^0)(1-\varepsilon)[\theta\int_{-\infty}^{\xi}\bar{J_1}(x)\mathrm{d}x+\int_{-\infty}^{\xi}\bar{J_2}(x)\mathrm{d}x]-(\mu+\gamma)\int_{-\infty}^{\xi}\bar{J_0}(x)\mathrm{d}x\\ &\quad+D_0E(\xi)\geq c\bar{J_0}(\xi). \end{align} (58)

    Via the similar way in equations (55) and (56), we can yield

    \begin{equation} q_1\gamma\int_{-\infty}^{\xi}\bar{J_0}(x)\mathrm{d}x-(\mu+\alpha_1)\int_{-\infty}^{\xi}\bar{J_1}(x)\mathrm{d}x+D_1I_1(\xi) = c\bar{J_1}(\xi), \end{equation} (59)

    and

    \begin{equation} q_2\gamma\int_{-\infty}^{\xi}\bar{J_0}(x)\mathrm{d}x-(\mu+\alpha_2)\int_{-\infty}^{\xi}\bar{J_2}(x)\mathrm{d}x+D_2I_2(\xi) = c\bar{J_2}(\xi), \end{equation} (60)

    which reduces to

    \begin{equation} \int_{-\infty}^{\xi}\bar{J_1}(x)\mathrm{d}x = \frac{1}{\mu+\alpha_1}\left(q_1\gamma\int_{-\infty}^{\xi}\bar{J_0}(x)\mathrm{d}x+D_1I_1(\xi)-c\bar{J_1}(\xi)\right), \end{equation} (61)

    and

    \begin{equation} \int_{-\infty}^{\xi}\bar{J_2}(x)\mathrm{d}x = \frac{1}{\mu+\alpha_2}\left(q_2\gamma\int_{-\infty}^{\xi}\bar{J_0}(x)\mathrm{d}x+D_2I_2(\xi)-c\bar{J_2}(\xi)\right). \end{equation} (62)

    Next, we need to claim there exist two positive constants a and b such that

    \begin{equation} a\sum\limits_{j = 0}^{2}\int_{-\infty}^{\xi}\bar{J_j}(x)\mathrm{d}x\leq b\sum\limits_{j = 0}^{2}\bar{J_j}(x)\mathrm{d}x. \end{equation} (63)

    Substituting equations (61) and (62) into the equation (59) has

    \begin{align*} c\bar{J_0}(\xi)\geq&\beta(S_1^0+\sigma S_2^0)(1-\varepsilon)\left[\frac{\theta}{\mu+\alpha_1}\left(q_1\gamma\int_{-\infty}^{\xi}\bar{J_0}(x)\mathrm{d}x+D_1I_1(\xi)-c\bar{J_1}(\xi)\right)\right.\\ &\left.+\frac{1}{\mu+\alpha_2}\left(q_2\gamma\int_{-\infty}^{\xi}\bar{J_0}(x)\mathrm{d}x+D_2I_2(\xi)-c\bar{J_2}(\xi)\right)\right]\\ &+D_0E(\xi)-(\mu+\gamma)\int_{-\infty}^{\xi}\bar{J_0}(x)\mathrm{d}x\\ = &\left[\beta(S_1^0+\sigma S_2^0)(1-\varepsilon)\left(\frac{q_1\gamma\theta}{\mu+\alpha_1}+\frac{q_2\gamma}{\mu+\alpha_2}\right)-(\mu+\gamma)\right]\int_{-\infty}^{\xi}\bar{J_0}(x)\mathrm{d}x\\ &+\beta(S_1^0+\sigma S_2^0)(1-\varepsilon)\left(\frac{\theta D_1}{\mu+\alpha_1}I_1(\xi)+\frac{D_2}{\mu+\alpha_2}I_2(\xi)\right)+D_0E(\xi)\\ &-c\beta(S_1^0+\sigma S_2^0)(1-\varepsilon)\left(\frac{\theta}{\mu+\alpha_1}\bar{J_1}(\xi)+\frac{1}{\mu+\alpha_2}\bar{J_2}(\xi)\right), \end{align*}

    which implies

    \begin{align*} &c\left[\bar{J_0}(\xi)+\beta(S_1^0+\sigma S_2^0)(1-\varepsilon)\left(\frac{\theta}{\mu+\alpha_1}\bar{J_1}(\xi)+\frac{1}{\mu+\alpha_2}\bar{J_2}(\xi)\right) \right]\\ &\quad\geq\left[\beta(S_1^0+\sigma S_2^0)(1-\varepsilon)\left(\frac{q_1\gamma\theta}{\mu+\alpha_1}+\frac{q_2\gamma}{\mu+\alpha_2}\right)-(\mu+\gamma)\right]\int_{-\infty}^{\xi}\bar{J_0}(x)\mathrm{d}x\\ &\quad\quad+\beta(S_1^0+\sigma S_2^0)(1-\varepsilon)\left(\frac{\theta D_1}{\mu+\alpha_1}I_1(\xi)+\frac{D_2}{\mu+\alpha_2}I_2(\xi)\right)+D_0E(\xi). \end{align*}

    Because E(\xi) and I_i(\xi) are non-negative, the above inequality reduces to

    \begin{align*} &\left[\beta(S_1^0+\sigma S_2^0)(1-\varepsilon)\left(\frac{q_1\gamma\theta}{\mu+\alpha_1}+\frac{q_2\gamma}{\mu+\alpha_2}\right)-(\mu+\gamma)\right]\int_{-\infty}^{\xi}\bar{J_0}(x)\mathrm{d}x\\ &\quad\leq c\left[\bar{J_0}(\xi)+\beta(S_1^0+\sigma S_2^0)(1-\varepsilon)\left(\frac{\theta}{\mu+\alpha_1}\bar{J_1}(\xi)+\frac{1}{\mu+\alpha_2}\bar{J_2}(\xi)\right) \right]. \end{align*}

    According to the inequality (53), we can claim that there exist two positive constants \bar{a_0} and \bar{b_0} such that

    \begin{equation} \bar{a_0}\int_{-\infty}^{\xi}\bar{J_0}(x)\mathrm{d}x\leq\bar{b_0}(\bar{J_0}(\xi)+\bar{J_1}(\xi)+\bar{J_2}(\xi)). \end{equation} (64)

    Plug the inequality (64) into the inequality (58), and it is shown that there are two constants \bar{a} and \bar{b} satisfying

    \begin{equation} \bar{a}\left(\int_{-\infty}^{\xi}\bar{J_1}(x)\mathrm{d}x+\int_{-\infty}^{\xi}\bar{J_2}(x)\mathrm{d}x\right)\leq\bar{b}(\bar{J_0}(\xi)+\bar{J_1}(\xi)+\bar{J_2}(\xi)). \end{equation} (65)

    Hence, for any \xi<-2G, the inequality (3.3) is established by adding the inequality (64) and the inequality (65). Let

    \begin{equation*} \mathcal{J}(\xi) = \bar{J_0}(\xi)+\bar{J_1}(\xi)+\bar{J_2}(\xi), \end{equation*}

    then we gain that

    a\int_{-\infty}^{\xi}\mathcal{J}(x)\mathrm{d}x\leq b\mathcal{J}(\xi),\quad\forall\xi < -2G,

    that is

    a\int_{-\infty}^{0}\mathcal{J}(x+\xi)\mathrm{d}x\leq b\mathcal{J}(\xi),\quad\forall\xi < -2G.

    Because \mathcal{J}(\cdot) is increasing, it is implied that a\eta\mathcal{J}(\xi-\eta)\leq b\mathcal{J}(\xi) for any \xi<-2G and \eta>0. Therefore, there exist a large enough \xi_0>0 and a small \omega_0\in(0,\ 1) such that

    \mathcal{J}(\xi-\xi_0)\leq\omega_0\mathcal{J}(\xi)\quad\forall\xi < -2G.

    Let \Psi(\xi) = \mathcal{J}(\xi)e^{-\mu_0\xi} with 0<\mu_0 = \frac{1}{\xi_0}\ln\frac{1}{\omega_0}<\lambda_1, and then it is concluded that

    \begin{equation*} \Psi(\xi-\xi_0) = \mathcal{J}(\xi-\xi_0)e^{-\mu_0(\xi-\xi_0)}\leq\omega_0\mathcal{J}(\xi)e^{-\mu_0(\xi-\xi_0)} = \Psi(\xi), \end{equation*}

    for any \xi<-2G. According to \mathcal{J}(\xi)<\infty for any \xi<-2G, we can find a constant k_0>0 such that \Psi(\xi)\leq k_0 for \forall\xi<-2G, that is \mathcal{J}(\xi)\leq k_0e^{\mu_0\xi} for any \xi<-2G. Therefore, there exists a constant q_0>0 such that \int_{-\infty}^{\xi}\bar{J}(x)\mathrm{d}x\leq q_0e^{\mu_0\xi} in \xi\in(-\infty,\ -2G). Combining equations (59)-(60), we can also find a constant p_0>0 satisfying

    \begin{equation*} E(\xi)\leq p_0e^{\mu_0\xi},\quad I_i(\xi)\leq p_0e^{\mu_0\xi},\quad\forall\xi < -2G. \end{equation*}

    Since E(\xi) and I_i(\xi) are bounded in \mathbb{R} , we obtain that

    \begin{equation*} E(\xi)\leq p_0e^{\mu_0\xi},\quad I_i(\xi)\leq p_0e^{\mu_0\xi},\quad\forall\xi\in\mathbb{R}. \end{equation*}

    According to estimates (29) and (57), it yields

    \sup\limits_{\xi\in\mathbb{R}}|E^{'}(\xi)|e^{-\mu_0\xi} < \infty.

    Via the E -th equation in system (5) and the inequality (54), we can conclude that

    \sup\limits_{\xi\in\mathbb{R}}|E^{''}(\xi)|e^{-\mu_0\xi} < \infty.

    Finally, applying the similar argument on I_i(\xi) shows that

    \begin{equation*} \sup\limits_{\xi\in\mathbb{R}}I_i(\xi)e^{-\mu_0\xi} < \infty,\quad \sup\limits_{\xi\in\mathbb{R}}|I_i^{'}(\xi)|e^{-\mu_0\xi} < \infty,\quad \sup\limits_{\xi\in\mathbb{R}}|I_i^{''}(\xi)|e^{-\mu_0\xi} < \infty. \end{equation*}

    This completes the proof.

    According to above two theorems, we can obtain the following non-existence theorem.

    Theorem 3.5. If R_0>1, for c\in(0,\ c^*), there exists no non-trivial and non-negative traveling wave solution (S_1(\xi),\ S_2(\xi),\ E(\xi),\ I_1(\xi),\ I_2(\xi)) of system (5) satisfying the boundary condition (6), where c^* is the minimal spread speed and R_0 is the basic reproduction number for system (3).

    Proof. We intend to prove this theorem by contradiction. Fix c\in(0,\ c^*). On the contrary, we assume there exists a non-trivial and non-negative (S_1(\xi),\ S_2(\xi),\ E(\xi),\\ I_1(\xi),\ I_2(\xi)) of system (5) satisfying the boundary condition (6). Via Lemma 3.4, then there exists a positive constant \mu_0 defined in the proof of Lemma 3.4 such that inequalities (52) are established. Set K_1(\xi) = S_1^0-S_1(\xi) and K_2(\xi) = S_2^0-S_2(\xi) in \mathbb{R}. Plugging K_1(\xi) and K_2(\xi) into S_1 -th and S_2 -th equations yields

    \begin{align} &cK_1^{'}(\xi)-dK_1^{''}(\xi)+(\mu+\rho)K_1^{'}(\xi)-\beta S_1(\xi)[\theta I_1(\xi)+I_2(\xi)] = 0, \end{align} (66)
    \begin{align} &cK_2^{'}(\xi)-dK_2^{''}(\xi)-\rho K_2^{''}(\xi)+\mu K_2^{'}(\xi)-\beta\sigma S_2(\xi)[\theta I_1(\xi)+I_2(\xi)] = 0. \end{align} (67)

    According to the inequality

    \begin{equation*} \parallel K_i^{'}\parallel_{C((\infty,0],\mathbb{R})}\leq2\parallel K_i^{''}\parallel_{C((\infty,0],\mathbb{R})}^{\frac{1}{2}}\parallel K_i\parallel_{C((\infty,0],\mathbb{R})}^{\frac{1}{2}}, \end{equation*}

    and the fact that

    \begin{equation} \lim\limits_{\xi\rightarrow-\infty}K_i(\xi) = 0, \end{equation} (68)

    we can claim

    \begin{equation} \lim\limits_{\xi\rightarrow-\infty}K_i^{'}(\xi) = 0, \end{equation} (69)

    for i = 1,\ 2. In addition, since K_i(\xi) is bounded and satisfies equations (68)-(69), integrating both sides of the sum of equations (66) and (67) from -\infty to \xi\leq0 can show that

    \begin{align*} &c[K_1(\xi)+K_2(\xi)]-d[K_1^{'}(\xi)+K_2^{'}(\xi)]+\mu\int_{-\infty}^{\xi}[K_1(x)+K_2(x)]\mathrm{d}x\\&\quad-\int_{-\infty}^{\xi}\beta[S_1(x)+\sigma S_2(x)][\theta I_1(x)+I_2(x)]\mathrm{d}x = 0. \end{align*}

    Let f(\xi) = \int_{-\infty}^{\xi}\beta[S_1(x)+\sigma S_2(x)][\theta I_1(x)+I_2(x)]\mathrm{d}x, and K_{\mu}(\xi) = \mu\int_{-\infty}^{\xi}[K_1(x)+K_2(x)]\mathrm{d}x for any \xi\leq0. It follows from Lemma 3.4 that f(\xi)\leq C_{f}e^{\mu_0\xi} on \xi\in\mathbb{R}, where C_{f} is a positive constant. Hence, a direct calculation indicates that

    \begin{align*} K_1(\xi)+K_2(\xi)& = [K_1(0)+K_2(0)]e^{\frac{c}{d}\xi}+\frac{1}{d}e^{\frac{c}{d}\xi}\int_{\xi}^{0}e^{-\frac{c}{d}x}[-K_\mu(x)+f(x)]\mathrm{d}x\\ &\leq[K_1(0)+K_2(0)]e^{\frac{c}{d}\xi}+\frac{1}{d}e^{\frac{c}{d}\xi}\int_{\xi}^{0}e^{-\frac{c}{d}x}f(x)\mathrm{d}x, \end{align*}

    for \xi\leq0. Owing to f(\xi) = O(e^{\mu_0\xi}) as \xi\rightarrow-\infty, we can claim that K_1(\xi)+K_2(\xi) = O(e^{\mu_0^{'}\xi}) as \xi\rightarrow-\infty, where \mu_0^{'} = \min\left\{\mu_0,\ \frac{c}{d}\right\}. Combining 0\leq K_1(\xi)+K(\xi)\leq\frac{\lambda}{\mu}, we can conclude that

    \begin{equation*} \sup\limits_{\xi\in\mathbb{R}}[K_1(\xi)+K_2(\xi)]e^{-\mu_{0}^{'}\xi} < \infty, \end{equation*}

    which implies

    \begin{equation} \sup\limits_{\xi\in\mathbb{R}}K_1(\xi)e^{-\mu_{0}^{'}\xi} < \infty,\quad\sup\limits_{\xi\in\mathbb{R}}K_2(\xi)e^{-\mu_{0}^{'}\xi} < \infty. \end{equation} (70)

    On the basis of the above discussion, we define the one-sided Laplace transforms for E(\xi), I_1(\xi) and I_2(\xi) by

    \begin{equation} L_0(\hat{\lambda}) = \int_{-\infty}^{0}e^{-\hat{\lambda}\xi}E(\xi)\mathrm{d}\xi,\ L_1(\hat{\lambda}) = \int_{-\infty}^{0}e^{-\hat{\lambda}\xi}I_1(\xi)\mathrm{d}\xi,\ L_2(\hat{\lambda}) = \int_{-\infty}^{0}e^{-\hat{\lambda}\xi}I_2(\xi)\mathrm{d}\xi. \end{equation} (71)

    Next, we only consider \hat{\lambda}\in\mathbb{R}_{+}. Since E(\xi)>0 , I_1(\xi)>0, I_2(\xi)>0 for any \xi\in\mathbb{R}, and L_i(\cdot) is increasing for \hat{\lambda}\in\mathbb{R}_{+}, respectively, there exist two possibilities: (ⅰ) a positive constant v_i>\mu_0 can be found such that L_i(\cdot)<\infty for any 0\leq\hat{\lambda}<v_i and \lim_{\hat{\lambda}\rightarrow v_i-0}L_i(\hat{\lambda}) = \infty. (ⅱ) L_i(\cdot)<\infty for any \hat{\lambda}\geq0, where i = 0,\ 1,\ 2. Therefore, we define two-sided Laplace transforms for E(\cdot),\ I_1(\cdot) and I_2(\cdot) by

    \begin{align*} \mathcal{L}_0(\hat{\lambda})& = \int_{-\infty}^{+\infty}e^{-\hat{\lambda}\xi}E(\xi)\mathrm{d}\xi,\quad\mathcal{L}_1(\hat{\lambda}) = \int_{-\infty}^{+\infty}e^{-\hat{\lambda}\xi}I_1(\xi)\mathrm{d}\xi,\quad\mathcal{L}_2(\hat{\lambda})\\ & = \int_{-\infty}^{+\infty}e^{-\hat{\lambda}\xi}I_2(\xi)\mathrm{d}\xi, \end{align*}

    and we also only research \hat{\lambda}>0. Because E(\cdot),\ I_1(\cdot) and I_2(\cdot) are bounded in \mathbb{R}, respectively, it is the fact that

    \begin{equation*} \int_{0}^{+\infty}e^{-\hat{\lambda}\xi}E(\xi)\mathrm{d}\xi < \infty,\quad\int_{0}^{+\infty}e^{-\hat{\lambda}\xi}I_1(\xi)\mathrm{d}\xi < \infty,\quad\int_{0}^{+\infty}e^{-\hat{\lambda}\xi}I_2(\xi)\mathrm{d}\xi < \infty, \end{equation*}

    for any \hat{\lambda}>0, which implies \mathcal{L}_I(\cdot) owns the same property as L_i(\cdot) in \mathbb{R}_{+} with i = 0,\ 1,\ 2, respectively.

    In the following, we indicate that there indeed exists a v_i = +\infty such that \mathcal{L}_i(\hat{\lambda})<\infty for any \hat{\lambda}\geq0 with i = 0,\ 1,\ 2, respectively. The first step is to prove v_0 = v_1 = v_2 . According to

    \begin{align*} &D_0E^{''}(\xi)-cE^{'}(\xi)+\beta(S_1^0+\sigma S_2^0)[\theta I_1(\xi)+I_2(\xi)]-(\mu+\gamma)E(\xi)\\&\quad = \beta[S_1^0-S_1(\xi)+\sigma S_2^0-S_2(\xi)][\theta I_1(\xi)+I_2(\xi)],\qquad\forall\xi\in\mathbb{R}, \end{align*}

    it is implied that

    \begin{align} &[D_0\hat{\lambda}^2-c\hat{\lambda}-(\mu+\gamma)]L_0(\hat{\lambda})+\beta(S_1^0+\sigma S_2^0)[\theta \mathcal{L}_1(\hat{\lambda})+\mathcal{L}_2(\hat{\lambda})]\\ &\quad = \beta\int_{-\infty}^{+\infty}[S_1^0-S_1(\xi)+\sigma (S_2^0-S_2(\xi))][\theta I_1(\xi)+I_2(\xi)]e^{-\hat{\lambda}\xi}\mathrm{d}\xi,\qquad\forall\xi\in\mathbb{R}. \end{align} (72)

    In the same way, we can obtain

    \begin{equation} [D_1\hat{\lambda}^2-c\hat{\lambda}-(\mu+\alpha_1)]\mathcal{L}_1(\hat{\lambda})+q_1\gamma\mathcal{L}_0(\hat{\lambda}) = 0, \end{equation} (73)

    and

    \begin{equation} [D_2\hat{\lambda}^2-c\hat{\lambda}-(\mu+\alpha_2)]\mathcal{L}_2(\hat{\lambda})+q_2\gamma\mathcal{L}_0(\hat{\lambda}) = 0. \end{equation} (74)

    Thus, it follows from equations (73) and (74) that v_0 = v_1 = v_2. Let v = v_0 = v_1 = v_2. The second step is to prove v = +\infty via a contradiction. We assume that v<+\infty and \mathcal{L}_i(\hat{\lambda})<\infty\ (i = 0,\ 1,\ 2) for any \hat{\lambda}\in[0,\ v) and \lim_{\hat{\lambda}\rightarrow v-0}\mathcal{L}_i(\hat{\lambda}) = \infty. Equations (72)-(74) can show that -D_1v^2+cv+(\mu+\alpha_1)>0 and -D_2v^2+cv+(\mu+\alpha_2)>0. If D_0v^2-cv-(\mu+\gamma)\geq0 and let \hat{\lambda}\rightarrow v-0 in both sides of (72), the right side shows

    \begin{align*} &\beta\int_{-\infty}^{+\infty}[S_1^0-S_1(\xi)+\sigma (S_2^0-S_2(\xi))][\theta I_1(\xi)+I_2(\xi)]e^{-v\xi}\mathrm{d}\xi\\ &\quad\leq\beta\sup\limits_{\xi\in\mathbb{R}}\left\{[S_1^0-S_1(\xi)+\sigma (S_2^0-S_2(\xi))]e^{-\mu_0^{'}\xi}\right\}\left[\int_{-\infty}^{-\infty}\theta I_1(\xi)e^{-(v-\mu_0^{'})\xi}\mathrm{d}\xi\right.\\ &\qquad\left.+\int_{-\infty}^{-\infty}I_2(\xi) e^{-(v-\mu_0^{'})\xi}\mathrm{d}\xi\right]\\ &\quad\leq\infty. \end{align*}

    However, the left side tends to \infty, which leads to a contraction. If D_0v^2-cv-(\mu+\gamma)<0, plugging equations (73) and (74) into the equation (72) can obtain that

    \begin{align} m_0(\hat{\lambda},\ c)\mathcal{L}_0({\hat{\lambda}})[\rho^2(\hat{\lambda},\ c)-1] = &\beta\int_{-\infty}^{+\infty}[S_1^0-S_1(\xi)+\sigma (S_2^0-S_2(\xi))][\theta I_1(\xi)\\ &+I_2(\xi)]e^{-\hat{\lambda}\xi}\mathrm{d}\xi, \end{align} (75)

    and 0<v<\lambda_c. As \hat{\lambda}\rightarrow v-0, the right side is bounded, but the left side tends to \infty. As a result, the case (ⅰ) is impossible.

    If the case (ⅱ) is established, similarly, let \hat{\lambda}\rightarrow+\infty in both sides of the equation (72). The right side is bounded but the left side tends to \infty owing to D_0\hat{\lambda}^2-c\hat{\lambda}-(\mu+\gamma)\rightarrow\infty, which also leads to a contraction. Above all, the non-existence is completely proved.

    Section 2 and Section 3 have proved the existence and non-existence of traveling wave solution for system (2) satisfying the boundary condition (6). In this section, we aim to visually display the existence of traveling wave solution for system (2) connecting disease-free equilibrium and endemic equilibrium. Now, we firstly take a set of parameters for system (2) as follows:

    \begin{align*} &d = 0.02,\ D_0 = 0.015,\ D_1 = 0.005,\ D_2 = 0.01,\ D = 0.02,\\ &\Lambda = 8,\ \mu = 0.3,\ \beta = 0.375,\ \rho = 0.7,\\ &\sigma = 0.5,\ \gamma = 0.75,\ \alpha_1 = 0.65,\ \alpha_2 = 0.5,\\ &\theta = 0.5,\ q_1 = 0.6,\ q_2 = 0.4. \end{align*}

    As a result, we can obtain the disease-free equilibrium (S_1^0,\ S_2^0,\ E^0,\ I_1^0,\ I_2^0,\ R^0) = (8,\ 18.6667,\ 0,\ 0,\ 0,\ 0), the endemic equilibrium (S_1^*,\ S_2^*,\ E^*,\ I_1^*,\ I_2^*,\ R^*)\approx(3.3762,\ 2.3999,\ 5.9687,\ 2.8274,\ 2.2383,\ 9.8565) and the basic reproduction number R_0\approx3.2821>1. For simulations, we further intercept [-200,\ 200] from spatial domain and [0,\ 200] from time domain. Moreover, we take the Neumann boundary condition and the below piecewise functions as initial conditions for system (2):

    \begin{eqnarray*} &&S_i(x,\ t) = \left\{ \begin{split} &S_i^*,\quad0 < x\leq200,\quad t = 0,\quad i = 1,\ 2,\\ &S_i^0,\quad-200\leq x\leq0,\quad t = 0,\quad i = 1,\ 2, \end{split} \right.\\ &&E(x,\ t) = \left\{ \begin{split} &E^*,\quad0 < x\leq200,\quad t = 0,\\ &0,\quad-200\leq x\leq0,\quad t = 0, \end{split} \right.\\ &&I_i(x,\ t) = \left\{ \begin{split} &I_i^*,\quad0 < x\leq200,\quad t = 0,\quad i = 1,\ 2,\\ &0,\quad-200\leq x\leq0,\quad t = 0,\quad i = 1,\ 2, \end{split} \right.\\ &&R(x,\ t) = \left\{ \begin{split} &R^*,\quad0 < x\leq200,\quad t = 0,\\ &0,\quad-200\leq x\leq0,\quad t = 0. \end{split} \right. \end{eqnarray*}

    The figure 1, simulations with applying above conditions, indicate that there exists a traveling wave solution of system (2) connecting disease-free equilibrium and endemic equilibrium. Meanwhile, we cross section curves of traveling wave solution in figure 1 as t = 200 (see figure 2). And we can find that traveling waves for system (2) are not monotonic in figure 2.

    Figure 1.  The numerical simulations of existence for traveling wave solution of system (2).
    Figure 2.  Cross section curve of traveling wave solution for system (2) as t = 200. .

    Since we pay more attention to influences of self-protection and treatment in the spatial spread for an epidemic, it is critical to research the change of the minimal spread speed c^* while self-protection \sigma and treatment \theta changing. The direct derivations of \rho(\lambda,\ c) with respect to \sigma and \theta show that

    \begin{equation} \frac{\partial\rho}{\partial\theta} > 0,\quad \frac{\partial\rho}{\partial\sigma} > 0, \end{equation} (76)

    respectively, where \rho(\lambda,\ c) is defined as the formula (9). The inequality (76) means that the numerical increase in \sigma and \theta could lead to increasing of the minimal spread speed c^* with applying Lemma 2.3. The figures (a) and (b) in figure 3 also display that the minimal spread speed c^* is increasing with respect to \sigma and \theta for \sigma,\ \theta\in[0.05,\ 1], respectively. In fact, measures about the enhancement of self-protection and treatment can lead to numerical reductions about both \sigma and \theta , which implies the minimal spread speed c^* will decrease via the inequality (76) and figure 3. Above all, the effective self-protection and treatment can reduce the spread speed for an epidemic.

    Figure 3.  Show the effects of self-protection \sigma and treatment \theta on minimal spread speed c^*, where \sigma and \theta are taken from 0.05 to 1. .

    In this paper, we mainly construct a non-monotonic reaction diffusion SEIR model with effects of self-protection and treatment in incident rate, and determine the existence and non-existence of traveling wave solution connecting disease-free equilibrium and endemic equilibrium. We prove the existence as R_0>1 and c\geq c^* . And when R_0\leq1 or R_0>1 with c\in(0,\ c^*), there exists no non-trivial and non-negative traveling wave solution satisfying the boundary condition (6). Finally, the numerical simulations show the existence and indicate that self-protection and treatment can reduce the spread speed of an epidemic. However, self-protection and treatment may affect the movement of different individuals in various times and spaces. Some individuals may even choose or be forcibly quarantined. These factors are worthy being researched in the future.

    We would like to thank you for following the instructions above very closely in advance. It will definitely save us lot of time and expedite the process of your paper's publication.



    [1] Ghorani-Azam, A, Riahi-Zanjani B, Balali-Mood M (2016) Effects of air pollution on human health and practical measures for prevention in Iran. J Res Med Sci 21. https://doi.org/10.4103/1735-1995.189646
    [2] Hailstone J. Hailstone J (2023) https://www.forbes.com/sites/jamiehailstone/2023/03/07/nearly-nowhere-on-earth-safe-from-air-pollution-study-finds/?sh=1e0d9fd9da1d/ (accessed july 25, 2023).
    [3] Ordóñez C, Garrido-Perez J M, García-Herrera R (2020) Early spring near-surface ozone in Europe during the COVID-19 shutdown: Meteorological effects outweigh emission changes. Sci Total Environ 747: 141322. https://doi.org/10.1016/j.scitotenv.2020.141322 doi: 10.1016/j.scitotenv.2020.141322
    [4] Mostafa M K, Gamal G, Wafiq A (2021) The impact of COVID 19 on air pollution levels and other environmental indicators-A case study of Egypt. J Environ Manage 277: 111496. https://doi.org/10.1016/j.jenvman.2020.111496 doi: 10.1016/j.jenvman.2020.111496
    [5] Gagliardi R V, Andenna C (2020) A machine learning approach to investigate the surface ozone behavior. Atmosphere 11: 1173. https://doi.org/10.3390/atmos11111173 doi: 10.3390/atmos11111173
    [6] Jaffe DA, Cooper OR, Fiore AM, et al. (2018) Scientific assessment of background ozone over the US: Implications for air quality management. Elem Sci Anth 6: 56. https://doi.org/10.1525/elementa.309 doi: 10.1525/elementa.309
    [7] Lu H, Lyu X, Cheng H, et al.(2019) Overview on the spatial–temporal characteristics of the ozone formation regime in China. Environmental Science: Processes & Impacts 21: 916-929. https://doi.org/10.1039/C9EM00098D doi: 10.1039/C9EM00098D
    [8] Käffer M I, Domingos M, Lieske I, et al. (2019) Predicting ozone levels from climatic parameters and leaf traits of Bel-W3 tobacco variety. Environ Pollut 248: 471-477. https://doi.org/10.1016/j.envpol.2019.01.130 doi: 10.1016/j.envpol.2019.01.130
    [9] Li Y, Xue Y, Guang J, et al. (2018) Ground-level PM2. 5 concentration estimation from satellite data in the Beijing area using a specific particle swarm extinction mass conversion algorithm. Remote Sens 10: 1906. https://doi.org/10.3390/rs10121906 doi: 10.3390/rs10121906
    [10] Velasco E, Retama A (2017) Ozone's threat hits back Mexico City. Sustain Cities Soc 31: 260-263. https://doi.org/10.1016/j.scs.2016.12.015 doi: 10.1016/j.scs.2016.12.015
    [11] Carbo-Bustinza N, Belmonte M, Jimenez V, et al. (2022) A machine learning approach to analyse ozone concentration in metropolitan area of Lima, Peru. Sci Rep 12: 22084. https://doi.org/10.1038/s41598-022-26575-3 doi: 10.1038/s41598-022-26575-3
    [12] Cohen AJ, Brauer M, Burnett R, et al. (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet 389: 1907-1918. https://doi.org/10.1016/S0140-6736(17)30505-6 doi: 10.1016/S0140-6736(17)30505-6
    [13] Iftikhar H, Khan M, Khan Z, et al. (2023). A Comparative Analysis of Machine Learning Models: A Case Study in Predicting Chronic Kidney Disease. Sustainability 15: 2754. https://doi.org/10.3390/su15032754 doi: 10.3390/su15032754
    [14] Jakovlev A R, Smyshlyaev S P et al. (2019) Numerical simulation of world ocean effects on temperature and ozone in the lower and middle atmosphere. Russ Meteorol Hydrol 44: 594-602. https://doi.org/10.3103/S1068373919090036 doi: 10.3103/S1068373919090036
    [15] Gaudel A, Cooper OR, Ancellet G, et al. (2018) Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elem Sci Anth 6: 39. https://doi.org/10.1525/elementa.291 doi: 10.1525/elementa.291
    [16] Rodríguez-Urrego D, Rodríguez-Urrego L (2020) Air quality during the COVID-19: PM2. 5 analysis in the 50 most polluted capital cities in the world. Environ Pollut 266: 115042. https://doi.org/10.1016/j.envpol.2020.115042 doi: 10.1016/j.envpol.2020.115042
    [17] Rybarczyk Y, Zalakeviciute R (2018) Machine learning approaches for outdoor air quality modelling: A systematic review. Appl Sci 8: 2570. https://doi.org/10.3390/app8122570 doi: 10.3390/app8122570
    [18] Iftikhar H, Khan N, Raza MA, et al. (2024). Electricity theft detection in smart grid using machine learning. Front Energy Res 12: 1383090. https://doi.org/10.3389/fenrg.2024.1383090 doi: 10.3389/fenrg.2024.1383090
    [19] Comrie A C (1997) Comparing neural networks and regression models for ozone forecasting. J Air Waste Manage 47: 653-663. https://doi.org/10.1080/10473289.1997.10463925 doi: 10.1080/10473289.1997.10463925
    [20] Carbo-Bustinza N, Iftikhar H, Belmonte M, et al. (2023). Short-term forecasting of Ozone concentration in metropolitan Lima using hybrid combinations of time series models. Appl Sci 13: 10514. https://doi.org/10.3390/app131810514 doi: 10.3390/app131810514
    [21] Harrou F, Fillatre L, Bobbia M, et al. (2013) Statistical detection of abnormal ozone measurements based on constrained generalized likelihood ratio test. In 52nd IEEE Conference on Decision and Control, Firenze, Italy, 10-13 December 2013. https://doi.org/10.1109/CDC.2013.6760673
    [22] Duenas C, Fernandez M C, Canete S, et al. (2005) Stochastic model to forecast ground-level ozone concentration at urban and rural areas. Chemosphere 61: 1379-1389. https://doi.org/10.1016/j.chemosphere.2005.04.079 doi: 10.1016/j.chemosphere.2005.04.079
    [23] Iftikhar H, Khan M, Turpo-Chaparro J E, et al. (2024). Forecasting stock prices using a novel filtering-combination technique: Application to the Pakistan stock exchange. AIMS Math 9: 3264-3288. https://doi.org/10.3934/math.2024159 doi: 10.3934/math.2024159
    [24] Petetin H, Bowdalo D, Soret A, et al. (2020) Meteorology-normalized impact of the COVID-19 lockdown upon NO 2 pollution in Spain. Atmos Chem Phys 20: 19-11141. https://doi.org/10.5194/acp-20-11119-2020 doi: 10.5194/acp-20-11119-2020
    [25] Aljanabi M, Shkoukani M, Hijjawi M (2020) Ground-level ozone prediction using machine learning techniques: A case study in Amman, Jordan. Int J Autom Comput 17: 667-677. https://doi.org/10.1007/s11633-020-1233-4 doi: 10.1007/s11633-020-1233-4
    [26] Sousa S I V, Martins F G, Alvim-Ferraz M C, et al. (2007) Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environ Modell Softw 22: 97-103. https://doi.org/10.1016/j.envsoft.2005.12.002 doi: 10.1016/j.envsoft.2005.12.002
    [27] Chelani A B (2010) Prediction of daily maximum ground ozone concentration using support vector machine. Environmental monitoring and assessment 162: 169-176. https://doi.org/10.1007/s10661-009-0785-0 doi: 10.1007/s10661-009-0785-0
    [28] Ren X, Mi Z, Georgopoulos P G (2020) Comparison of Machine Learning and Land Use Regression for fine scale spatiotemporal estimation of ambient air pollution: Modeling ozone concentrations across the contiguous United States. Environ Int 142: 105827. https://doi.org/10.1016/j.envint.2020.105827 doi: 10.1016/j.envint.2020.105827
    [29] Yafouz A, AlDahoul N, Birima AH, et al. (2022) Comprehensive comparison of various machine learning algorithms for short-term ozone concentration prediction. Alex Eng J 61: 4607-4622. https://doi.org/10.1016/j.aej.2021.10.021 doi: 10.1016/j.aej.2021.10.021
    [30] Pan Q, Harrou F, Sun Y A (2023) comparison of machine learning methods for ozone pollution prediction. J Big Data 10: 63. https://doi.org/10.1186/s40537-023-00748-x doi: 10.1186/s40537-023-00748-x
    [31] Iftikhar H, Zafar A, Turpo-Chaparro J E, et al. (2023) Forecasting Day-Ahead Brent Crude Oil Prices Using Hybrid Combinations of Time Series Models. Mathematics 16: 3548. https://doi.org/10.3390/math11163548 doi: 10.3390/math11163548
    [32] Iftikhar H, Bibi N, Canas Rodrigues P, et al. (2023) Multiple Novel Decomposition Techniques for Time Series Forecasting: Application to Monthly Forecasting of Electricity Consumption in Pakistan. Energies 16: 2579. https://doi.org/10.3390/en16062579 doi: 10.3390/en16062579
    [33] Alshanbari H M, Iftikhar H, Khan F, et al. (2023). On the Implementation of the Artificial Neural Network Approach for Forecasting Different Healthcare Events. Diagnostics 13: 1310. https://doi.org/10.3390/diagnostics13071310 doi: 10.3390/diagnostics13071310
    [34] Iftikhar H (2018) Modeling and Forecasting Complex Time Series: A Case of Electricity Demand. Master's Thesis, Quaidi-Azam University, Islamabad, Pakistan, 1-94.
    [35] Shah I, Iftikhar H, Ali S (2020) Modeling and forecasting medium-term electricity consumption using component estimation technique. Forecasting 2: 163–179. https://doi.org/10.3390/forecast2020009 doi: 10.3390/forecast2020009
    [36] Iftikhar H, Turpo-Chaparro J E, Canas Rodrigues P, et al. (2023). Day-Ahead Electricity Demand Forecasting Using a Novel Decomposition Combination Method. Energies 16: 6675. https://doi.org/10.3390/en16186675 doi: 10.3390/en16186675
    [37] Shah I, Iftikhar H, Ali S, et al. (2019) Short-term electricity demand forecasting using components estimation technique. Energies 12: 2532. https://doi.org/10.3390/en12132532 doi: 10.3390/en12132532
    [38] Van Buuren S, Oudshoorn C G (2000) Multivariate imputation by chained equations.
    [39] Iftikhar H, Turpo-Chaparro J E, Canas Rodrigues P, et al. (2023). Forecasting Day-Ahead Electricity Prices for the Italian Electricity Market Using a New Decomposition—Combination Technique. Energies 16: 6669. https://doi.org/10.3390/en16186669 doi: 10.3390/en16186669
    [40] Diebold F X, Mariano R S (2022) Comparing predictive accuracy. J Bus Econ Stat 20: 134–144. https://doi.org/10.1198/073500102753410444 doi: 10.1198/073500102753410444
    [41] Iftikhar H, Khan M, Khan M S, et al. (2023). Short-Term Forecasting of Monkeypox Cases Using a Novel Filtering and Combining Technique. Diagnostics 13: 1923. https://doi.org/10.3390/diagnostics13111923 doi: 10.3390/diagnostics13111923
    [42] Shah I, Iftikhar H, Ali S (2022) Modeling and forecasting electricity demand and prices: A comparison of alternative approaches. J Math 2022: 3581037. https://doi.org/10.1155/2022/3581037 doi: 10.1155/2022/3581037
    [43] Iftikhar H, Daniyal M, Qureshi M, et al. (2023). A hybrid forecasting technique for infection and death from the mpox virus. Digit Health 9: 20552076231204748. https://doi.org/10.1177/20552076231204748 doi: 10.1177/20552076231204748
    [44] Dickey D A, Fuller W A (1979) Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc 74: 427–431. https://doi.org/10.1080/01621459.1979.10482531 doi: 10.1080/01621459.1979.10482531
    [45] Romero Y, Diaz C, Meldrum I, et al. (2020) Temporal and spatial analysis of traffic–Related pollutant under the influence of the seasonality and meteorological variables over an urban city in Peru. Heliyon https://doi.org/10.1016/j.heliyon.2020.e04029
    [46] Leon C A M, Felix M F M, Olivera C A C, et al (2022) Influence of Social Confinement by COVID-19 on Air Quality in the District of San 503 Juan de Lurigancho in Lima, Perù. Chem Eng Trans 91: 475–480.
    [47] Aaker D A, Jacobson R (1987). The sophistication of 'naive'modeling. Int J Forecast 3: 449-451. https://doi.org/10.1016/0169-2070(87)90039-2 doi: 10.1016/0169-2070(87)90039-2
    [48] Gonzales Javier L L, Calili Rodrigo F, Souza Reinaldo C, et al. (2016) Simulation of the energy efficiency auction prices in Brazil. Renew Energ Power Qual J 1: 574-579. https://doi.org/10.24084/repqj14.396 doi: 10.24084/repqj14.396
    [49] López-Gonzales J L, Souza RC, Da Silva FLC, et al. (2020) Simulation of the energy efficiency auction prices via the markov chain monte carlo method. Energies 13: 4544. https://doi.org/10.3390/en13174544 doi: 10.3390/en13174544
    [50] da Silva KLS, López-Gonzales J L, Turpo-Chaparro JE, et al. Spatio-temporal visualization and forecasting of PM10 in the Brazilian state of Minas Gerais. Sci Rep 13: 3269. https://doi.org/10.1038/s41598-023-30365-w
    [51] Jeldes N, Ibacache-Pulgar G, Marchant C, et al. (2022) Modeling Air Pollution Using Partially Varying Coefficient Models with Heavy Tails. Mathematics 10: 3677. https://doi.org/10.3390/math10193677 doi: 10.3390/math10193677
    [52] Cabello-Torres RJ, Estela MAP, Sánchez-Ccoyllo O, et al. (2022) Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Perú. Sci Rep 12: 1. https://doi.org/10.1038/s41598-022-20904-2 doi: 10.1038/s41598-022-20904-2
    [53] Orrego Granados D, Ugalde J, Salas R, et al. (2022) Visual-Predictive Data Analysis Approach for the Academic Performance of Students from a Peruvian University. Appl Sci 12: 11251. https://doi.org/10.3390/app122111251 doi: 10.3390/app122111251
  • This article has been cited by:

    1. Guangbing Xiao, Kang Liu, Ning Sun, Yong Zhang, Game-Based Vehicle Strategy Equalization Algorithm for Unsignalized Intersections, 2024, 15, 2032-6653, 146, 10.3390/wevj15040146
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1126) PDF downloads(148) Cited by(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog