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Abstract: The rise in global ozone levels over the last few decades has harmed human health.
This problem exists in several cities throughout South America due to dangerous levels of particulate
matter in the air, particularly during the winter season, making it a public health issue. Lima, Peru,
is one of the ten cities in South America with the worst levels of air pollution. Thus, efficient and
precise modeling and forecasting are critical for ozone concentrations in Lima. The focus is on
developing precise forecasting models to anticipate ozone concentrations, providing timely information
for adequate public health protection and environmental management. This work used hourly O3 data
in metropolitan areas for multi-step-ahead (one-, two-, three-, and seven-day-ahead) O3 forecasts. A
multiple linear regression model was used to represent the deterministic portion, and four-time series
models, autoregressive, nonparametric autoregressive, autoregressive moving average, and nonlinear
neural network autoregressive, were used to describe the stochastic component. The various horizon
out-of-sample forecast results for the considered data suggest that the proposed component-based
forecasting technique gives a highly consistent, accurate, and efficient gain. This may be expanded
to other districts of Lima, different regions of Peru, and even the global level to assess the efficacy
of the proposed component-based modeling and forecasting approach. Finally, no analysis has been
undertaken using a component-based estimation to forecast ozone concentrations in Lima in a multi-
step-ahead manner.
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1. Introduction

Air pollution is a major issue in the modern industrialized world which has severe toxicological
effects on human health and the environment [1]. The study conducted by Monash University in
Australia found that the World Health Organization’s recommended criteria for air quality were not
being met where 99% of the world’s population resided [2]. Even though various physical activities
release pollutants, unintentionally releasing hazardous chemicals is the primary cause of pollution.
Elevated tropospheric ozone (O3 (µg/m3)) concentrations indicate a major hazard to the climate and
environment. Additionally, the dispersion of O3 is hampered by climate change due to industrial
activities and urbanization [3]. Important air pollution indicators include Nitrogen Dioxide (NO2), O3,
the absorbing aerosol index (AAI), and carbon monoxide (CO). The main contributors to atmospheric
NO2 production include soil emissions, natural lightning, motor vehicle exhausts, biomass burning,
and partial combustion of fossil fuels. It is crucial in synthesizing tropospheric ozone through intricate
chemical processes involving oxygen and free radicals produced by sunlight on volatile organic
compounds (VOCs) [4]. Since O3 is produced as a by product of the photochemical reaction between
CO and VOC and nitrogen oxides (NOx = NO + NO2), which enables its high concentrations to
be produced by NOx emissions from combustion sources, O3 is regarded as a secondary pollutant
[6]. The World Health Organization states that epidemiological and toxicological investigations have
found significant support for the causal relationship between surface O3 and unfavorable respiratory
consequences. Especially in populations at high risk, these impacts can include mortality as well as
changes to lung function and asthma [5]. Ozone harms crops as well as plant foliage [8]. To inform
the public about the necessary intervention and to assess the immediate effects of activities on climate
behavior, it is vital to anticipate and comprehend the rate of ozone generation and emission [7].

Globally, long-term ozone exposure was projected to contribute to an additional 254,000 chronic
obstructive pulmonary disease deaths [12, 13]. China is one of the nations with the highest ozone
emissions and concentrations on a worldwide scale [7, 9]. Beijing and Shanghai have had the worst
air pollution in recent years, with the critical days of O3 pollution being 93 to 575% greater than those
of other industrialized nations [9]. In contrast, some regions in the United States and southern Canada
experience less ozone exposure and are called “clean places” [14]. The metropolitan area of Mexico
City, the country’s capital, has 21.8 million residents and is in a high-altitude basin (about 2240 m above
sea level). Mexico City is frequently subject to ozone episodes because of its special topographical
environment and meteorological and emission conditions. These events seem to have lately gotten
worse again [10]. However, because tropical and subtropical areas have favorable climatic conditions
for ozone production and accumulation, such as high temperatures, intense sunlight, and convection, the
variation in emissions from these regions can be seen in the global ozone load, demonstrating the close
connection between climatic factors and O3 concentration [11]. Improvements in ozone air quality,
particularly in Europe and North America, have been made by reducing anthropogenic emissions of
ozone precursors like nitrogen oxides (NOx). Peru is included among the nations with the highest
levels of air pollution. This condition is linked to Peru’s quick economic and industrial development,
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which results in the production of pollutants and gases that affect the quality of the air. Lima has over a
third of the nation’s population as the capital of Peru, making it the city with the greatest air pollution
in South America [16].

Statistical modeling approaches have been widely applied to air pollution to describe the interactions
between variables. A relationship between many explanatory factors (predictors) and a response
variable (target) is typically established using statistical techniques based on regression models, such
as multiple linear regression (MLR). But, despite their apparent ability to deliver reasonable results
in many applications, these types of models frequently fall short in describing the complexity of non-
linear relationships and interactions between variables, and more advanced techniques are typically
preferred to achieve a higher degree of accuracy in predictions of pollutant concentration levels [19, 20].
The literature has provided several statistical methods for forecasting and evaluating ozone pollution
levels, including the autoregressive model, the autoregressive integrated moving average, and its model
variants [21, 22, 23]. Scientific research is currently using machine learning (ML) models more and
more. Due to their ability to analyze vast and complex datasets (big data), find patterns, and make
predictions, advanced statistical models based on ML approaches have been created and used in the field
of air quality modeling more and more during the past three decades [17, 18]. During the COVID-19
outbreak in Spain, the issue with NO2 was addressed using ML techniques [24]. Using several methods,
a study was done by [25] to forecast Jordan’s ground-level ozone concentrations. They discovered
that an algorithm based on artificial neural networks performed better than all other methods. The
study was done to forecast hourly ozone concentrations for the next day using a novel approach based
on feedforward artificial neural networks with principal components as inputs. The multiple linear
regression and feedforward artificial neural networks were compared to the developed model based on
the original data and using principal component regression. The results revealed that using principal
components as inputs improved both models’ predictions by reducing their complexity and eliminating
data collinearity [26]. In an empirical investigation, [27] used a standard support vector machine (SVM)
to forecast ozone levels based only on environmental factors. The outcomes showed that the SVM
performed better than neural networks in forecasting daily maximum ozone concentrations. To model
ozone concentrations throughout the continental United States, [28] evaluated thirteen ML techniques
with linear land-use regression (LUR). The nonlinear ML techniques outperformed LUR regarding
prediction accuracy, with the improvement being more significant for spatiotemporal modeling. By
adjusting the sample weights, spatiotemporal models can anticipate concentrations needed to determine
ozone design values that are as good as or better than spatial models. The aim of the study by [29] was
to predict tropospheric (O3) using a dataset of ozone concentrations using a variety of ML models,
including linear regression, tree regression, support vector regression, ensemble regression, Gaussian
process regression, and artificial neural network models. For the prediction of ozone pollution, [30]
assessed the predictive effectiveness of 19 ML algorithms. According to the findings, dynamic ML
models that use time-lagged data perform better than static and reduced ML models. When comparing
ML models to static and reduced models, time-lagged data increases accuracy by 300% and 200%,
respectively, according to RMSE measures.

Peru is a South American country in the Southeast Pacific Region, and its capital, Lima, is no
stranger to ozone air pollution. Lima has grown into a megacity with over ten million people and
severe air pollution concerns. Romero et al. [45] investigated the impact of meteorological variables on
ozone concentrations and other pollutants in the air using linear correlations for data collected between
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2015 and 2018 at eight different sampling stations in metropolitan Lima and found that this pollutant
increased with solar irradiation between 10:00 and 16:00 hours, particularly in spring, possibly due
to the interaction of primary NOx and hydrocarbon emissions from vehicles. Carbo-Bustinza et al.
[11] instead investigated the behavior of ozone in winter at four sites in Lima using ML techniques
and discovered the most significant critical values in the Ate region. However, they detected a general
decrease in values during the cold season (100 µg/m3), consistent with another study [46]. Meanwhile,
there is a requirement to thoroughly analyze the time series of the most contaminated areas to optimize
the O3 forecast.

In this respect, this study aims to provide an improved tool for forecasting tropospheric ozone
concentrations in four districts of the megacity of Lima using a components-based estimate approach. In
a highly accurate and efficient manner, a component-based technique combines the features of classical
multiple regression models and time series models to create efficient forecasts. This study made the
following contributions: To improve the efficiency and accuracy of O3 forecasting, a component-
based forecasting technique based on the multiple linear regression model and four standard time
series models is proposed. The application of the component-based forecasting technique of the O3

database in four districts: Ate, Campo de Marte (CDM), San Borja (SB), and Santa Anita (STA),
with severe episodes of ozone contamination between 2017 and 2019 only for the winter season. Six
different accuracy mean errors were used to evaluate the performance of the proposed component-based
forecasting technique, including three relative and three absolute accuracy mean errors, a statistical
test, and a visual evaluation. In addition, four different forecast horizons are used to evaluate the
short- to medium-term forecasting performance. On the other hand, in this work, the results of the
final best model are compared with the considered baseline models. The findings showed that the best
model in this study is highly accurate and efficient compared to the benchmark models. Likewise,
a methodological proposal applicable to the environmental management system to mitigate ozone
pollution is provided, aimed at the stakeholders of the national air quality program. Finally, the current
work uses only four district datasets in Lima, Peru. This can be extended to other districts of Lima, other
regions of Peru, and even the world level to evaluate the performance of the proposed component-based
forecasting technique. Finally, no analysis has been undertaken using a component-based estimation to
forecast ozone concentrations in Lima in a multi-step-ahead manner.

This research was motivated by the urgent worldwide air pollution problem and its significant
environmental and human health effects. Peru receives special attention because of its fast industrial
expansion and high levels of air pollution, especially in Lima. Recognizing the limits of standard
statistical models, the work offers an enhanced component-based forecasting approach to increase
accuracy in predicting tropospheric ozone concentrations. The main objective is to offer a useful
instrument for managing the environment, intervening when necessary, and maybe being used globally
to lessen the negative consequences of air pollution. The remaining manuscript is formatted as follows:
The proposed component-based forecasting approach is explained in detail in Section 2. Section 3
contains the outcomes of the case studies for each monitoring station analyzed and some meaningful
discussion. Section 4 presents the results, limits, and future challenges.
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2. Method and materials

This section presents the study area, the distribution of the monitoring stations, and the data sources
used. Likewise, this section will comprehensively overview the various models and methods used to
construct the proposed component-based modeling and forecasting technique. Thus, the subsequent
subsections provide detailed information on each model and method.

2.1. Data understanding

This work uses hourly O3 datasets from four monitoring stations in the Lima metropolitan area (see
Figure 1): Ate, CDM, SB, and STA, for three consecutive years, 2017, 2018, and 2019. Only the
winter days of each year are considered. As a result, for one station, there are 6768 data points: a
training section (for model fit) and a testing section (for out-of-sample forecast). The training section
comprises data from 2017 to 2018, the first two years (4512 hours), while the one the complete year
of 2019 (2256 hours) is utilized as out-of-sample data (testing). It is common practice to prepare the
data before beginning the modeling process. The purpose of preprocessing is generally to make data
modeling easier. To do this, the database is sorted, categorized, and evaluated for each monitoring
station while accounting for the city’s winter season, which spans from June 21 to September 22, for
ozone. From 2017 to 2019, four monitoring stations were proposed at essential places in Lima, Peru’s
capital. It should be mentioned that the capital, Lima, has ten monitoring stations; nevertheless, four
were chosen owing to a lack of data in the registration. A Teledyne analyzer was used to test the
ozone concentrations every hour. Zero and span testing, calibration, and leak detection are all examples
of analyzer activities. After correcting zeros, duplicates, and/or anomalies, the data is relayed via
telemetry to Servicio Nacional de Meteorologı́a e Hidrologı́a del Perú (SENAMHI) for certification.
Similarly, SENAMHI features a systematic network of stations that monitor and report the variables
investigated to a processing center regularly and automatically. On an hourly basis, these stations
employ high-quality instrumentation and sensors to detect temperature, relative humidity, wind speed,
and direction. Furthermore, an inductive approach, Multiple Imputation by Chained Equations, was
used. This approach is built on an utterly conditional specification, with each incomplete variable given
by its model [38].

2.2. The proposed component-based modeling and forecasting technique

The primary goal of this study was to predict the O3 level one, two, three, and seven days ahead at
four monitoring stations: Ate, CDM, SB, and STA in Lima, Peru. Let Oh represent the O3 for the hth

hour. To accurately account for the changes in O3 over time, we suggest modeling Oh in the following
way:

Oh = dh + sh (2.1)

The ozone concentration series is split into two parts: a deterministic component (denoted as dh)
and a stochastic component (denoted as sh). dh includes the trend (long-term pattern) and hourly cycles,
while sh represents random fluctuations. Mathematically, dh is defined as follows:

dh = th + nh (2.2)
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Figure 1. Map with the metropolitan area of Lima, Peru, together with the location of the
four pollutant and weather monitoring stations that belong to SENAMHI: Ate, CDM, SB, and
STA.

The symbol th represents the long-term trend, while nh represents the hourly periodicity component.
On the other hand, sh is a stochastic component, also known as residuals, that defines the random
dynamics. A multiple linear regression model estimates the deterministic component dh. To estimate
stochastic components, this study examines four distinct models for univariate time series analysis:
autoregressive, nonparametric autoregressive, autoregressive moving average, and nonlinear neural
network autoregressive. As a result, there are four possible combinations for comparison purposes
when deterministic and stochastic models are combined.

2.2.1. Procedure for modeling the deterministic component

This section will discuss estimating the deterministic component using a multiple linear regression
model. To achieve this, we will model the response variable Oh linearly by estimating the trend (long-
run) component th through linear regression for time h. Additionally, we will describe the hourly

periodicity using dummies:nh =
24∑
i=1
ζiIi,h. The variable Ii,h is assigned a value of 1 when h refers to the

ith hour of the day and 0 otherwise. The regression coefficients (ζi) associated with these components
are determined using the ordinary least square method. After obtaining all the regression coefficients,
the estimated trend and hourly periodicity equation are presented.

d̂h = ζ̂0th +

24∑
i=1

ζ̂iIi,h; (2.3)

Once the estimated deterministic component is obtained, the residual or stochastic component can
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be derived as
sh = Oh − (d̂h) (2.4)

2.3. Modeling the stochastic component

The residual series was obtained from both models using a multiple linear regression model to
estimate the stochastic component in this work. However, to model and forecast the stochastic
component, four different univariate time series models are considered: autoregressive, nonparametric
autoregressive, autoregressive moving average, and nonlinear neural network autoregressive models
[31, 32]. Details on these models are given in the following section.

2.3.1. Autoregressive model

A linear and parametric autoregressive (AR) process describes the short-term dynamics of sh and
considers a linear combination of the previous time d observations of sh, denoted as

sh = α + ϑ1sh-1 + ϑ2sh-2 + .... + ϑnsh−n + εh (2.5)

In the above formula, α is an intercept term, ϑj(j = 1, 2, · · · , n)) is the slope parameter of the
underlying AR process, and εt is the disturbance term. The most appropriate form of the AR (n)
model is the following: This model is defined by one parameter, say (n). The s represents the number
of past observations used in the model and captures the influence of past data points on the current
value. However, the AR model order selection is established by inspecting the correlograms (i.e., ACF
and PACF). This work fits the AR (5), AR (3), AR (4), and AR (5) models for Ate, CDM, SB and STA,
respectively.

2.3.2. Autoregressive moving average model

The autoregressive moving average (ARMA) model incorporates the target variable’s past values
and utilizes important information as moving average(s). In our case, the study variable sh is explained
on the previous n terms, as well as the lagged values of residuals. Mathematically,

sh = α + ϑ1sh-1 + ϑ2sh-2 + · · · + ϑnsh−n + εh + ζ1εh−1 + ζ2εh−2 + .... + ζmεh−m (2.6)

In the last equation, α denotes the intercept, ϑj(j = 1, 2, · · · , n) and ζk(k = 1, 2, ·,m) are the
parameters of AR and MA process respectively, and εh is a Gaussian white noise series with mean
zero and variance σ2

ε. The ARMA (n,m) model is defined by two parameters: n and m. The parameter
n represents the number of past observations used (AR order), while the parameter m represents the
number of past forecast errors included (MA order). The AR component shows the influence of past
data points on the current value, while the MA component accounts for the impact of past forecasting
errors. This study inspects the correlograms (i.e., ACF and PACF) to select the ARMA model order. In
this work, we fit the ARMA (5,2), AR (3,2), AR (4,3), and AR (5,1) models for the Ate, CDM, SB, and
STA, respectively.

2.3.3. Nonparametric Autoregressive Model

The additive nonparametric counterpart of the AR process leads to the additive model (NPAR),
where the association between sh and its previous terms do not have any specific parametric form,
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which is stated as

sh = q1(sh-1) + q2(sh-2) + . . . + qn(s h-n) + εh (2.7)

where qj(j = 1, 2, · · · , n) are smoothing functions and describe the association between sh and its
previous values. In this work, the functions qi are denoted by cubic regression splines. As in the
case of the parametric AR form, considered the NPAR (5), NPAR (3), NPAR (4), and NPAR (5) models
for the Ate, CDM, SB, and STA, respectively.

2.3.4. Autoregressive veural network

An autoregressive neural network (NNA) is a machine learning model that predicts the values of
input variables in the future. The NNA model predicts future values of a time series sh based on its
past observations, such as the mathematical function given by sh−1, sh−2, ..., sh−n [33]. In this expression,
n is the time delay parameter. The NNA model is trained using the backpropagation method and the
steepest descent approach to reduce the squared error between the actual and predicted values. The
NNA (n,m) model is a suitable artificial neural network form that relies on n and m parameters. In this
model, n represents the number of past observations (nodes), while m represents the number of hidden
layers (delayed input). In this study, we utilized the NNA (5,3), NNA (3,2), NNA (4,2), and NNA (5,2)
models for Ate, CDM, SB, and STA, respectively.

In addition to the above-stated models, we include two baseline models, the Naive and the Seasonal
Naive models, to assess the performance of the proposed component-based forecasting models. The
details about the baseline models are given by

2.3.5. The naive model

One of the most basic time series forecasting models is the naı̈ve forecast, frequently used as a
benchmark for evaluating the effectiveness of other techniques. It merely makes the best estimate of
the future value based on the variable’s most recent value [47]. That is,

ÔT+h—T = OT (2.8)

2.3.6. Seasonal naive model

For the seasonal data, a similar approach, the seasonal naı̈ve method, helps forecast time series
analysis. In this situation, each forecast is made to equal the most recent observation from the same
season (for example, the same hour or day of the week or the month of the year within the seasonal
dataset). In a formal setting, the forecast for time T + h is expressed as

ÔT+h—T = OT+h-m(k+1) (2.9)

where k is the integer portion of (h−1)/m (i.e., the number of full years in the forecast period previous
to time T+h), and m is the seasonal period.

Thus, once both deterministic and stochastic components are forecasted using the respective models,
the final one to seven days ahead forecasts are derived as
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Ôh+1 = (t̂h+1 + n̂h+1 + ŝh+1) (2.10)

It is worth mentioning here that the proposed component-based modeling and forecasting technique
is motivated by the following literature work [34, 35, 36, 37].
2.4. Accuracy measures

Six different standard accuracy measures were calculated to validate the performance of the proposed
component-based modeling and forecasting technique, including mean absolute error (MAE), mean
absolute percentage error (MAPE), symmetric mean absolute percentage error (SMAPE), root mean
square error (RMSE), root means squared log error (RMSLE), and root relative squared error (RRSE)
[39]. The MAE, MAPE, SMAPE, RMSE, RMSLE, and RRSE formulae are shown below:

MAE =
1
H

H∑
h=1

|Oh − Ôh|, (2.11)

MAPE =
1
H

H∑
h=1

∣∣∣∣∣∣Oh − Ôh

Oh

∣∣∣∣∣∣ , (2.12)

SMAPE =
1
H

H∑
h=1

|Oh − Ôh|

(|Oh| + |Ôh|)/2
, (2.13)

RMSE =

√√
H∑

h=1

(Oh − Ôh)2

H
, (2.14)

RMSLE =

√√
1
H

H∑
h=1

(log(Oh + 1) − log(Ôh + 1))2, (2.15)

RRSE =

√√√√√√√√√√√ H∑
h=1

(Oh − Ôh)2

H∑
h=1

(Oh − Ō)2

(2.16)

In the above equations, Oh is observed and Ôh is the forecasted ozone value for hth observation (h=1,
2, . . ., 2256=H).

In addition to accuracy performance measures, to assess the significance of the differences in the
prediction performance of the proposed models, the Diebold-Mariano test was performed [40]. The
DM test is a widely used statistical test for comparing predictions obtained from different models [41,
42, 43]. The DM statistic is given by

DMs =
X̄√

Var(X̄)
(2.17)

where

x̄ =
1
H

H∑
h=1

Xh, Xh = (Oh − Õ1h)2 − (Oh − Õ2h)2, (2.18)
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Var(X̄) =
1
H

(2
h−1∑
j=1

r j + r0), and r j = cov(Xh − Xh − j). (2.19)

Õ1h is the predicted value of the first predictive model, and Õ2h is the predicted value of the second
predictive model at time h. If the DM statistic is negative, the first predictive model is statistically better
than the second predictive model.

3. Case study evaluation and discussion

To obtain the forecasts for the O3 concentration one day ahead, two days ahead, three days ahead,
and seven days ahead, using the proposed component-based methodology for time series forecasting
presented in Section 2 for all considered monitoring stations, the following steps need to be followed:
First, to stabilize the variance of the O3 concentration time series, the natural logarithmic transformation
was applied. Second, we divided the hourly O3 concentration time series into two new components:
deterministic and stochastic. The deterministic component contains a linear long-trend component and
an hourly seasonal component, while the stochastic is the remainder. To model the deterministic part
using a multiple linear regression model and the stochastic component with various time series models
discussed in the last section. Finally, both components’ forecasts are combined to get the final forecast
results for each possible combination model. Therefore, the forecasts of one day ahead, two days
ahead, three days ahead, and seven days ahead were obtained using the expanding window technique
for 94 days (2256 hours), and the models were estimated accordingly. Likewise, the O3 forecasts were
achieved through equation 2.10. The performance measures, including MAE, MAPE, SMAPE, RRAE,
RMSLE, and RMSE, are then used for the evaluation and comparative performance of the models.
Therefore, the details of the results from four monitoring stations are given in the following tables: Ate
(in Table 1), CDM (in Table 2), SB (in Table 3) and STA (in Table 4), all located in metropolitan Lima,
Peru.

The results of the Ate are listed in Table 1. This table shows the accuracy mean errors of the four
horizons, such as one day, two days, three days, and seven days ahead, of the following six models:
four combination models from within the proposed component-based forecasting technique: the AR,
the NPAR, the ARMA, and the NNA models; and two baseline models: the naive and seasonal naive
models. The following two conclusions were drawn from Table 1. The mean accuracy errors of the
NPAR model were minimal. As shown in Table 1, the NPAR model had the best forecasting effect, with
accuracy mean errors (MAEs, MAPEs, SMAPEs, RRSE, RMSLE, and RMSE) of the one-day (2.692,
0.192, 0.194, 1.022, 0.229, and 3.685), two-day (2.879, 0.216, 0.217, 1.116, 0.309, and 3.990), and
seven-day (2.900, 0.205, 0.223, 1.117, 0.309, and 3.999) ahead forecasts, respectively, less than the AR,
ARMA, and NNA models within the proposed forecasting methodology, and also significantly minimal
to the baseline models (the naive and seasonal naive models). The predictive effect of the NNA model
was the worst and was much higher than the mean errors of the AR and ARMA models. However, only
in the case of three-day forecast accuracy mean errors are the best results shown by the ARMA models
with the following metrics: MAE = 2.879, MAPE = 0.216, SMAPE = 0.217, RRAE = 1.116, RMSLE =
0.309, and RMSE = 3.990. Although the NPAR model also shows the second-best results, on the other
hand, comparing the best model within the proposed forecasting approach with the baseline models
(naive and season-naive models), it is confirmed from Table 1 that the NPAR model outperforms the
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Table 1. The O3 in Ate Station: The mean forecast error for all models for a twenty-four-hour
ahead out-of-sample forecast.

One-day-ahead (24 hours ahead)
MODEL MAE SMAPE MAPE RRSE RMSLE RMSE

AR 2.997 0.212 0.218 1.113 0.247 4.010
NPAR 2.692 0.192 0.194 1.022 0.229 3.685
ARMA 2.790 0.199 0.200 1.043 0.233 3.760
NNA 3.276 0.224 0.228 1.464 0.286 5.276

NAÏVE 3.181 0.219 0.231 1.219 0.263 4.394
SNAÏVE 3.829 0.277 0.289 1.391 0.326 5.012

Two-day-ahead (48 hours ahead)
MODEL MAE MAPE SMAPE RRSE RMSLE RMSE

AR 3.132 0.231 0.224 1.174 0.262 4.192
NPAR 2.699 0.194 0.190 1.073 0.237 3.832
ARMA 2.823 0.202 0.203 1.078 0.239 3.849
NNA 3.452 0.245 0.230 1.578 0.308 5.635

NAÏVE 3.467 0.255 0.237 1.360 0.288 4.855
SNAÏVE 3.792 0.287 0.275 1.392 0.324 4.971

Three-day-ahead (72 hours ahead)
MODEL MAE MAPE SMAPE RRSE RMSLE RMSE

AR 3.112 0.241 0.231 1.219 0.326 4.361
NPAR 2.944 0.218 0.217 1.185 0.316 4.237
ARMA 2.879 0.216 0.218 1.116 0.309 3.990
NNA 3.940 0.294 0.263 1.812 0.391 6.479

NAÏVE 3.769 0.297 0.265 1.523 0.371 5.446
SNAÏVE 3.853 0.292 0.288 1.415 0.372 5.060

Seven-day-ahead (168 hours ahead)
MODEL MAE MAPE SMAPE RRSE RMSLE RMSE

AR 3.416 0.258 0.268 1.207 0.342 4.321
NPAR 2.900 0.205 0.223 1.117 0.309 3.999
ARMA 2.971 0.217 0.228 1.122 0.310 4.018
NNA 3.147 0.212 0.243 1.213 0.327 4.343

NAÏVE 4.043 0.309 0.320 1.415 0.402 5.065
SNAÏVE 3.826 0.290 0.287 1.404 0.370 5.027

baseline models. This indicates that short-term rather than long-term values significantly affect the O3

concentration. In addition to the above, the one-day predictive error was minimal compared to the other
three horizons. Taking the NPAR model as an example, the MAE, MAPE, SMAPE, RRAE, RMSLE,
and RMSE of the one-day prediction were 2.692, 0.192, 0.194, 1.022, 0.229, and 3.685, less than 2.879,
0.216, 0.217, 1.116, 0.309, and 3.990 for the two-day prediction; 2.944, 0.218, 0.217, 1.185, 0.316, and
3.987 for the three-day prediction; and 2.900, 0.205, 0.223, 1.117, 0.309, and 3.999 for the seven-day
prediction. The horizon predictive effects of the AR, ARMA, and NNA models were the same as the
NPAR model, indicating that the shorter the predictive horizon of the model, the better the predictive
effect. The longer the predictive horizon, the worse the predictive effect. Thus, it can be seen from these
results that the predictive error of the NPAR model was the smallest, and the predictive effect was the
best compared to the rest within the proposed forecasting models and the baseline models. In addition,
this also indicated that recent information was more effective in forecasting O3 than old information
after comparing the predictive errors of the four horizons of the three models.
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Table 2. The O3 in Campo de Marte Station: The mean forecast error for all models for a
twenty-four-hour ahead out-of-sample forecast.

One-day-ahead (24 hours ahead)
MODEL MAE SMAPE MAPE RRSE RMSLE RMSE

AR 4.6696 0.1171 0.1303 0.5597 0.1069 6.9269
NPAR 4.752 0.1182 0.1343 0.6667 0.1993 7.891
ARMA 5.2546 0.1274 0.1463 0.6295 0.223 7.6542
NNA 5.4503 0.131 0.1382 0.645 0.2066 7.8429

NAÏVE 5.1361 0.1245 0.1322 0.6035 0.1985 7.3385
SNAÏVE 10.4678 0.2587 0.4033 1.3213 0.5135 16.0659

Two-day-ahead (48 hours ahead)
MODEL MAE MAPE SMAPE RRSE RMSLE RMSE

AR 5.909 0.198 0.158 0.732 0.301 8.905
NPAR 6.009 0.201 0.166 0.714 0.306 9.134
ARMA 6.485 0.213 0.169 0.787 0.315 9.818
NNA 6.688 0.205 0.175 0.788 0.307 9.827

NAÏVE 6.737 0.203 0.176 0.777 0.303 9.691
SNAÏVE 10.313 0.397 0.256 1.275 0.509 15.907

Three-day-ahead (72 hours ahead)
MODEL MAE MAPE SMAPE RRSE RMSLE RMSE

AR 6.489 0.220 0.178 0.795 0.352 10.333
NPAR 6.695 0.231 0.184 0.808 0.358 10.491
ARMA 6.485 0.220 0.178 0.793 0.352 10.304
NNA 7.794 0.244 0.210 0.877 0.372 11.393

NAÏVE 7.064 0.228 0.191 0.833 0.362 10.821
SNAÏVE 10.011 0.367 0.264 1.178 0.510 15.309

Seven-day-ahead (168 hours ahead)
MODEL MAE MAPE SMAPE RRSE RMSLE RMSE

AR 7.171 0.294 0.201 0.801 0.398 11.016
NPAR 7.288 0.295 0.204 0.801 0.399 11.021
ARMA 7.169 0.285 0.201 0.796 0.395 10.943
NNA 9.913 0.368 0.269 1.103 0.509 15.171

NAÏVE 10.963 0.356 0.294 1.061 0.458 14.588
SNAÏVE 10.156 0.329 0.274 0.973 0.434 13.384

In the same way, Table 2 contains the findings for the Campo de Marte Station. The accuracy mean
errors of the six models are listed in this table for four horizons, such as one day, two days, three days,
and seven days ahead: four from within the proposed component-based forecasting technique: the AR,
NPAR, ARMA, and NNA models; and two baseline models: the naive and seasonal naive models. The
following two inferences were derived from Table 2. The AR and ARMA models had very low mean
accuracy errors. As shown in Table 2, the AR model had the best prediction ability, with accuracy mean
errors (MAEs, MAPEs, SMAPEs, RRSE, RMSLE, and RMSE) of the one-day (4.670, 0.117, 0.130,
0.560, 0.107, and 6.927), two-day (5.909, 0.198, 0.158, 0.732, 0.301, and 8.905). However, mean
errors are the best results shown by the ARMA models in terms of three-day and seven-day forecast
accuracy, with the following metrics: three-day (6.485, 0.220, 0.178, 0.793, 0.352, and 10.304) and
seven-day (7.169, 0.285, 0.201, 0.796, 0.395, and 10.943) ahead forecasts, respectively, which are less
than the NPAR and NNA models within the proposed forecasting methodology and also significantly
less than the baseline models. The NNA model had the weakest predictive effect and had substantially
greater mean errors than the NPAR model. Despite this, the NPAR model produces the third-best
results. When comparing the best model within the proposed forecasting technique to the baseline
models (naive and season-naive models), Table 2 shows that the AR model outperforms the baseline
models in one- and two-day forecasts, while the ARMA model outperforms the baseline models in
three- and seven-day forecasts. Therefore, again, research demonstrated that short-term values have a
greater impact on O3 concentration than long-term values. Along with the aforementioned, the one-
day forecast inaccuracy was modest compared to the other three timeframes. Taking the AR model as
an example, the MAE, MAPE, SMAPE, RRAE, RMSLE, and RMSE of the one-day prediction were
4.670, 0.117, 0.130, 0.560, 0.107, and 6.927, less than 5.909, 0.198, 0.158, 0.732, 0.301, and 8.905 for
the two-day prediction; 6.489, 0.220, 0.178, 0.795, 0.352, and 10.333 for the three-day prediction; and
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7.171, 0.294, 0.201, 0.801, 0.398, and 11.016 for the seven-day prediction. The AR, ARMA, and NNA
models all had the same horizon predictive results as the NPAR model, suggesting that the shorter the
prediction horizon of the model, the better the predictive impact. The longer the predicted horizon, the
less accurate the prediction. Thus, the prediction error of the AR and ARMA models was the least, and
the predictive impact was the best when compared to the rest of the suggested forecasting models and
baseline models. Furthermore, comparing the predicted errors of the four horizons of the three models
revealed that recent information was more helpful in estimating ozone levels than ancient information.

Table 3. The O3 in San Borja Station: The mean forecast error for all models for a twenty-
four-hour ahead out-of-sample forecast.

One-day-ahead (24 hours ahead)
MODEL MAE SMAPE MAPE RRSE RMSLE RMSE

AR 3.3365 0.2689 0.3442 0.6845 0.3543 4.1535
NPAR 3.1904 0.2505 0.2997 0.6502 0.3517 3.9458
ARMA 3.2937 0.2658 0.3273 0.6808 0.3553 4.1312
NNA 3.2018 0.2601 0.3643 0.653 0.3732 3.9624

NAÏVE 3.3159 0.2635 0.303 0.6809 0.3526 4.1318
SNAÏVE 5.8544 0.4466 0.78 1.1846 0.6638 7.1885

Two-day-ahead (48 hours ahead)
MODEL MAE MAPE SMAPE RRSE RMSLE RMSE

AR 3.987 0.432 0.313 0.827 0.412 4.969
NPAR 3.758 0.440 0.294 0.765 0.404 4.596
ARMA 3.879 0.417 0.303 0.800 0.395 4.807
NNA 3.708 0.381 0.288 0.760 0.358 4.569

NAÏVE 4.007 0.389 0.311 0.829 0.410 4.980
SNAÏVE 5.781 0.767 0.440 1.185 0.657 7.122

Three-day-ahead (72 hours ahead)
MODEL MAE MAPE SMAPE RRSE RMSLE RMSE

AR 4.000 0.486 0.316 0.861 0.466 5.167
NPAR 3.920 0.397 0.299 0.824 0.442 4.950
ARMA 3.923 0.399 0.305 0.836 0.453 5.022
NNA 3.961 0.521 0.308 0.831 0.473 4.988

NAÏVE 4.043 0.432 0.316 0.874 0.458 5.249
SNAÏVE 5.875 0.767 0.453 1.213 0.692 7.284

Seven-day-ahead (168 hours ahead)
MODEL MAE MAPE SMAPE RRSE RMSLE RMSE

AR 4.975 0.468 0.404 1.054 0.552 6.276
NPAR 4.578 0.625 0.350 0.940 0.517 5.599
ARMA 5.020 0.594 0.393 1.043 0.514 6.207
NNA 4.491 0.442 0.341 0.928 0.505 5.527

NAÏVE 5.151 0.598 0.400 1.068 0.545 6.356
SNAÏVE 5.773 0.753 0.444 1.211 0.685 7.211

Likewise, preliminary results for the San Borja Station are presented in Table 3. The accuracy
mean errors of the six models at four horizons, such as one day, two days, three days, and seven
days ahead, are presented in Table 3: four from within the proposed component-based forecasting
technique: the AR, NPAR, ARMA, and NNA models; and two baseline models: the naive and seasonal
naive models. Table 3 yielded the following two findings. The mean accuracy errors of the NPAR
and NNA models are minimal. As listed in Table 3, the NPAR model had the best forecasting effect
for one-day and three-day ahead forecasting, with accuracy mean errors (MAEs, MAPEs, SMAPEs,
RRSE, RMSLE, and RMSE) of the one-day ahead forecast (3.190, 0.251, 0.300, 0.650, 0.352, and
3.946), and three-day ahead forecasts (3.920, 0.397, 0.299, 0.824, 0.442, and 4.950), while the NNA
model had the best forecasting effect for two-day and seven-day ahead forecasting, with mean errors of
the two-day (3.708, 0.381, 0.288, 0.760, 0.358, and 4.569) and seven-day (4.491, 0.442, 0.341, 0.928,
0.505, and 5.527) ahead forecasts, respectively, less than the AR, and the ARMA models within the
proposed forecasting methodology, and also significantly minimal to the baseline models. The AR
model had the poorest predictive effect, with substantially greater mean errors than the ARMA model.
Although the NPAR model produces the second-best performance, comparing the best model within
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the proposed forecasting technique to the baseline models (naive and season-naive models), Table 5
shows that the NPAR model outperforms the baseline models. This suggests that short-term values
had a more significant impact on O3 concentration than long-term values. The one-day forecast error
was also small compared to the other three forecasting timeframes. Taking the NPAR model as an
example, the MAE, MAPE, SMAPE, RRAE, RMSLE, and RMSE of the one-day prediction were
3.190, 0.251, 0.300, 0.650, 0.352, and 3.946, less than 3.758, 0.440, 0.294, 0.765, 0.404, and 4.596 for
the two-day prediction; 3.920, 0.397, 0.299, 0.824, 0.442, and 4.950 for the three-day prediction; and
4.578, 0.625, 0.350, 0.940, 0.517, and 5.599 for the seven-day prediction. The AR, ARMA, and NNA
models all had the same horizon predictive results as the NPAR model, suggesting that the shorter the
prediction horizon of the model, the better the predictive impact. The longer the forecast’s horizon,
the less accurate the forecast seems to be. Thus, it can be observed from these data that the NPAR
model had the minimum predicted error and the best predictive impact when compared to the other
proposed forecasting models and baseline models. Furthermore, comparing the forecasted errors of the
four horizons of the three models revealed that recent information was more helpful in estimating ozone
levels than historical information.

Table 4. The O3 in Santa Anita Station: The mean forecast error for all models for a twenty-
four-hour ahead out-of-sample forecast.

One-day-ahead (24 hours ahead)
MODEL MAE SMAPE MAPE RRSE RMSLE RMSE

AR 3.7604 0.361 0.4296 1.0933 0.4317 4.8461
NPAR 3.1036 0.296 0.3415 0.955 0.3666 4.2332
ARMA 3.2337 0.3096 0.378 0.9786 0.3856 4.3378
NNA 3.1828 0.3064 0.3529 0.9679 0.3765 4.2901

NAÏVE 3.925 0.3692 0.4319 1.1339 0.4408 5.0262
SNAÏVE 5.2327 0.4827 0.6442 1.4868 0.6032 6.5903

Two-day-ahead (48 hours ahead)
MODEL MAE MAPE SMAPE RRSE RMSLE RMSE

AR 3.890 0.446 0.369 1.131 0.447 5.054
NPAR 3.235 0.344 0.305 0.956 0.363 4.269
ARMA 3.313 0.384 0.314 0.977 0.387 4.366
NNA 3.252 0.349 0.308 0.964 0.371 4.306

NAÏVE 4.234 0.474 0.389 1.237 0.471 5.526
SNAÏVE 5.199 0.635 0.478 1.466 0.598 6.549

Three-day-ahead (72 hours ahead)
MODEL MAE MAPE SMAPE RRSE RMSLE RMSE

AR 4.162 0.488 0.405 1.166 0.492 5.243
NPAR 3.584 0.385 0.349 1.022 0.415 4.595
ARMA 3.597 0.427 0.348 1.009 0.425 4.538
NNA 3.522 0.384 0.344 1.003 0.411 4.511

NAÏVE 4.484 0.510 0.418 1.260 0.505 5.666
SNAÏVE 5.195 0.636 0.486 1.454 0.610 6.537

Seven-day-ahead (168 hours ahead)
MODEL MAE MAPE SMAPE RRSE RMSLE RMSE

AR 4.694 0.533 0.443 1.326 0.534 5.905
NPAR 3.565 0.373 0.346 1.042 0.413 4.640
ARMA 3.705 0.445 0.354 1.071 0.441 4.768
NNA 3.577 0.381 0.348 1.052 0.420 4.683

NAÏVE 5.472 0.625 0.478 1.532 0.574 6.819
SNAÏVE 5.129 0.626 0.480 1.456 0.604 6.479

Conversely, Table 4 tabulated the outcomes for the Santa Anita Station. This table illustrates the
accuracy mean errors of the four horizons, such as one day, two days, three days, and seven days ahead,
of the six models: four from within the proposed component-based forecasting technique: the AR,
NPAR, ARMA, and NNA models; and two baseline models: the naive and seasonal naive models. The
following two conclusions were drawn from Table 4. The mean accuracy errors of the NPAR model
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were minimal. As shown in Table 4, the NPAR model had the best forecasting effect, with accuracy
mean errors (MAEs, MAPEs, SMAPEs, RRSE, RMSLE, and RMSE) of the one-day (3.104, 0.296,
0.342, 0.955, 0.367, and 4.233), two-day (3.235, 0.344, 0.305, 0.956, 0.363, and 4.269), and seven-day
(3.565, 0.373, 0.346, 1.042, 0.413, and 4.640) ahead forecasts, respectively, less than the AR, ARMA,
and NNA models within the proposed forecasting methodology, and also significantly minimal to the
baseline models (the naive and seasonal naive models). The predictive effect of the NNA model was
the worst and was much higher than the mean errors of the AR and ARMA models. However, only in
the case of three-day forecast accuracy, mean errors are the best results shown by the NNA models with
the following metrics: MAE = 3.522, MAPE = 0.384, SMAPE = 0.344, RRSE = 1.003, RMSLE =
0.411, and RMSE = 4.511. Although the NPAR model also shows the second-best results, on the other
hand, comparing the best model within the proposed forecasting approach with the baseline models
(naive and season-naive models), it is confirmed from Table 3 that the NPAR model outperforms the
baseline models. This indicated that short-term rather than long-term values significantly affect the O3

concentration. Along with the aforementioned, the one-day forecast error was small compared to the
other three spans. The MAE, MAPE, SMAPE, RRAE, RMSLE, and RMSE of the one-day prediction
for the AR model were 3.7604, 0.361, 0.4296, 1.0933, 0.4317, and 4.8461, which were less than 3.890,
0.446, 0.369, 1.131, 0.447, and 5.054 for the two-day prediction; and 4.162, 0.488, 0.405, 1.166, 0.492,
and 5.243 for the three-day prediction. The NPAR, ARMA, and NNA models all had the same horizon
predictive effects as the AR model, demonstrating that the shorter the prediction horizon of the model,
the better the predictive impact. The longer the forecasting horizon, the less accurate the forecast is.
Thus, it can be observed from these data that the NPAR model had the minimum predicted error and the
best predictive impact when compared to the other proposed forecasting models and baseline models.
Furthermore, comparing the predicted errors of the four horizons of the three models revealed that
recent information was more helpful in estimating ozone levels than past information.

In order to confirm the dominance of the best models for all monitoring stations listed in Tables 1-4,
in this work, we performed the DM test on each pair of models. The null hypothesis is that the two
models on the columns and rows are equally accurate, and the alternative hypothesis is that the model
on the columns is more accurate than the model on the rows (using the loss-squared function). The
results (DM-statistic) of the DM test are given in Table 5 (the Ate station), Table 6 (the CDM station),
7 (the SB station), and Table 8 (the STA station) of Metropolitan Lima. Thus, if the DM statistic is
negative in these tables, the first predictive model (the column predictive model) is statistically better
than the second predictive model (the row predictive model). Hence, the results of the Ate station show
that the final super best (NPAR) model within all four best models and the considered two baseline
models is statistically superior at the 5% significance level at all four forecasting horizons. However,
in the CDM, the SB, and the STA stations, the final best models (the AR at one- and two-day ahead
horizons and the ARMA at three- and seven-day ahead horizons), (the NPAR at one- and three-day
ahead horizons and the ARMA at two- and seven-day ahead horizons) and (the NPAR at one-, three-,
and seven-day ahead horizons and the NNA at two-day ahead horizon) are statistically superior to the
other all considered models at the 5% level of significance.

Once the proposed component-based modeling and forecasting technique performance has been
evaluated by accuracy performance measures (MAE, MAPE, SMAPE, RMSE, RMSLE, and RRSE)
and a statistical test (the DM test), we then process the models for graphic analysis. For instance, we
draw the scatter plots for each station using their respective best model obtained by accuracy mean
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errors and a previous statistical test. Figure 2 displays the scatter plots for all considered monitoring
stations, including Figure 2 (a) for the Ate station, Figure 2 (b) for the CDM station, Figure 2 (c) for
the SB station, and Figure 2 (d) for the STA station. These figures show that the best models produce
greater Pearson correlation coefficient values, which indicates that the correlation between forecast and
actual O3 values is highly significant. On the other hand, the forecasted and observed values for the
supermodel in each monitoring station are plotted in Figure 3. In Figure 3, (a) for the Ate station, (b)
for the CDM station, (c) for the SB station, and (d) for the STA station, forecasts of the best models
follow the observed concentration of ozone very closely; to this, we can conclude that the best models
in each considered station have accurate and efficient forecasts. Thus, from the descriptive statistical
analysis, tests, and graphical results, we can be point that the proposed component-based modeling and
forecasting technique is highly efficient and accurate in forecasting hourly O3. In addition, within the
proposed forecasting methodology, there are two classes of forecasting models: linear (the AR and the
ARMA) and nonlinear (the NAPR and the NNA) time series models. As we confirm from the above
results, the nonlinear models dominate overall, while in a few cases, the linear model outperforms the
nonlinear models.

Table 5. The Diebold and Marino results for the Ate station: The DM-statistic values for all
models are given in Table 1.

One-day-ahead (24 hours ahead)
Models AR NPAR ARMA NNA NAÏVE SNAÏVE

AR 0.0000 -9.0887 -9.0935 -8.8935 -9.0899 5.6142
NPAR 9.0887 0.0000 2.8016 7.8766 7.0433 7.9687
ARMA 9.0935 -2.8016 0.0000 7.8831 6.9920 7.9692
NNA 8.8935 -7.8766 -7.8831 0.0000 -7.8895 7.9761

NAÏVE 9.0899 -7.0433 -6.9920 7.8895 0.0000 7.9698
SNAÏVE -5.6142 -7.9687 -7.9692 -7.9761 -7.9698 0.0000

Two-day-ahead (48 hours ahead)
Models AR NPAR ARMA NNA NAÏVE SNAÏVE

AR 0.0000 -9.5751 -9.5682 -9.4378 -9.5679 5.3401
NPAR 9.5751 0.0000 -3.0507 7.6242 7.0475 7.7160
ARMA 9.5682 3.0507 0.0000 7.6015 6.5041 7.7141
NNA 9.4378 -7.6242 -7.6015 0.0000 -7.6183 7.7234

NAÏVE 9.5679 -7.0475 -6.5041 7.6183 0.0000 7.7156
SNAÏVE -5.3401 -7.7160 -7.7141 -7.7234 -7.7156 0.0000

Three-day-ahead (72 hours
Models AR NPAR ARMA NNA NAÏVE SNAÏVE

AR 0.0000 -8.7263 -8.7151 -9.0370 -8.6979 4.5748
NPAR 8.7263 0.0000 -2.0191 6.1792 18.9793 6.2607
ARMA 8.7151 2.0191 0.0000 6.1427 11.0496 6.2578
NNA 9.0370 -6.1792 -6.1427 0.0000 -6.0526 6.2674

NAÏVE 8.6979 -18.9793 -11.0496 6.0526 0.0000 6.2511
SNAÏVE -4.5748 -6.2607 -6.2578 -6.2674 -6.2511 0.0000

Seven-day-ahead (168 hours ahead)
Models AR NPAR ARMA NNA NAÏVE SNAÏVE

AR 0.0000 -8.8059 -8.7952 -8.4630 -8.7729 14.7468
NPAR 8.8059 0.0000 2.9659 11.6282 19.9019 11.3933
ARMA 8.7952 -2.9659 0.0000 11.5031 19.9553 11.3841
NNA 8.4630 -11.6283 -11.5031 0.0000 -11.3278 11.3743

NAÏVE 8.7729 -19.9019 -19.9553 11.3278 0.0000 11.3712
SNAÏVE -14.7468 -11.3933 -11.3841 -11.3743 -11.3712 0.0000
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Table 6. Diebold and Marino results for the Campo de Marte station: The DM-statistic values
for all models are given in Table 2.

One-day-ahead (24 hours ahead)
Models AR NPAR ARMA NNA NAÏVE SNAÏVE

AR 0.0000 -2.8199 -2.8217 -2.8216 -2.8222 2.5844
NPAR 2.8199 0.0000 1.2125 2.6957 1.7028 2.6888
ARMA 2.8217 -1.2125 0.0000 2.8074 2.1681 2.6894
NNA 2.8216 -2.6957 -2.8074 0.0000 -2.8480 2.6887

NAÏVE 2.8222 -1.7028 -2.1681 2.8480 0.0000 2.6896
SNAÏVE -2.5844 -2.6888 -2.6894 -2.6887 -2.6896 0.0000

Two-day-ahead (48 hours ahead)
Models AR NPAR ARMA NNA NAÏVE SNAÏVE

AR 0.0000 -4.6521 -4.6491 -4.6552 -4.6501 4.0207
NPAR 4.6521 0.0000 -1.9907 4.4231 7.3595 4.2838
ARMA 4.6491 1.9907 0.0000 4.2369 4.0521 4.2827
NNA 4.6552 -4.4231 -4.2369 0.0000 -4.2581 4.2830

NAÏVE 4.6501 -7.3595 -4.0521 4.2581 0.0000 4.2828
SNAÏVE -4.0207 -4.2838 -4.2827 -4.2830 -4.2828 0.0000

Three-day-ahead (72 hours ahead)
Models AR NPAR ARMA NNA NAÏVE SNAÏVE

AR 0.0000 -6.1758 -6.1735 -6.1677 -6.1719 6.8057
NPAR 6.1758 0.0000 -3.0788 6.8135 10.4177 6.5771
ARMA 6.1735 3.0788 0.0000 6.5635 6.7891 6.5758
NNA 6.1677 -6.8135 -6.5635 0.0000 -6.5119 6.5758

NAÏVE 6.1719 -10.4177 -6.7891 6.5119 0.0000 6.5755
SNAÏVE -6.8057 -6.5771 -6.5758 -6.5758 -6.5755 0.0000

Seven-day-ahead (168 hours ahead)
Models AR NPAR ARMA NNA NAÏVE SNAÏVE

AR 0.00000 -6.26121 -6.26481 -6.24572 -6.25654 8.29033
NPAR 6.26121 0.00000 -10.89898 7.71715 10.43512 8.01439
ARMA 6.26481 10.89898 0.00000 8.04551 11.12267 8.01600
NNA 6.24572 -7.71715 -8.04551 0.00000 -7.32966 8.01583

NAÏVE 6.25654 -10.43512 -11.12267 7.32966 0.00000 8.01278
SNAÏVE -8.29033 -8.01439 -8.01600 -8.01583 -8.01278 0.00000

Table 7. Diebold and Marino results for the San Borja station: The DM-statistic values for
all models are given in Table 3.

One-day-ahead (24 hours ahead)
Models AR NPAR ARMA NNA NAÏVE SNAÏVE

AR 0.0000 -3.7110 -3.7439 -3.7089 -3.7168 4.0280
NPAR 3.7110 0.0000 1.6320 3.7670 2.9423 3.8163
ARMA 3.7439 -1.6320 0.0000 5.4509 -0.3617 3.8394
NNA 3.7089 -3.7670 -5.4509 0.0000 -3.9880 3.8175

NAÏVE 3.7168 -2.9423 0.3617 3.9880 0.0000 3.8207
SNAÏVE -4.0280 -3.8163 -3.8394 -3.8175 -3.8207 0.0000

Two-day-ahead (48 hours ahead)
Models AR NPAR ARMA NNA NAÏVE SNAÏVE

AR 0.0000 -5.8812 -5.8247 -5.8246 -5.8486 5.9755
NPAR 5.8812 0.0000 -2.4739 8.4385 -1.4931 5.9179
ARMA 5.8247 2.4739 0.0000 5.8244 3.2554 5.8805
NNA 5.8246 -8.4385 -5.8244 0.0000 -6.6795 5.8819

NAÏVE 5.8486 1.4931 -3.2554 6.6795 0.0000 5.8965
SNAÏVE -5.9755 -5.9179 -5.8805 -5.8819 -5.8965 0.0000

Three-day-ahead (72 hours ahead)
Models AR NPAR ARMA NNA NAÏVE SNAÏVE

AR 0.0000 -6.0736 -6.0326 -6.0078 -6.0385 7.8289
NPAR 6.0736 0.0000 -3.1012 8.7842 -0.4728 6.6660
ARMA 6.0326 3.1012 0.0000 6.7054 5.2996 6.6326
NNA 6.0078 -8.7842 -6.7054 0.0000 -7.1164 6.6308

NAÏVE 6.0385 0.4728 -5.2996 7.1164 0.0000 6.6399
SNAÏVE -7.8289 -6.6660 -6.6326 -6.6308 -6.6399 0.0000

Seven-day-ahead (168 hours ahead)
Models AR NPAR ARMA NNA NAÏVE SNAÏVE

AR 0.0000 -13.1648 -13.0593 -13.0974 -13.1023 10.7537
NPAR 13.1648 0.0000 -4.0693 11.9360 -1.0432 12.2667
ARMA 13.0594 4.0693 0.0000 12.1186 6.6877 12.2212
NNA 13.0974 -11.9360 -12.1186 0.0000 -12.8686 12.2237

NAÏVE 13.1023 1.0432 -6.6877 12.8686 0.0000 12.2420
SNAÏVE -10.7537 -12.2667 -12.2212 -12.2237 -12.2420 0.0000
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Table 8. Diebold and Marino results for the Santa Anita station: The DM-statistic values for
all models are given in Table 4.

One-day-ahead (24 hours ahead)
Models AR NPAR ARMA NNA NAÏVE SNAÏVE

AR 0.0000 -5.2875 -5.3083 -5.2203 -5.2884 8.1294
NPAR 5.2875 0.0000 2.7675 6.2293 4.9491 6.1872
ARMA 5.3083 -2.7675 0.0000 6.7317 -0.0123 6.2071
NNA 5.2203 -6.2293 -6.7317 0.0000 -6.3213 6.1852

NAÏVE 5.2884 -4.9491 0.0123 6.3213 0.0000 6.1909
SNAÏVE -8.1294 -6.1872 -6.2071 -6.1852 -6.1909 0.0000

Two-day-ahead (48 hours ahead)
Models AR NPAR ARMA NNA NAÏVE SNAÏVE

AR 0.0000 -5.8369 -5.8138 -5.7600 -5.8183 7.8662
NPAR 5.8369 0.0000 -3.0381 7.0218 -0.2926 6.5382
ARMA 5.8138 3.0381 0.0000 6.5466 4.8688 6.5192
NNA 5.7600 -7.0218 -6.5466 0.0000 -6.6721 6.5179

NAÏVE 5.8183 0.2926 -4.8688 6.6721 0.0000 6.5245
SNAÏVE -7.8662 -6.5382 -6.5192 -6.5179 -6.5245 0.0000

Three-day-ahead (72 hours ahead)
Models AR NPAR ARMA NNA NAÏVE SNAÏVE

AR 0.0000 -7.3310 -7.2985 -7.2848 -7.3063 8.0393
NPAR 7.3310 0.0000 -3.4977 8.0225 0.2028 7.5900
ARMA 7.2985 3.4977 0.0000 7.4779 5.7668 7.5678
NNA 7.2848 -8.0225 -7.4779 0.0000 -7.6111 7.5720

NAÏVE 7.3063 -0.2028 -5.7668 7.6111 0.0000 7.5737
SNAÏVE -8.0393 -7.5900 -7.5678 -7.5720 -7.5737 0.0000

Seven-day-ahead (168 hours ahead)
Models AR NPAR ARMA NNA NAÏVE SNAÏVE

AR 0.0000 -6.3528 -6.3311 -6.2905 -6.3270 8.3365
NPAR 6.3528 0.0000 -3.4125 7.3201 -0.3216 6.9978
ARMA 6.3311 3.4125 0.0000 6.8884 6.4540 6.9795
NNA 6.2905 -7.3201 -6.8884 0.0000 -6.8547 6.9838

NAÏVE 6.3270 0.3216 -6.4540 6.8547 0.0000 6.9785
SNAÏVE -8.3365 -6.9978 -6.9795 -6.9838 -6.9785 0.0000
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Figure 2. Correlation plot showing the O3 for all stations. It displays the best forecasting
models for the O3, which are NPAR (located in the top-left), AR (top-right), ARMA (bottom-
left), and NPAR (bottom-right).
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Figure 3. This graph displays the actual and forecasted data points for O3 over 504 hours at
four different stations: Ate Station (a), CDM Station (b), SB Station (c), and STA Station (d).
The best model was used for each station.

In this sense, the ozone level is a prominent air pollutant in metropolitan areas, including four
monitoring sites in Metropolitan Lima, Peru. When present in sufficient quantities, tropospheric ozone
can have serious consequences for human health, including respiratory and cardiovascular disorders.
Therefore, accurate and efficient forecasts short- to medium-term forecasts are more valuable for
policymakers and decision-makers at the district and province levels. Thus, the authors recommended
that the proposed component-based modeling and forecasting technique can be considered highly
efficient and accurate in forecasting short- to medium-term hourly O3.

4. Conclusions and future work directions

This research presents a component-based modeling and forecasting technique for predicting ozone
levels in Metropolitan Lima, Peru. The method uses multiple linear regression, time series models, and
data from four districts from 2017 to 2019. The hourly ozone time series is divided into deterministic
and stochastic components, with four time series models used. The technique’s performance was
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validated using six standard accuracy measures, statistical tests, and graphical evaluations. Results
showed that the nonparametric autoregressive model had the best forecasting effect for the Ate, CDM,
SB, and STA stations. The neural network autoregressive model had the best forecasting effect for two-
day and seven-day forecasting. In contrast, the nonparametric autoregressive model had the best impact
on one-day, three-day, and seven-day forecasting. The technique demonstrated exceptional accuracy
and efficiency in short- and medium-term forecasts of hourly O3 levels in Lima, Peru.

However, the main limitation of this study is that it only presents hourly data on ozone levels. This
could be improved by including additional external factors such as wind speed, temperature, wind
direction, and humidity to enhance short-term predictions. Additionally, the study only used four
district datasets in Lima, Peru. Still, it could be expanded to include other districts in Lima, different
regions in Peru, and even globally to assess the effectiveness of the proposed component-based time
series modeling and forecasting technique. Furthermore, the study employed only univariate time series
models, which could be augmented by incorporating machine learning models like deep learning and
artificial neural networks. These models could also be integrated into the current component-based
time-series forecasting framework. Likewise, in other scenarios and with different data, for example,
energy [48, 49], air pollution [50, 51, 52], and academic performance [53].

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

P.C. Rodrigues acknowledges financial support from the CNPq grant “bolsa de produtividade PQ-
2” 309359/2022-8, Federal University of Bahia and CAPES-PRINT-UFBA, under the topic “Modelos
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