In this paper, the 1-D compressible non-isentropic Euler equations with the source term βρ|u|αu in a bounded domain are considered. First, we study the existence of steady flows which can keep the upstream supersonic or subsonic state. Then, by wave decomposition and uniform prior estimations, we prove the global existence and stability of smooth solutions under small perturbations around the steady supersonic flow. Moreover, we get that the smooth supersonic solution is a temporal periodic solution with the same period as the boundary, after a certain start-up time, once the boundary conditions are temporal periodic.
Citation: Shuyue Ma, Jiawei Sun, Huimin Yu. Global existence and stability of temporal periodic solution to non-isentropic compressible Euler equations with a source term[J]. Communications in Analysis and Mechanics, 2023, 15(2): 245-266. doi: 10.3934/cam.2023013
[1] | Dongming Nie, Usman Riaz, Sumbel Begum, Akbar Zada . A coupled system of p-Laplacian implicit fractional differential equations depending on boundary conditions of integral type. AIMS Mathematics, 2023, 8(7): 16417-16445. doi: 10.3934/math.2023839 |
[2] | Sabri T. M. Thabet, Miguel Vivas-Cortez, Imed Kedim . Analytical study of ABC-fractional pantograph implicit differential equation with respect to another function. AIMS Mathematics, 2023, 8(10): 23635-23654. doi: 10.3934/math.20231202 |
[3] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
[4] | Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438 |
[5] | Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012 |
[6] | Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244 |
[7] | Najla Alghamdi, Bashir Ahmad, Esraa Abed Alharbi, Wafa Shammakh . Investigation of multi-term delay fractional differential equations with integro-multipoint boundary conditions. AIMS Mathematics, 2024, 9(5): 12964-12981. doi: 10.3934/math.2024632 |
[8] | Arjumand Seemab, Mujeeb ur Rehman, Jehad Alzabut, Yassine Adjabi, Mohammed S. Abdo . Langevin equation with nonlocal boundary conditions involving a ψ-Caputo fractional operators of different orders. AIMS Mathematics, 2021, 6(7): 6749-6780. doi: 10.3934/math.2021397 |
[9] | Qun Dai, Shidong Liu . Stability of the mixed Caputo fractional integro-differential equation by means of weighted space method. AIMS Mathematics, 2022, 7(2): 2498-2511. doi: 10.3934/math.2022140 |
[10] | Zaid Laadjal, Fahd Jarad . Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 1172-1194. doi: 10.3934/math.2023059 |
In this paper, the 1-D compressible non-isentropic Euler equations with the source term βρ|u|αu in a bounded domain are considered. First, we study the existence of steady flows which can keep the upstream supersonic or subsonic state. Then, by wave decomposition and uniform prior estimations, we prove the global existence and stability of smooth solutions under small perturbations around the steady supersonic flow. Moreover, we get that the smooth supersonic solution is a temporal periodic solution with the same period as the boundary, after a certain start-up time, once the boundary conditions are temporal periodic.
Over the past decades, the study of nonlinear problems has been the interest of many researchers [5,10,11,14,19,24,25,26]. Also, study of fractional calculus has recently gained great momentum, and has emerged as a significant research area [5,7,15,20,21,30]. Fractional derivatives provide an excellent tool for the description of memory and hereditary properties of various materials and processes; see, for instance, the contribution [2,3,4,6,16,22,23,28,29] and references therein.
The authors in [8] focused on the study of nonlinear jerk problems due to its various physical applications, as form
d3ydt3=T(y,dydt,d2ydt2). |
In 2020, the authors investigated the existence and uniqueness of solutions for the following nonlocal generalized fractional Sturm-Liouville and Langevin equations:
{cDαι+1([p(t)cDγι+1+q(t)]y(t))=T(t,y(t)),t∈[0,T],α,γ∈(0,1],y(0)+ϰ1(y)=y1∈R,cDγι+1y(T)+ϰ2(y)=y2∈R, |
where cDαι+1, cDγι+1 are the Caputo fractional derivatives, p,q∈C([0,T]) with |p|≥K>0, ϰ1,ϰ2:C(J)→R are continuous functions and T∈C([0,T]×R) [27]. The second derivative of the accelaration (fourth derivative of position) is a physical quantity called a snap or jounce, which can be modeled as
{dy1dt=y2(t),dv2dt=y3(t),dy3dt=y4(t),dy4dt=T(y1,y2,y3,y4). | (1.1) |
It is obvious that the model (1.1) can be reduced to the following equation:
d4y1dt4=T(y1,dy1dt,d2y1dt2,d3y1dt3). | (1.2) |
Scientifically, jerk and snap are the third and fourth derivatives of our position with regard to time, respectively. The Eq (1.1) contains a 4th-order derivative of the variable y1, and it describes a 4th-order dynamical vibration model.
The corresponding fractional model is achieved by using the fractional derivative (of order less than or equal 1) instead of the standard deivative ddt. Many types of fractional derivatives can be used here, such as Riemann-Liouville, Caputo, Hadamard, etc. We prefer to use the generalized fractional derivative (GFD), with respect to differentiable increasing function G. In 2020, Liu {et al.}, developed two iterative algorithms to determine the periods, and then the periodic solutions of nonlinear jerk equations for two possible cases with initial values unknown and initial values given [13]. The authors in a recent article [23] considered the G-fractional snap model (GFSM) with constant, initial conditions
{cDα;Gι+1y(t)=y1(t),y(ι1)=v0,cDβ;Gι+1y1(t)=y2(t),y1(ι1)=v1,cDγ;Gι+1y2(t)=y3(t),y2(ι1)=v2,cDδ;Gι+1y3(t)=T(t,y,y1,y2,y3),y3(ι1)=v3, | (1.3) |
where the G-Caputo derivatives are illustrated by the symbol
cDη;Gι+1,η∈{α,β,γ,δ},0<η<1, |
here and the increasing function G∈C1([ι1,ι2]) is such that G′(t)≠0, for each t∈[ι1,ι2] and continuous function T belongs to C([ι1,ι2]×R4) and y0,y1,y2,y3∈R. Abbas {et al.} studied the following coupled system of fractional differential equations:
{RLDα1;ϱι+1y1(t)=T1(t,y1(t),y2(t)),RLDα2;ϱι+1y2(t)=T2(t,y1(t),y2(t)), |
for t∈[ι1,ι2] equipped with the generalized fractional integral boundary conditions
{y1(τ1)=0,y1(ι2)=Iζ1;ϱι+1y1(η1),y2(τ2)=0,y2(ι2)=Iζ2;ϱι+1y2(η2), |
where ϱ∈(0,1], RLDαi;ϱι+1 denotes the generalized proportional fractional derivatives of Riemann-Liouville type of order 1<αi≤2, Iζi;ϱι+1 that denotes the generalized proportional fractional integrals of order 0<ζi<1 and τi,ηi∈(ι1,ι2) and Ti∈C([ι1,ι2]×R2) [1].
We center our consideration on the problem of the existence and uniqueness along with the Hyers-Ulam stability (U-H-S) of solutions for fractional nonlinear couple snap system (CSS) in the G-Caputo sense (GC) with initial conditions
{cDq1;Gι+1v1(t)=u1(t),cDq2;Gι+1v2(t)=u2(t),cDp1;Gι+1u1(t)=w1(t),cDp2;Gι+1u2(t)=w2(t),cDr1;Gι+1w1(t)=x1(t),cDr2;Gι+1w2(t)=x2(t),cDs1;Gι+1x1(t)=h1(t,v1,v2,u1,u2,w1,w2,x1,x2),cDs2;Gι+1x2(t)=h2(t,v1,v2,u1,u2,w1,w2,x1,x2), | (1.4) |
subject to the following integral boundary conditions
v1(ι1)=∫ι2ι1g10(s)ds,v2(ι1)=∫ι2ι1g20(s)ds,u1(ι1)=∫ι2ι1g11(s)ds,u2(ι1)=∫ι2ι1g21(s)ds,w1(ι1)=∫ι2ι1g12(s)ds,w2(ι1)=∫ι2ι1g22(s)ds,x1(ι1)=∫ι2ι1g13(s)ds,x2(ι1)=∫ι2ι1g23(s)ds, | (1.5) |
where the GC derivatives are illustrated by symbol
cDη;Gι+1,η∈{qk,pk,rk,sk},0<qk,pk,rk,sk≤1, |
here the function G∈C1(Σ) is increasing with G′(t)≠0, for all t∈Σ=[ι1,ι2] and the functions hk∈C(Σ×R8),(k=1,2) and gkj∈C(Σ,R),(j=0,1,2,3;k=1,2) are continuous functions. It is obvious that the CSS (1.4) and (1.5) can be rewritten as
{cDsk;Gι+1(cDrk;Gι+1(cDpk;Gι+1(cDqk;Gι+1vk(t))))=hk(t)vk(ι1)=∫ι2ι1gk0(s)ds,cDqk;Gι+1vk(t)|t=ι1=∫ι2ι1gk1(s)ds,cDpk;Gι+1(cDqk;Gι+1vk(t))|t=ι1=∫ι2ι1gk2(s)ds,cDrk;Gι+1(cDpk;Gι+1(cDqk;Gι+1vk(t)))|t=ι1=∫ι2ι1gk3(s)ds,k=1,2, | (1.6) |
where
hv1,v2,k(t)=hk(t,v1(t),v2(t),cDq1;Gι+1v1(t),cDq2;Gι+1v2(t),cDp1;Gι+1(cDq1;Gι+1v1(t)),cDp2;Gι+1(cDq2;Gι+1v2(t)),cDr1;Gι+1(cDp1;Gι+1(cDq1;Gι+1v1(t))),cDr2;Gι+1(cDp2;Gι+1(cDq2;Gι+1v2(t)))). |
The main novelty of this work is that we establish our results with the help of the technique of fixed point theorems for a fractional nonlinear CSS furnished with generalized operators, which leads to some general theoretical findings involving the following special cases: G as G1(ι)=2ι, G2(ι)=ι (Caputo derivative), G3(ι)=lnι (Caputo-Hadamard derivative), G4(ι)=√ι (Katugampola derivative).
This paper is organized as follows: In Section 2, we present some necessary definitions and lemmas that are needed in the subsequent sections. In Section 3, we adopt some fixed point theorems to prove the existence and uniqueness of solutions for problem (1.4). The stability results are extensively discussed in Section 3.2. An illustrative example is presented in Section 4.
Some primitive notions, definitions and notations, which will be utilized throughout the manuscript, are recalled here. Consider the function G with assumptions in system (1.4). We start this part by defining G-Riemann-Liouville fractional (GF-RL) integrals and derivatives [17]. For η>0, the ηth-GF-RL integral for an integrable function v:Σ→R w.r.t G is illustrated as follows
Iη;Gι+1v(t)=1Γ(η)∫tι1(G(t)−G(σ))η−1G′(σ)v(σ)dσ, | (2.1) |
where Γ(η)=∫+∞0e−ttη−1dt,η>0. Let n∈N and G,v∈Cn(Σ) be such that G has the same properties mentioned above. The ηth-GF-RL derivative of v is defined by
Dη;Gι+1v(t)=A(n)In−η;Gι+1v(t)=1Γ(n−η)A(n)∫tι1(G(t)−G(σ))n−η−1G′(σ)v(σ)dσ, |
in which n=[η]+1, where A=1G′(t)ddt. The ηth-G-fractional-Caputo derivative of v is defined by cDη;Gι+1v(t)=In−η;Gι+1A(n)v(t), in which n=[η]+1, (η∉N), n=η for η∈N [17]. In other words,
cDη;Gι+1v(t)={∫tι1(G(t)−G(ξ))n−η−1Γ(n−η)G′(n)v(ξ)dξ,η∉N,Anv(t),η=n∈N. | (2.2) |
This extension (2.2) gives the Caputo derivative when G(t)=t [17]. Also, in the case G(t)=lnt, it yields the Caputo-Hadamard derivative. If v∈Cn(Σ), the ηth-G-fractional-Caputo derivative of v is specified as [18]
cDη;Gι+1v(t)=Dη;Gι+1(v(t)−n−1∑j=0A(j)v(ι1)j!(G(t)−G(ι1))j). |
The composition rules for above G-operators are recalled in this lemma.
Lemma 2.1. [18] Let n−1<η<n and v∈Cn(Σ). Then the following holds
Iη;Gι+1cDη;Gι+1v(t)=v(t)−n−1∑j=0A(j)v(ι1)j![G(t)−G(ι1)]j, |
for all t∈Σ. Moreover, if m∈N and v∈Cn+m(Σ), then, the following holds
A(m)(cDη;Gι+1v)(t)=cDη+m;Gι+1v(t)+m−1∑j=0[G(t)−G(ι1)]j+n−η−mΓ(j+n−η−m+1)A(j+n)v(ι1). | (2.3) |
Observe that from Eq (2.3) if A(j)v(ι1)=0, for j=n,n+1,…,n+m−1, we can get the following relation
A(m)(cDη;Gι+1v)(t)=cDη+m;Gι+1v(t),t∈Σ. |
Lemma 2.2. [12] Let η,ν>0, and v∈C(Σ). Then for each t∈Σ and by assuming
Fι1(t)=G(t)−G(ι1), | (2.4) |
we have
(1) Iη;Gι+1(Iν;Gι+1v)(t)=Iη+ν;Gι+1v(t);
(2) cDη;Gι+1(Iη;Gι+1v)(t)=v(t);
(3) Iη;Gι+1(Fι1(t))ν−1=Γ(ν)Γ(ν+η)(Fι1(t))ν+η−1;
(4) cDη;Gι+1(Fa(t))ν−1=Γ(ν)Γ(ν−η)(Fι1(t))ν−η−1;
(5) cDη;Gι+1(Fι1(t))j=0,n−1≤η≤n,n∈N,j=0,1,…,n−1.
Theorem 2.3. [9] (Banach's fixed point theorem) Consider Π:Y→Y to be a contraction operator, such that Y is a Banach space. Then, there are only one y∗∈Y, such that Π(y∗)=y∗.
Lemma 2.4. [9] (Krasnoselskii's fixed point theorem) Assume that B⊂X is a closed convex and nonempty, and L1, L2:B→X nonlinear operators, such that:
(ⅰ) L1u+L2v∈B whenever u,v∈B;
(ⅱ) L1 is a contraction mapping;
(ⅲ) L2 is compact and continuous.
Then, there exists w∈B, such that w=L1w+L2w.
Definition 2.5. [29] Let X1,X2 be Banach spaces and Λ1,Λ2:X1×X2→X1×X2 be two operators. Then, the operational equations system provided by
{u1(t)=Λ1(u1,u2)(t),u2(t)=Λ2(u1,u2)(t), | (2.5) |
is called U-H-S, if there exist αi>0,(i=1,…,4), such that, ∀ρ1,ρ2>0, and each solution (u∗1,u∗2)∈X1×X2 of the identities
{‖u∗1−Λ1(u∗1,u∗2)‖≤ρ1,‖u∗2−Λ2(u∗1,u∗2)‖≤ρ2, |
there exists (v∗1,v∗2)∈X1×X2 a solution of system (2.5), such that
{‖u∗1−v∗1‖≤α1ρ1+α2ρ2,‖u∗2−v∗2‖≤α3ρ1+α4ρ2. |
Theorem 2.6. [29] Let X1,X2 be Banach spaces and Λ1,Λ2:X1×X2→X1×X2 be two operators that satisfy
{‖Λ1(u1,u2)−Λ1(u∗1,u∗2)‖≤α1‖u1−u∗1‖+α2‖u2−u∗2‖,‖Λ2(u1,u2)−Λ2(u∗1,u∗2)‖≤α3‖u1−u∗1‖+α4‖u2−u∗2‖, | (2.6) |
for each (u1,u2),(u∗1,u∗2)∈X1×X2 and if the matrix
Ξ=(α1α2α3α4), |
it converges to zero. Then, the system (2.6) is U-H-S.
Here, we analyze the existence properties of solutions, and their uniqueness for the proposed fractional G-CSS (1.6) using Krasnoselskii and Banach fixed point theorems. We need after lemma, which indicate the corresponding integral equation.
Lemma 3.1. For given continuous mappings h,gk(k=0,1,2,3) belongs to C(Σ), and the solution of the linear G-snap problem is
{cDs;Gι+1(cDr;Gι+1(cDp;Gι+1( cDq;Gι+1v(t))))=h(t),v(ι1)=∫bι1g0(ξ)dξ,cDq;Gι+1v(ι1)=∫bι1g1(ξ)dξ,cDp;Gι+1(cDq;Gι+1v(ι1))=∫ι2ι1g2(ξ)dξ,cDr;Gι+1(cDp;Gι+1(cDq;Gι+1v(ι1)))=∫ι2ι1g3(ξ)dξ, | (3.1) |
where q,p,r,s∈(0,1], are formulated by
v(t)=∫ι2ι1g0(ξ)dξ+∫ι2ι1(Fι1(t))qg1(ξ)Γ(q+1)dξ+∫ι2ι1(Fι1(t))q+pg2(ξ)Γ(q+p+1)dξ+∫ι2ι1(Fι1(t))q+p+rg3(ξ)Γ(q+p+r+1)dξ+∫tι1G′(ξ)(Fξ(t))q+p+r+s−1Γ(q+p+r+k)h(ξ)dξ. |
Define the vector space
Xk={vk∈C(Σ,R):cDqk;Gι+1vk,cDpk;Gι+1(cDqk;Gι+1vk),cDrk;Gι+1(cDpk;Gι+1(cDqk;Gι+1vk(t)))∈C(Σ,R)}. |
Then, Xk,k=1,2, are Banach spaces via the norm
‖vk‖=supt∈Σ|vk(t)|+supt∈Σ|cDqk;Gι+1vk(t)|+supt∈Σ|cDpk;Gι+1(cDqk;Gι+1vk(t))|+supt∈Σ|cDrk;Gι+1(cDpk;Gι+1(cDqk;Gι+1vk(t)))|. |
Hence, the product space X1×X2 is a Banach space with the norm
‖(v1,v2)‖=max{‖v1‖,‖v2‖}. |
In view of Lemma 3.1, the solution of the coupled system (1.6) can be given as
vk(t)=∫ι2ι1gk0(ξ)dξ+∫ι2ι1(Fι1(t))qkgk1(ξ)Γ(qk+1)dξ+∫ι2ι1(Fι1(t))qk+pkgk2(ξ)Γ(qk+pk+1)dξ+∫ι2ι1vk3(Fι1(t))qk+pk+rkgk3(ξ)Γ(qk+pk+rk+1)dξ+∫tι1G′(ξ)(Fξ(t))qk+pk+rk+sk−1Γ(qk+pk+rk+sk)hv1,v2,k(ξ)dξ. |
Define the functional Λk:Xk→R, such that
(Λkvk)(t)=∫ι2ι1gk0(ξ)dξ+∫ι2ι1(Fι1(t))qkgk1(ξ)Γ(qk+1)dξ+∫ι2ι1(Fι1(t))qk+pkgk2(ξ)Γ(qk+pk+1)dξ+∫ι2ι1(Fι1(t))qk+pk+rkgk3(ξ)Γ(qk+pk+rk+1)dξ+∫tι1G′(ξ)(Fξ(t))qk+pk+rk+sk−1hv1,v2,k(ξ)Γ(qk+pk+rk+sk)dξ. | (3.2) |
Under some conditions, we show next that the functional Λ:X1×X2→R2 is a contraction, where Λ is given as
Λ(v1,v2)=(Λ1(v1,v2),Λ2(v1,v2)). |
Theorem 3.2. Let hk∈C(Σ×R8),(k=1,2) be continuous functions. Moreover, assume that
(H1) there exist real constants ℓk>0,(k=1,2), so that
|hk(t,v1,v2,…,v8)−hk(t,v∗1,v∗2,…,v∗8)|≤ℓk8∑i=1|vi−v∗i|, | (3.3) |
for any t∈Σ, vi,v∗i∈C([a,b]) and i=1,2,…,8.
Then, the fractional G-CSS (1.6) admits a unique solution on Σ if Φℓ<1, whenever ℓ=max{ℓ1,ℓ2}, Φ=max{Φ1,Φ2} and
Φk=(Fι1(ι2))qk+pk+rk+skΓ(qk+pk+rk+sk+1)+(Fι1(ι2))pk+rk+skΓ(pk+rk+sk+1)+(Fι1(ι2))rk+skΓ(rk+sk+1)+(Fι1(ι2))skΓ(sk+1), | (3.4) |
with Φkℓk<1.
Proof. First of all, we define a closed bounded ball
Bε={(v1,v2)∈X1×X2:‖(v1,v2)‖≤ε}, |
satisfying
ε≥max{Δ1+h01Φ1(1−ℓ1Φ1),Δ2+h02Φ2(1−ℓ2Φ2)}, | (3.5) |
where
Δk=Mk0+Mk1(1+(Fι1(ι2))qkΓ(qk+1))+Mk2(1+(Fι1(ι2))pkΓ(pk+1)+(Fι1(ι2))qk+pkΓ(qk+pk+1))+Mk3(1+(Fι1(ι2))rkΓ(rk+1)+(Fι1(ι2))pk+rkΓ(pk+rk+1)+(Fι1(ι2))qk+pk+rkΓ(qk+pk+rk+1)), | (3.6) |
and
Mkj=supt∈Σ∫ι2ι1|gkj(ξ)|dξ,(j=0,1,2,3),h0k=supt∈Σ|hk(t,0,0,0,0,0,0,0,0)|,(k=1,2). |
Now, define the operator
Λ(v1,v2)=(Λ1(v1,v2),Λ2(v1,v2)),∀(v1,v2)∈X1×X2, | (3.7) |
where Λk is given in (3.2). To show that Λ(Bε)⊂Bε, by using hypotheses (H1), for (v1,v2)∈Bε and t∈Σ, we get
|Λk(v1,v2)(t)|≤∫ι2ι1|gk0(ξ)|dξ+∫ι2ι1(Fι1(t))qk|gk1(ξ)|Γ(qk+1)dξ+∫ι2ι1(Fι1(t))qk+pk|gk2(ξ)|Γ(qk+pk+1)dξ+∫ι2ι1(Fι1(t))qk+pk+rk|gk3(ξ)|Γ(qk+pk+rk+1)dξ+Iqk+pk+rk+sk;Gι+1(|hv1,v2,k(t)−hk(t,0,0,0,0,0,0,0,0)|+|hk(t,0,0,0,0,0,0,0,0)|)≤∫ba|gk0(ξ)|dξ+∫ι2ι1(Fι1(t))qk|gk1(ξ)|Γ(qk+1)dξ+∫ι2ι1(Fι1(t))qk+pk|gk2(ξ)|Γ(qk+pk+1)d+∫ι2ι1(Fι1(t))qk+pk+rk|gk3(ξ)|Γ(qk+pk+rk+1)dξ+Iqk+pk+rk+sk;Gι+1(ℓk(|v1(t)|+|v2(t)|+|cDq1;Gι+1v1(t)|+|cDq2;Gι+1v2(t)|+|cDp1;Gι+1(cDq1;Gι+1v1(t))|+|cDp2;Gι+1(cDq2;Gι+1v2(t))|+|cDr1;Gι+1(cDp1;Gι+1(cDq1;Ga+v1(t)))|+|cDr2;Gι+1(cDp2;Gι+1(cDq2;Gι+1v2(t)))|)+|hk(t,0,0,0,0,0,0,0,0)|)≤Mk0+Mk1(Fι1(ι2))qkΓ(qk+1)+Mk2(Fι1(ι2))qk+pkΓ(qk+pk+1)+Mk3(Fι1(ι2))qk+pk+rkΓ(qk+pk+rk+1)+(Fι1(ι2))qk+pk+rk+skΓ(qk+pk+rk+sk+1)(ℓk(‖v1‖+‖v2‖)+h0k). | (3.8) |
Also,
|cDqk;Gι+1(Λk(v1,v2)(t))|≤∫ι2ι1|gk1(ξ)|dξ+∫ι2ι1(Fι1(t))pk|gk2(ξ)|Γ(pk+1)dξ+∫ι2ι1(Fι1(t))pk+rk|gk3(ξ)|Γ(pk+rk+1)dξ+Ipk+rk+sk;Gι+1(|hv1,v2,k(t)−hk(t,0,0,0,0,0,0,0,0)|+|hk(t,0,0,0,0,0,0,0,0)|)≤∫ι2ι1|gk1(ξ)|dξ+∫ι2ι1(Fι1(t))pk|gk2(ξ)|Γ(pk+1)dξ+∫ι2ι1(Fι1(t))pk+rk|gk3(ξ)|Γ(pk+rk+1)dξ+Ipk+rk+sk;Gι+1(ℓk(|v1(t)|+|v2(t)|+|cDq1;Gι+1v1(t)|+|cDq2;Gι+1v2(t)|+|cDp1;Gι+1(cDq1;Gι+1v1(t))|+|cDp2;Gι+1(cDq2;Gι+1v2(t))|+|cDr1;Gι+1(cDp1;Gι+1(cDq1;Gι+1v1(t)))|+|cDr2;Gι+1(cDp2;Gι+1(cDq2;Gι+1v2(t)))|)+|hk(t,0,0,0,0,0,0,0,0)|)≤Mk1+Mk2(Fι1(ι2))pkΓ(pk+1)+Mk3(Fι1(ι2))pk+rkΓ(pk+rk+1)+Ipk+rk+sk;Gι+1(ℓk(‖v1‖+‖v2‖)+h0k)≤Mk1+Mk2(Fι1(ι2))pkΓ(pk+1)+Mk3(Fι1(ι2))pk+rkΓ(pk+rk+1)+(Fι1(ι2))pk+rk+skΓ(pk+rk+sk+1)(ℓk(‖v1‖+‖v2‖)+h0k), | (3.9) |
|cDpk;Gι+1(cDqk;Gι+1(Λk(v1,v2)(t)))|≤Mk2+Mk3(Fι1(ι2))rkΓ(rk+1)+(Fι1(ι2))rk+skΓ(rk+sk+1)(ℓk(‖v1‖+‖v2‖)+h0k), | (3.10) |
and
|cDrk;Gι+1(cDpk;Gι+1(cDqk;Gι+1(Λk(v1,v2)(t))))|≤Mk3+(Fι1(ι2))skΓ(sk+1)(ℓk(‖v1‖+‖v2‖)+h0k). | (3.11) |
Thus, due to (3.8)–(3.11) and (3.5), we obtain
‖Λk(v1,v2)‖=supt∈Σ|Λk(v1,v2)(t)|+supt∈Σ|cDqk;Gι+1(Λk(v1,v2))(t)|+supt∈Σ|cDpk;Gι+1(cDqk;Gι+1(Λk(v1,v2))(t))|+supt∈Σ|cDrk;Gι+1(cDpk;Gι+1(cDqk;Gι+1(Λk(v1,v2))(t)))|≤[Mk0+Mk1(1+(Fι1(ι2))qkΓ(qk+1))+Mk2(1+(Fι1(ι2))pkΓ(pk+1)+(Fι1(ι2))qk+pkΓ(qk+pk+1))+Mk3(1+(Fι1(ι2))rkΓ(rk+1)+(Fι1(ι2))pk+rkΓ(pk+rk+1)+(Fι1(ι2))qk+pk+rkΓ(qk+pk+rk+1))]+(ℓk‖(v1,v2)‖+h0k)[(Fι1(ι2))qk+pk+rk+skΓ(qk+pk+rk+sk+1)+(Fι1(ι2))pk+rk+skΓ(pk+rk+sk+1)+(Fι1(ι2))rk+skΓ(rk+sk+1)+(Fι1(ι2))skΓ(sk+1)]≤[Mk0+Mk1(1+(Fι1(ι2))qkΓ(qk+1))+Mk2(1+(Fι1(ι2))pkΓ(pk+1)+(Fι1(ι2))qk+pkΓ(qk+pk+1))+Mk3(1+(Fι1(ι2))rkΓ(rk+1)+(Fι1(ι2))pk+rkΓ(pk+rk+1)+(Fι1(ι2))qk+pk+rkΓ(qk+pk+rk+1))]+(ℓkε+h0k)[(Fι1(ι2))qk+pk+rk+skΓ(qk+pk+rk+sk+1)+(Fι1(ι2))pk+rk+skΓ(pk+rk+sk+1)+(Fι1(ι2))rk+skΓ(rk+sk+1)+(Fι1(ι2))skΓ(sk+1)]≤Δk+(ℓkε+h0k)Φk≤ε. |
Hence, we deduce that ‖Λ(v1,v2)‖≤ε, for (v1,v2)∈Bε, so Λ(Bε)⊂Bε. Next, we prove that Λ is a contraction operator, by using (H1), for (v1,v2),(u1,u2)∈Bε and t∈Σ, we have
|Λk(v1,v2)(t)−Λk(u1,u2)(t)|≤Iqk+pk+rk+sk;Gι+1|hv1,v2,k(t)−hu1,u2,k(t)|≤Iqk+pk+rk+sk;Gι+1(ℓk(|v1(t)−u1(t)|+|v2(t)−u2(t)|+|cDq1;Gι+1v1(t)−cDq1;Gι+1u1(t)|+|cDq2;Gι+1v2(t)−cDq2;Gι+1u2(t)|+|cDp1;Gι+1(cDq1;Gι+1v1(t))−cDp1;Gι+1(cDq1;Gι+1u1(t))|+|cDp2;Gι+1(cDq2;Gι+1v2(t))−cDp2;Gι+1(cDq2;Gι+1u2(t))|+|cDr1;Gι+1(cDp1;Gι+1(cDq1;Gι+1v1(t)))−cDr1;Gι+1(cDp1;Gι+1(cDq1;Gι+1u1(t)))|+|cDr2;Gι+1(cDp2;Gι+1(cDq2;Gι+1v2(t)))−cDr2;Ga+(cDp2;Gι+1(cDq2;Gι+1u2(t)))|))≤Iqk+pk+rk+sk;Gι+1(ℓk(‖v1−u1‖+‖v2−u2‖))≤(Fι1(ι2))qk+pk+rk+skΓ(qk+pk+rk+sk+1)(ℓk(‖v1−u1‖+‖v2−u2‖)), | (3.12) |
|cDqk;Gι+1(Λk(v1,v2))(t)−cDqk;Gι+1(Λk(u1,u2))(t)|≤Ipk+rk+sk;Gι+1|hv1,v2,k(t)−hu1,u2,k(t)|≤Ipk+rk+sk;Gι+1(ℓk(|v1(t)−u1(t)|+|v2(t)−u2(t)|+|cDq1;Gι+1v1(t)−cDq1;Gι+1u1(t)|+|cDq2;Gι+1v2(t)−cDq2;Gι+1u2(t)|+|cDp1;Gι+1(cDq1;Gι+1v1(t))−cDp1;Gι+1(cDq1;Gι+1u1(t))|+|cDp2;Gι+1(cDq2;Gι+1v2(t))−cDp2;Gι+1(cDq2;Gι+1u2(t))|+|cDr1;Gι+1(cDp1;Gι+1(cDq1;Gι+1v1(t)))−cDr1;Gι+1(cDp1;Gι+1(cDq1;Gι+1u1(t)))|+|cDr2;Gι+1(cDp2;Gι+1(cDq2;Gι+1v2(t)))−cDr2;Gι+1(cDp2;Gι+1(cDq2;Gι+1u2(t)))|))≤Ipk+rk+sk;Gι+1(ℓk(‖v1−u1‖+‖v2−u2‖))≤(Fι1(ι2))pk+rk+skΓ(pk+rk+sk+1)(ℓk(‖v1−u1‖+‖v2−u2‖)), | (3.13) |
(3.14) |
and
(3.15) |
Therefore, due to (3.12)–(3.15), we get
Consequently,
Since , therefore, is a contraction operator. Thus, by Banach's fixed point Theorem 2.3, the operator has a unique fixed point, which is the unique solution of fractional G-snap system (1.6) and the proof is finished.
Next, we are ready to study the existence of solution of fractional - (1.6). For this regaed, we define the operators , such that , where
(3.16) |
and
(3.17) |
Theorem 3.3. Let be continuous functions. Moreover, assume that
(H2) there exist real constants , so that
Then, the fractional - (1.6) has at least one solution on .
Proof. At the beginning, we define a closed bounded ball
which satisfying
(3.18) |
where
Firstly, we will prove . By using , for and , we have
(3.19) |
and
(3.20) |
Hence, from (3.19) and (3.20), we have
Then,
this implying that .
Secondly, we will prove that the operator is a contraction mapping. It is clearly that is a contraction with the constant zero. Thus, is a contraction operator.
Third, we will prove that the operator is a continuous. Let be a sequence of a bounded ball , such that as in , we find that
By continuity of , we have
as . So, is a continuous operator.
Fourth, we will prove that the operator is a compact operator. By using , for and with , we have
As , we obtain
impling that is equicontinuous. Furthermore, in view of (3.19), is uniformly bounded. Hence, due to the Arzelá-Ascoli theorem, we deduce that is a compact operator. Then, all the conditions of Theorem 2.4 are holding. Thus, fractional - (1.6) has at least one solution . The proof is completed.
In this part, we review the stability criterion in the context of the -- for solutions of the fractional - (1.6).
Theorem 3.4. Let and hold. Then, the fractional - (1.6) is --.
Proof. According to Theorem 3.2, we have
which yields that
where
Since and each geometric sequences hence as Therefore, due to Theorem 2.6, the fractional - (1.6) is -.
We allow here a few illustrations of the fractional -, based on numerical recreation to analyze their solutions. In these cases, we consider distinctive cases of the function to cover the Caputo, Caputo-Hadamard and Katugampola adaptations.
Example 4.1. Based on the system (1.6), by assuming ,
we consider a fractional as
(4.1) |
for and
Clearly,
and
Thus, we can rewrite the above system as Eq (1.6). At present, we will have
with and
with . So . Now, from (3.6), we consider four cases for as:
● ,
● (Caputo derivative),
● (Caputo-Hadamard derivative),
● (Katugampola derivative).
Thus,
(4.2) |
and
(4.3) |
Hence,
and we have
On the other hand, by using equations in (3.7), we get
for and
for . By employing Eq (3.6), we obtain
and so we can choose
We define the Algorithm 1 for obtaining the values of , and , which is shown in the MATLAB commands. One can check numerical results of , and in Tables 1 and 2 for , and in Figure 1. Accordingly, all requirements of Theorem 3.2 hold, and so the fractional nonlinear couple snap system in the -Caputo sense with initial conditions (4.1) has one unique solution on the .
In this paper, we defined a new fractional mathematical model of a BVP consisting of a coupled snap equation with integral boundary conditions in the framework of the generalized sequential -operators, and turned to the investigation of the qualitative behaviors of its solutions, including existence, uniqueness, stability and inclusion version. To confirm the existence criterion, we used the Krasnoselskii theorem, and to confirm the uniqueness criterion, we utilized the Banach theorem. Different kinds of stability criteria were studied based on the standard definitions of these notions. In the final step, we designed examples, and, by assuming different cases for the function and order , we obtained numerical results of these two suggested fractional coupled snap systems in some versions, such as Caputo, Caputo-Hadamard and Katugampola.
We declare that no competing interests.
1 clear; |
2 format short; |
3 syms v e; |
4 q_1=0.83; q_2=0.36; p_1=0.92; p_2=0.45; |
5 r_1=0.12; r_2=0.87; s_1=0.54; s_2=0.27; |
6 iota_1=0.05; iota_2=0.95; |
7 G1=2^v; G2=v; G3=log(v); G4=sqrt(v); |
8 g_10=v/2; g_20=sqrt(v); |
9 g_11=v^2/5; g_21=3*v/2; |
10 g_12=v/sqrt(2); g_22=sqrt(v)/7; |
11 g_13=sin(v*pi); g_23=cos(v*pi); |
12 mathrmv_1=int(g_10, v, iota_1, iota_2); |
13 mathrmv_2=int(g_20, v, iota_1, iota_2); |
14 mathrmu_1=int(g_11, v, iota_1, iota_2); |
15 mathrmu_2=int(g_21, v, iota_1, iota_2); |
16 mathrmw_1=int(g_12, v, iota_1, iota_2); |
17 mathrmw_2=int(g_22, v, iota_1, iota_2); |
18 mathrmx_1=int(g_13, v, iota_1, iota_2); |
19 mathrmx_2=int(g_23, v, iota_1, iota_2); |
20 ell_1=5/36; ell_2=1/(5*sqrt(3)); |
21 ell=max(ell_1, ell_2); |
22 h_1_0=5/36+1/(36*(1+sqrt(7))); |
23 h_2_0=1/(5*sqrt(3))+1/(18*(1+sqrt(15))); |
24 %G1 |
25 t=iota_1; |
26 column=1; |
27 nn=1; |
28 while t < =iota_2+0.08 |
29 MI(nn, column) = nn; |
30 MI(nn, column+1) = t; |
31 Phi_1=(eval(subs(G1, {v}, {iota_2}))... |
32 -eval(subs(G1, {v}, {iota_1})))^(q_1+p_1+r_1+s_1)... |
33 /gamma(q_1+p_1+r_1+s_1+1)+(eval(subs(G1, {v}, {iota_2}))... |
34 -eval(subs(G1, {v}, {iota_1})))^(p_1+r_1+s_1)... |
35 /gamma(p_1+r_1+s_1+1)+(eval(subs(G1, {v}, {iota_2}))... |
36 -eval(subs(G1, {v}, {iota_1})))^(r_1+s_1)... |
37 /gamma(r_1+s_1+1)+(eval(subs(G1, {v}, {iota_2}))... |
38 -eval(subs(G1, {v}, {iota_1})))^(s_1)/gamma(s_1+1); |
39 MI(nn, column+2)=Phi_1*ell_1; |
40 MI(nn, column+3)=Phi_1*ell_1 < 1; |
41 Phi_2=(eval(subs(G1, {v}, {iota_2}))... |
42 -eval(subs(G1, {v}, {iota_1})))^(q_2+p_2+r_2+s_2)... |
43 /gamma(q_2+p_2+r_2+s_2+1)+(eval(subs(G1, {v}, {iota_2}))... |
44 -eval(subs(G1, {v}, {iota_1})))^(p_2+r_2+s_2)... |
45 /gamma(p_2+r_2+s_2+1)+(eval(subs(G1, {v}, {iota_2}))... |
46 -eval(subs(G1, {v}, {iota_1})))^(r_2+s_2)... |
47 /gamma(r_2+s_2+1)+(eval(subs(G1, {v}, {iota_2}))... |
48 -eval(subs(G1, {v}, {iota_1})))^(s_2)/gamma(s_2+1); |
49 MI(nn, column+4)=Phi_2*ell_2; |
50 MI(nn, column+5)=Phi_2*ell_2 < 1; |
51 Phi=max(Phi_1, Phi_2); |
52 MI(nn, column+6)=Phi; |
53 MI(nn, column+7)=Phi*ell; |
54 MI(nn, column+8)=Phi*ell < 1; |
55 M_10=int(abs(g_10), v, iota_1, t); |
56 MI(nn, column+9)=M_10; |
57 M_11=int(abs(g_11), v, iota_1, t); |
58 MI(nn, column+10)=M_11; |
59 M_12=int(abs(g_12), v, iota_1, t); |
60 MI(nn, column+11)=M_12; |
61 M_13=int(abs(g_13), v, iota_1, t); |
62 MI(nn, column+12)=M_13; |
63 M_20=int(abs(g_20), v, iota_1, iota_2); |
64 MI(nn, column+13)=M_20; |
65 M_21=int(abs(g_21), v, iota_1, t); |
66 MI(nn, column+14)=M_21; |
67 M_22=int(abs(g_22), v, iota_1, t); |
68 MI(nn, column+15)=M_22; |
69 M_23=int(abs(g_23), v, iota_1, t); |
70 MI(nn, column+16)=M_23; |
71 M_1j=max(max(max(M_10, M_11), M_12), M_13); |
72 MI(nn, column+17)=M_1j; |
73 M_2j=max(max(max(M_20, M_21), M_22), M_23); |
74 MI(nn, column+18)=M_2j; |
75 Delta_1=M_10+M_11*(1+(eval(subs(G1, {v}, {iota_2}))... |
76 -eval(subs(G1, {v}, {iota_1})))^(q_1)/gamma(q_1+1))... |
77 +M_12*(1+(eval(subs(G1, {v}, {iota_2}))... |
78 -eval(subs(G1, {v}, {iota_1})))^(p_1)/gamma(p_1+1)... |
79 +(eval(subs(G1, {v}, {iota_2}))... |
80 -eval(subs(G1, {v}, {iota_1})))^(q_1+p_1)/gamma(q_1+p_1+1))... |
81 +M_13*(1+(eval(subs(G1, {v}, {iota_2}))... |
82 -eval(subs(G1, {v}, {iota_1})))^(r_1)/gamma(r_1+1)... |
83 +(eval(subs(G1, {v}, {iota_2}))... |
84 -eval(subs(G1, {v}, {iota_1})))^(p_1+r_1)/gamma(p_1+r_1+1)... |
85 +(eval(subs(G1, {v}, {iota_2}))... |
86 -eval(subs(G1, {v}, {iota_1})))^(q_1+p_1+r_1)... |
87 /gamma(q_1+p_1+r_1+1)); |
88 MI(nn, column+19)=Delta_1; |
89 Delta_2=M_20+M_21*(1+(eval(subs(G1, {v}, {iota_2}))... |
90 -eval(subs(G1, {v}, {iota_1})))^(q_2)/gamma(q_2+1))... |
91 +M_22*(1+(eval(subs(G1, {v}, {iota_2}))... |
92 -eval(subs(G1, {v}, {iota_1})))^(p_2)/gamma(p_2+1)... |
93 +(eval(subs(G1, {v}, {iota_2}))... |
94 -eval(subs(G1, {v}, {iota_1})))^(q_2+p_2)/gamma(q_2+p_2+1))... |
95 +M_23*(1+(eval(subs(G1, {v}, {iota_2}))... |
96 -eval(subs(G1, {v}, {iota_1})))^(r_2)/gamma(r_2+1)... |
97 +(eval(subs(G1, {v}, {iota_2}))... |
98 -eval(subs(G1, {v}, {iota_1})))^(p_2+r_2)/gamma(p_2+r_2+1)... |
99 +(eval(subs(G1, {v}, {iota_2}))... |
100 -eval(subs(G1, {v}, {iota_1})))^(q_2+p_2+r_2)... |
101 /gamma(q_2+p_2+r_2+1)); |
102 MI(nn, column+20)=Delta_2; |
103 D1=(Delta_1+h_1_0*Phi_1)/(1-ell_1*Phi_1); |
104 MI(nn, column+21)=D1; |
105 D2=(Delta_2+h_2_0*Phi_1)/(1-ell_2*Phi_2); |
106 MI(nn, column+22)=D2; |
107 MI(nn, column+23)=max(D1, D2); |
108 t=t+0.08; |
109 nn=nn+1; |
110 end; |
111 %G2 |
112 t=iota_1; |
113 column=25; |
114 nn=1; |
115 while t < =iota_2+0.08 |
116 MI(nn, column) = nn; |
117 MI(nn, column+1) = t; |
118 Phi_1=(eval(subs(G2, {v}, {iota_2}))... |
119 -eval(subs(G2, {v}, {iota_1})))^(q_1+p_1+r_1+s_1)... |
120 /gamma(q_1+p_1+r_1+s_1+1)+(eval(subs(G2, {v}, {iota_2}))... |
121 -eval(subs(G2, {v}, {iota_1})))^(p_1+r_1+s_1)... |
122 /gamma(p_1+r_1+s_1+1)+(eval(subs(G2, {v}, {iota_2}))... |
123 -eval(subs(G2, {v}, {iota_1})))^(r_1+s_1)... |
124 /gamma(r_1+s_1+1)+(eval(subs(G2, {v}, {iota_2}))... |
125 -eval(subs(G2, {v}, {iota_1})))^(s_1)/gamma(s_1+1); |
126 MI(nn, column+2)=Phi_1*ell_1; |
127 MI(nn, column+3)=Phi_1*ell_1 < 1; |
128 Phi_2=(eval(subs(G2, {v}, {iota_2}))... |
129 -eval(subs(G2, {v}, {iota_1})))^(q_2+p_2+r_2+s_2)... |
130 /gamma(q_2+p_2+r_2+s_2+1)+(eval(subs(G2, {v}, {iota_2}))... |
131 -eval(subs(G2, {v}, {iota_1})))^(p_2+r_2+s_2)... |
132 /gamma(p_2+r_2+s_2+1)+(eval(subs(G2, {v}, {iota_2}))... |
133 -eval(subs(G2, {v}, {iota_1})))^(r_2+s_2)... |
134 /gamma(r_2+s_2+1)+(eval(subs(G2, {v}, {iota_2}))... |
135 -eval(subs(G2, {v}, {iota_1})))^(s_2)/gamma(s_2+1); |
136 MI(nn, column+4)=Phi_2*ell_2; |
137 MI(nn, column+5)=Phi_2*ell_2 < 1; |
138 Phi=max(Phi_1, Phi_2); |
139 MI(nn, column+6)=Phi; |
140 MI(nn, column+7)=Phi*ell; |
141 MI(nn, column+8)=Phi*ell < 1; |
142 M_10=int(abs(g_10), v, iota_1, t); |
143 MI(nn, column+9)=M_10; |
144 M_11=int(abs(g_11), v, iota_1, t); |
145 MI(nn, column+10)=M_11; |
146 M_12=int(abs(g_12), v, iota_1, t); |
147 MI(nn, column+11)=M_12; |
148 M_13=int(abs(g_13), v, iota_1, t); |
149 MI(nn, column+12)=M_13; |
150 M_20=int(abs(g_20), v, iota_1, iota_2); |
151 MI(nn, column+13)=M_20; |
152 M_21=int(abs(g_21), v, iota_1, t); |
153 MI(nn, column+14)=M_21; |
154 M_22=int(abs(g_22), v, iota_1, t); |
155 MI(nn, column+15)=M_22; |
156 M_23=int(abs(g_23), v, iota_1, t); |
157 MI(nn, column+16)=M_23; |
158 M_1j=max(max(max(M_10, M_11), M_12), M_13); |
159 MI(nn, column+17)=M_1j; |
160 M_2j=max(max(max(M_20, M_21), M_22), M_23); |
161 MI(nn, column+18)=M_2j; |
162 Delta_1=M_10+M_11*(1+(eval(subs(G2, {v}, {iota_2}))... |
163 -eval(subs(G2, {v}, {iota_1})))^(q_1)/gamma(q_1+1))... |
164 +M_12*(1+(eval(subs(G2, {v}, {iota_2}))... |
165 -eval(subs(G2, {v}, {iota_1})))^(p_1)/gamma(p_1+1)... |
166 +(eval(subs(G2, {v}, {iota_2}))-eval(subs(G2, {v}, {iota_1})))^(q_1+p_1)... |
167 /gamma(q_1+p_1+1))+M_13*(1+(eval(subs(G2, {v}, {iota_2}))... |
168 -eval(subs(G2, {v}, {iota_1})))^(r_1)/gamma(r_1+1)... |
169 +(eval(subs(G2, {v}, {iota_2}))-eval(subs(G2, {v}, {iota_1})))^(p_1+r_1)... |
170 /gamma(p_1+r_1+1)+(eval(subs(G2, {v}, {iota_2}))... |
171 -eval(subs(G2, {v}, {iota_1})))^(q_1+p_1+r_1)/gamma(q_1+p_1+r_1+1)); |
172 MI(nn, column+19)=Delta_1; |
173 Delta_2=M_20+M_21*(1+(eval(subs(G2, {v}, {iota_2}))... |
174 -eval(subs(G2, {v}, {iota_1})))^(q_2)/gamma(q_2+1))... |
175 +M_22*(1+(eval(subs(G2, {v}, {iota_2}))... |
176 -eval(subs(G2, {v}, {iota_1})))^(p_2)/gamma(p_2+1)... |
177 +(eval(subs(G2, {v}, {iota_2}))... |
178 -eval(subs(G2, {v}, {iota_1})))^(q_2+p_2)/gamma(q_2+p_2+1))... |
179 +M_23*(1+(eval(subs(G2, {v}, {iota_2}))... |
180 -eval(subs(G2, {v}, {iota_1})))^(r_2)/gamma(r_2+1)... |
181 +(eval(subs(G2, {v}, {iota_2}))... |
182 -eval(subs(G2, {v}, {iota_1})))^(p_2+r_2)/gamma(p_2+r_2+1)... |
183 +(eval(subs(G2, {v}, {iota_2}))... |
184 -eval(subs(G2, {v}, {iota_1})))^(q_2+p_2+r_2)... |
185 /gamma(q_2+p_2+r_2+1)); |
186 MI(nn, column+20)=Delta_2; |
187 D1=(Delta_1+h_1_0*Phi_1)/(1-ell_1*Phi_1); |
188 MI(nn, column+21)=D1; |
189 D2=(Delta_2+h_2_0*Phi_1)/(1-ell_2*Phi_2); |
190 MI(nn, column+22)=D2; |
191 MI(nn, column+23)=max(D1, D2); |
192 t=t+0.08; |
193 nn=nn+1; |
194 end; |
195 %G3 |
196 t=iota_1; |
197 column=49; |
198 nn=1; |
199 while t < =iota_2+0.08 |
200 MI(nn, column) = nn; |
201 MI(nn, column+1) = t; |
202 Phi_1=(eval(subs(G3, {v}, {iota_2}))... |
203 -eval(subs(G3, {v}, {iota_1})))^(q_1+p_1+r_1+s_1)... |
204 /gamma(q_1+p_1+r_1+s_1+1)+(eval(subs(G3, {v}, {iota_2}))... |
205 -eval(subs(G3, {v}, {iota_1})))^(p_1+r_1+s_1)... |
206 /gamma(p_1+r_1+s_1+1)+(eval(subs(G3, {v}, {iota_2}))... |
207 -eval(subs(G3, {v}, {iota_1})))^(r_1+s_1)... |
208 /gamma(r_1+s_1+1)+(eval(subs(G3, {v}, {iota_2}))... |
209 -eval(subs(G3, {v}, {iota_1})))^(s_1)/gamma(s_1+1); |
210 MI(nn, column+2)=Phi_1*ell_1; |
211 MI(nn, column+3)=Phi_1*ell_1 < 1; |
212 Phi_2=(eval(subs(G3, {v}, {iota_2}))... |
213 -eval(subs(G3, {v}, {iota_1})))^(q_2+p_2+r_2+s_2)... |
214 /gamma(q_2+p_2+r_2+s_2+1)+(eval(subs(G3, {v}, {iota_2}))... |
215 -eval(subs(G3, {v}, {iota_1})))^(p_2+r_2+s_2)... |
216 /gamma(p_2+r_2+s_2+1)+(eval(subs(G3, {v}, {iota_2}))... |
217 -eval(subs(G3, {v}, {iota_1})))^(r_2+s_2)... |
218 /gamma(r_2+s_2+1)+(eval(subs(G3, {v}, {iota_2}))... |
219 -eval(subs(G3, {v}, {iota_1})))^(s_2)/gamma(s_2+1); |
220 MI(nn, column+4)=Phi_2*ell_2; |
221 MI(nn, column+5)=Phi_2*ell_2 < 1; |
222 Phi=max(Phi_1, Phi_2); |
223 MI(nn, column+6)=Phi; |
224 MI(nn, column+7)=Phi*ell; |
225 MI(nn, column+8)=Phi*ell < 1; |
226 M_10=int(abs(g_10), v, iota_1, t); |
227 MI(nn, column+9)=M_10; |
228 M_11=int(abs(g_11), v, iota_1, t); |
229 MI(nn, column+10)=M_11; |
230 M_12=int(abs(g_12), v, iota_1, t); |
231 MI(nn, column+11)=M_12; |
232 M_13=int(abs(g_13), v, iota_1, t); |
233 MI(nn, column+12)=M_13; |
234 M_20=int(abs(g_20), v, iota_1, iota_2); |
235 MI(nn, column+13)=M_20; |
236 M_21=int(abs(g_21), v, iota_1, t); |
237 MI(nn, column+14)=M_21; |
238 M_22=int(abs(g_22), v, iota_1, t); |
239 MI(nn, column+15)=M_22; |
240 M_23=int(abs(g_23), v, iota_1, t); |
241 MI(nn, column+16)=M_23; |
242 M_1j=max(max(max(M_10, M_11), M_12), M_13); |
243 MI(nn, column+17)=M_1j; |
244 M_2j=max(max(max(M_20, M_21), M_22), M_23); |
245 MI(nn, column+18)=M_2j; |
246 Delta_1=M_10+M_11*(1+(eval(subs(G3, {v}, {iota_2}))... |
247 -eval(subs(G3, {v}, {iota_1})))^(q_1)/gamma(q_1+1))... |
248 +M_12*(1+(eval(subs(G3, {v}, {iota_2}))... |
249 -eval(subs(G3, {v}, {iota_1})))^(p_1)/gamma(p_1+1)... |
250 +(eval(subs(G3, {v}, {iota_2}))... |
251 -eval(subs(G3, {v}, {iota_1})))^(q_1+p_1)/gamma(q_1+p_1+1))... |
252 +M_13*(1+(eval(subs(G3, {v}, {iota_2}))... |
253 -eval(subs(G3, {v}, {iota_1})))^(r_1)/gamma(r_1+1)... |
254 +(eval(subs(G3, {v}, {iota_2}))... |
255 -eval(subs(G3, {v}, {iota_1})))^(p_1+r_1)/gamma(p_1+r_1+1)... |
256 +(eval(subs(G3, {v}, {iota_2}))... |
257 -eval(subs(G3, {v}, {iota_1})))^(q_1+p_1+r_1)... |
258 /gamma(q_1+p_1+r_1+1)); |
259 MI(nn, column+19)=Delta_1; |
260 Delta_2=M_20+M_21*(1+(eval(subs(G3, {v}, {iota_2}))... |
261 -eval(subs(G3, {v}, {iota_1})))^(q_2)/gamma(q_2+1))... |
262 +M_22*(1+(eval(subs(G3, {v}, {iota_2}))... |
263 -eval(subs(G3, {v}, {iota_1})))^(p_2)/gamma(p_2+1)... |
264 +(eval(subs(G3, {v}, {iota_2}))... |
265 -eval(subs(G3, {v}, {iota_1})))^(q_2+p_2)/gamma(q_2+p_2+1))... |
266 +M_23*(1+(eval(subs(G3, {v}, {iota_2}))... |
267 -eval(subs(G3, {v}, {iota_1})))^(r_2)/gamma(r_2+1)... |
268 +(eval(subs(G3, {v}, {iota_2}))... |
269 -eval(subs(G3, {v}, {iota_1})))^(p_2+r_2)/gamma(p_2+r_2+1)... |
270 +(eval(subs(G3, {v}, {iota_2}))... |
271 -eval(subs(G3, {v}, {iota_1})))^(q_2+p_2+r_2)... |
272 /gamma(q_2+p_2+r_2+1)); |
273 MI(nn, column+20)=Delta_2; |
274 D1=(Delta_1+h_1_0*Phi_1)/(1-ell_1*Phi_1); |
275 MI(nn, column+21)=D1; |
276 D2=(Delta_2+h_2_0*Phi_1)/(1-ell_2*Phi_2); |
277 MI(nn, column+22)=D2; |
278 MI(nn, column+23)=max(D1, D2); |
279 t=t+0.08; |
280 nn=nn+1; |
281 end; |
282 %G4 |
283 t=iota_1; |
284 column=73; |
285 nn=1; |
286 while t < =iota_2+0.08 |
287 MI(nn, column) = nn; |
288 MI(nn, column+1) = t; |
289 Phi_1=(eval(subs(G4, {v}, {iota_2}))... |
290 -eval(subs(G4, {v}, {iota_1})))^(q_1+p_1+r_1+s_1)... |
291 /gamma(q_1+p_1+r_1+s_1+1)+(eval(subs(G4, {v}, {iota_2}))... |
292 -eval(subs(G4, {v}, {iota_1})))^(p_1+r_1+s_1)... |
293 /gamma(p_1+r_1+s_1+1)+(eval(subs(G4, {v}, {iota_2}))... |
294 -eval(subs(G4, {v}, {iota_1})))^(r_1+s_1)... |
295 /gamma(r_1+s_1+1)+(eval(subs(G4, {v}, {iota_2}))... |
296 -eval(subs(G4, {v}, {iota_1})))^(s_1)/gamma(s_1+1); |
297 MI(nn, column+2)=Phi_1*ell_1; |
298 MI(nn, column+3)=Phi_1*ell_1 < 1; |
299 Phi_2=(eval(subs(G4, {v}, {iota_2}))... |
300 -eval(subs(G4, {v}, {iota_1})))^(q_2+p_2+r_2+s_2)... |
301 /gamma(q_2+p_2+r_2+s_2+1)+(eval(subs(G4, {v}, {iota_2}))... |
302 -eval(subs(G4, {v}, {iota_1})))^(p_2+r_2+s_2)... |
303 /gamma(p_2+r_2+s_2+1)+(eval(subs(G4, {v}, {iota_2}))... |
304 -eval(subs(G4, {v}, {iota_1})))^(r_2+s_2)... |
305 /gamma(r_2+s_2+1)+(eval(subs(G4, {v}, {iota_2}))... |
306 -eval(subs(G4, {v}, {iota_1})))^(s_2)/gamma(s_2+1); |
307 MI(nn, column+4)=Phi_2*ell_2; |
308 MI(nn, column+5)=Phi_2*ell_2 < 1; |
309 Phi=max(Phi_1, Phi_2); |
310 MI(nn, column+6)=Phi; |
311 MI(nn, column+7)=Phi*ell; |
312 MI(nn, column+8)=Phi*ell < 1; |
313 M_10=int(abs(g_10), v, iota_1, t); |
314 MI(nn, column+9)=M_10; |
315 M_11=int(abs(g_11), v, iota_1, t); |
316 MI(nn, column+10)=M_11; |
317 M_12=int(abs(g_12), v, iota_1, t); |
318 MI(nn, column+11)=M_12; |
319 M_13=int(abs(g_13), v, iota_1, t); |
320 MI(nn, column+12)=M_13; |
321 M_20=int(abs(g_20), v, iota_1, iota_2); |
322 MI(nn, column+13)=M_20; |
323 M_21=int(abs(g_21), v, iota_1, t); |
324 MI(nn, column+14)=M_21; |
325 M_22=int(abs(g_22), v, iota_1, t); |
326 MI(nn, column+15)=M_22; |
327 M_23=int(abs(g_23), v, iota_1, t); |
328 MI(nn, column+16)=M_23; |
329 M_1j=max(max(max(M_10, M_11), M_12), M_13); |
330 MI(nn, column+17)=M_1j; |
331 M_2j=max(max(max(M_20, M_21), M_22), M_23); |
332 MI(nn, column+18)=M_2j; |
333 Delta_1=M_10+M_11*(1+(eval(subs(G4, {v}, {iota_2}))... |
334 -eval(subs(G4, {v}, {iota_1})))^(q_1)/gamma(q_1+1))... |
335 +M_12*(1+(eval(subs(G4, {v}, {iota_2}))... |
336 -eval(subs(G4, {v}, {iota_1})))^(p_1)/gamma(p_1+1)... |
337 +(eval(subs(G4, {v}, {iota_2}))... |
338 -eval(subs(G4, {v}, {iota_1})))^(q_1+p_1)/gamma(q_1+p_1+1))... |
339 +M_13*(1+(eval(subs(G4, {v}, {iota_2}))... |
340 -eval(subs(G4, {v}, {iota_1})))^(r_1)/gamma(r_1+1)... |
341 +(eval(subs(G4, {v}, {iota_2}))... |
342 -eval(subs(G4, {v}, {iota_1})))^(p_1+r_1)/gamma(p_1+r_1+1)... |
343 +(eval(subs(G4, {v}, {iota_2}))... |
344 -eval(subs(G4, {v}, {iota_1})))^(q_1+p_1+r_1)... |
345 /gamma(q_1+p_1+r_1+1)); |
346 MI(nn, column+19)=Delta_1; |
347 Delta_2=M_20+M_21*(1+(eval(subs(G4, {v}, {iota_2}))... |
348 -eval(subs(G4, {v}, {iota_1})))^(q_2)/gamma(q_2+1))... |
349 +M_22*(1+(eval(subs(G4, {v}, {iota_2}))... |
350 -eval(subs(G4, {v}, {iota_1})))^(p_2)/gamma(p_2+1)... |
351 +(eval(subs(G4, {v}, {iota_2}))... |
352 -eval(subs(G4, {v}, {iota_1})))^(q_2+p_2)/gamma(q_2+p_2+1))... |
353 +M_23*(1+(eval(subs(G4, {v}, {iota_2}))... |
354 -eval(subs(G4, {v}, {iota_1})))^(r_2)/gamma(r_2+1)... |
355 +(eval(subs(G4, {v}, {iota_2}))... |
356 -eval(subs(G4, {v}, {iota_1})))^(p_2+r_2)/gamma(p_2+r_2+1)... |
357 +(eval(subs(G4, {v}, {iota_2}))... |
358 -eval(subs(G4, {v}, {iota_1})))^(q_2+p_2+r_2)... |
359 /gamma(q_2+p_2+r_2+1)); |
360 MI(nn, column+20)=Delta_2; |
361 D1=(Delta_1+h_1_0*Phi_1)/(1-ell_1*Phi_1); |
362 MI(nn, column+21)=D1; |
363 D2=(Delta_2+h_2_0*Phi_1)/(1-ell_2*Phi_2); |
364 MI(nn, column+22)=D2; |
365 MI(nn, column+23)=max(D1, D2); |
366 t=t+0.08; |
367 nn=nn+1; |
368 end; |
[1] |
L. Hsiao, T. P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Commun. Math. Phys., 143 (1992), 599–605. https://doi.org/10.1007/bf02099268 doi: 10.1007/bf02099268
![]() |
[2] | L. Hsiao, Quasilinear hyperbolic systems and dissipative mechanisms, World Scientific Publishing Co., Inc., River Edge, NJ, 1997. https://doi.org/10.1142/3538 |
[3] | C. K. Lin, C. T. Lin, M. Mei, Asymptotic behavior of solution to nonlinear damped p-system with boundary effect, Int. J. Numer. Anal. Model. Ser. B, 1 (2010), 70–92. |
[4] |
H. L. Li, K. Saxton, Asymptotic behavior of solutions to quasilinear hyperbolic equations with nonlinear damping, Quart. Appl. Math., 61 (2003), 295–313. https://doi.org/10.1090/qam/1976371 doi: 10.1090/qam/1976371
![]() |
[5] |
M. Mei, Nonlinear diffusion waves for hyperbolic p-system with nonlinear damping, J. Differential Equations, 247 (2009), 1275–1296. https://doi.org/10.1016/j.jde.2009.04.004 doi: 10.1016/j.jde.2009.04.004
![]() |
[6] |
C. J. Zhu, Convergence rates to nonlinear diffusion waves for weak entropy solutions to p-system with damping, Sci. China Ser. A, 46 (2003), 562–575. https://doi.org/10.1007/bf02884028 doi: 10.1007/bf02884028
![]() |
[7] |
C. J. Zhu, M. N. Jiang, -decay rates to nonlinear diffusion waves for p-system with nonlinear damping, Sci. China Ser. A, 49 (2006), 721–739. https://doi.org/10.1007/s11425-006-0721-5 doi: 10.1007/s11425-006-0721-5
![]() |
[8] |
F. M. Huang, R. H. Pan, Z. Wang, convergence to the Barenblatt solution for compressible Euler equations with damping, Arch. Ration. Mech. Anal., 200 (2011), 665–689. https://doi.org/10.1007/s00205-010-0355-1 doi: 10.1007/s00205-010-0355-1
![]() |
[9] |
S. F. Geng, F. M. Huang, X. C. Wu, -Convergence to Generalized Barenblatt Solution for Compressible Euler Equations with Time-Dependent Damping, SIAM J. Math. Anal., 53 (2021), 6048–6072. https://doi.org/10.1137/20m1361043 doi: 10.1137/20m1361043
![]() |
[10] |
S. F. Geng, F. M. Huang, X. C. Wu, -convergence to nonlinear diffusion waves for Euler equations with time-dependent damping, Acta Math. Sci. Ser. B, 42 (2022), 2505–2522. https://doi.org/10.1007/s10473-022-0618-6 doi: 10.1007/s10473-022-0618-6
![]() |
[11] |
F. L. Wei, J. L. Liu, H. R. Yuan, Global stability to steady supersonic solutions of the 1-D compressible Euler equations with frictions, J. Math. Anal. Appl., 495 (2021), 124761. https://doi.org/10.1016/j.jmaa.2020.124761 doi: 10.1016/j.jmaa.2020.124761
![]() |
[12] |
Y. Sui, H. M. Yu, Singularity formation for compressible Euler equations with time-dependent damping, Discrete Contin. Dyn. Syst., 41 (2021), 4921–4941. https://doi.org/10.3934/dcds.2021062 doi: 10.3934/dcds.2021062
![]() |
[13] |
Y. Sui, H. M. Yu, Vacuum and singularity formation problem for compressible Euler equations with general pressure law and time-dependent damping, Nonlinear Anal. Real World Appl., 65 (2022), 103472. https://doi.org/10.1016/j.nonrwa.2021.103472 doi: 10.1016/j.nonrwa.2021.103472
![]() |
[14] |
Y. Sui, W. Q. Wang, H. M. Yu, Vacuum and singularity formation for compressible Euler equations with time-dependent damping, Discrete Contin. Dyn. Syst., 43 (2023), 1905–1925. https://doi.org/10.3934/dcds.2022184 doi: 10.3934/dcds.2022184
![]() |
[15] |
S. H. Chen, H. T. Li, J. Y. Li, M. Mei, K. J. Zhang, Global and blow-up solutions for compressible Euler equations with time-dependent damping, J. Differential Equations, 268 (2020), 5035–5077. https://doi.org/10.1016/j.jde.2019.11.002 doi: 10.1016/j.jde.2019.11.002
![]() |
[16] | J. B. Geng, N. A. Lai, M. W. Yuan, J. Zhou, Blow-up for compressible Euler system with space-dependent damping in 1-D, Adv. Nonlinear Anal., 12 (2023), 20220304, 11 pp. https://doi.org/10.1515/anona-2022-0304 |
[17] |
H. Cai, Z. Tan, Time periodic solutions to the compressible Navier-Stokes-Poisson system with damping, Commun. Math. Sci., 15 (2017), 789–812. https://doi.org/10.4310/cms.2017.v15.n3.a10 doi: 10.4310/cms.2017.v15.n3.a10
![]() |
[18] |
T. Naoki, Existence of a time periodic solution for the compressible Euler equation with a time periodic outer force, Nonlinear Anal. Real World Appl., 53 (2020), 103080. https://doi.org/10.1016/j.nonrwa.2019.103080 doi: 10.1016/j.nonrwa.2019.103080
![]() |
[19] |
H. R. Yuan, Time-periodic isentropic supersonic Euler flows in one-dimensional ducts driving by periodic boundary conditions, Acta Math. Sci. Ser. B, 39 (2019), 403–412. https://doi.org/10.1007/s10473-019-0206-6 doi: 10.1007/s10473-019-0206-6
![]() |
[20] | H. M. Yu, X. M. Zhang, J. W. Sun, Global existence and stability of time-periodic solution to isentropic compressible Euler equations with source term, preprint, arXiv: 2204.01939. |
[21] |
H. X. Liu, Existence of global smooth solutions for nonisentropic gas dynamics equations with dissipation, Appl. Anal., 66 (1997), 141–152. https://doi.org/10.1080/00036819708840578 doi: 10.1080/00036819708840578
![]() |
[22] |
L. Hsiao, D. Serre, Global existence of solutions for the system of compressible adiabatic flow through porous media, SIAM J. Math. Anal., 27 (1996), 70–77. https://doi.org/10.1137/s0036141094267078 doi: 10.1137/s0036141094267078
![]() |
[23] |
L. Hsiao, T. Luo, Nonlinear diffusive phenomena of solutions for the system of compressible adiabatic flow through porous media, J. Differential Equations, 125 (1996), 329–365. https://doi.org/10.1006/jdeq.1996.0034 doi: 10.1006/jdeq.1996.0034
![]() |
[24] |
P. Marcati, R. H. Pan, On the diffusive profiles for the system of compressible adiabatic flow through porous media, SIAM J. Math. Anal., 33 (2001), 790–826. https://doi.org/10.1137/s0036141099364401 doi: 10.1137/s0036141099364401
![]() |
[25] |
L. Hsiao, R. H. Pan, Initial boundary value problem for the system of compressible adiabatic flow through porous media, J. Differential Equations, 159 (1999), 280–305. https://doi.org/10.1006/jdeq.1999.3648 doi: 10.1006/jdeq.1999.3648
![]() |
[26] |
R. H. Pan, Boundary effects and large time behavior for the system of compressible adiabatic flow through porous media, Michigan Math. J., 49 (2001), 519–540. https://doi.org/10.1307/mmj/1012409969 doi: 10.1307/mmj/1012409969
![]() |
[27] |
W. C. Dong, Z. H. Guo, Stability of combination of rarefaction waves with viscous contact wave for compressible Navier-Stokes equations with temperature-dependent transport coefficients and large data, Adv. Nonlinear Anal., 12 (2023), 132–168. https://doi.org/10.1515/anona-2022-0246 doi: 10.1515/anona-2022-0246
![]() |
[28] |
Y. C. Geng, Y. C. Li, D. H. Wang, R. Z. Xu, Well-posedness of non-isentropic Euler equations with physical vacuum, Interfaces Free Bound., 21 (2019), 231–266. https://doi.org/10.4171/ifb/422 doi: 10.4171/ifb/422
![]() |
[29] |
C. Rickard, M. Hadžić, J. Jang, Global existence of the nonisentropic compressible Euler equations with vacuum boundary surrounding a variable entropy state, Nonlinearity, 34 (2021), 33–91. https://doi.org/10.1088/1361-6544/abb03b doi: 10.1088/1361-6544/abb03b
![]() |
[30] |
Y. Li, Relaxation time limits problem for hydrodynamic models in semiconductor science, Acta Math. Sci. Ser. B, 27 (2007), 437–448. https://doi.org/10.1016/s0252-9602(07)60044-7 doi: 10.1016/s0252-9602(07)60044-7
![]() |
[31] |
J. Xu, W. A. Yong, Relaxation-time limits of non-isentropic hydrodynamic models for semiconductors, J. Differential Equations, 247 (2009), 1777–1795. https://doi.org/10.1016/j.jde.2009.06.018 doi: 10.1016/j.jde.2009.06.018
![]() |
[32] |
F. Z. Wu, Initial layer and relaxation limit of non-isentropic compressible Euler equations with damping, J. Differential Equations, 260 (2016), 5103–5127. https://doi.org/10.1016/j.jde.2015.11.034 doi: 10.1016/j.jde.2015.11.034
![]() |
[33] |
P. Degond, P. A. Markowich, On a one-dimensional steady-state hydrodynamic model for semiconductors, Appl. Math. Lett., 3 (1990), 25–29. https://doi.org/10.1016/0893-9659(90)90130-4 doi: 10.1016/0893-9659(90)90130-4
![]() |
[34] | T. T. Li, W. C. Yu, Boundary value problem for quasilinear hyperbolic systems, Duke University Math. Series V, 1985. |
[35] | T. T. Li, Global classical solutions for quasilinear hyperbolic systems, RAM: Reasearch in App. Math., Mason, Pars; John Wiley & Sons, Ltd., Chichester, 32(1994). |
[36] |
T. T. Li, Y. Jin, Semi-global solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems, Chinese Annals of Mathematics, 22 (2001), 325–336. https://doi.org/10.1142/s0252959901000334 doi: 10.1142/s0252959901000334
![]() |
[37] |
T. T. Li, B. Rao, Local exact boundary controllability for a class of quasilinear hyperbolic systems, Chin. Ann. Math. Ser. B, 23 (2002), 209–218. https://doi.org/10.1142/s0252959902000201 doi: 10.1142/s0252959902000201
![]() |
[38] |
T. T. Li, Y. Zhou, D. X. Kong, Global classical solutions for general quasilinear hyperbolic systems with decay initial data, Nonlinear Anal., Theory Methods Appl., 28 (1997), 1299–1332. https://doi.org/10.1016/0362-546x(95)00228-n doi: 10.1016/0362-546x(95)00228-n
![]() |
[39] |
Z. Q. Wang, Exact controllability for non-autonomous first order quasilinear hyperbolic systems, Chin. Ann. Math. Ser. B, 27 (2006), 643–656. https://doi.org/10.1007/s11401-005-0520-2 doi: 10.1007/s11401-005-0520-2
![]() |
1. | Pradip Ramesh Patle, Moosa Gabeleh, Vladimir Rakočević, Mohammad Esmael Samei, New best proximity point (pair) theorems via MNC and application to the existence of optimum solutions for a system of -Hilfer fractional differential equations, 2023, 117, 1578-7303, 10.1007/s13398-023-01451-5 | |
2. | Shahram Rezapour, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez, Mehran Ghaderi, A computational method for investigating a quantum integrodifferential inclusion with simulations and heatmaps, 2023, 8, 2473-6988, 27241, 10.3934/math.20231394 | |
3. | Amjad Ali, Khezer Hayat, Abrar Zahir, Kamal Shah, Thabet Abdeljawad, Qualitative Analysis of Fractional Stochastic Differential Equations with Variable Order Fractional Derivative, 2024, 23, 1575-5460, 10.1007/s12346-024-00982-5 | |
4. | Sabri T. M. Thabet, Imed Kedim, An investigation of a new Lyapunov-type inequality for Katugampola–Hilfer fractional BVP with nonlocal and integral boundary conditions, 2023, 2023, 1029-242X, 10.1186/s13660-023-03070-5 | |
5. | Thabet Abdeljawad, Sabri T. M. Thabet, Imed Kedim, M. Iadh Ayari, Aziz Khan, A higher-order extension of Atangana–Baleanu fractional operators with respect to another function and a Gronwall-type inequality, 2023, 2023, 1687-2770, 10.1186/s13661-023-01736-z | |
6. | Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez, Efficient results on unbounded solutions of fractional Bagley-Torvik system on the half-line, 2024, 9, 2473-6988, 5071, 10.3934/math.2024246 | |
7. | Anil Chavada, Nimisha Pathak, Transmission dynamics of breast cancer through Caputo Fabrizio fractional derivative operator with real data, 2024, 4, 2767-8946, 119, 10.3934/mmc.2024011 | |
8. | Sabri T. M. Thabet, Miguel Vivas-Cortez, Imed Kedim, Analytical study of -fractional pantograph implicit differential equation with respect to another function, 2023, 8, 2473-6988, 23635, 10.3934/math.20231202 | |
9. | Sabri T. M. Thabet, Sa'ud Al-Sa'di, Imed Kedim, Ava Sh. Rafeeq, Shahram Rezapour, Analysis study on multi-order -Hilfer fractional pantograph implicit differential equation on unbounded domains, 2023, 8, 2473-6988, 18455, 10.3934/math.2023938 | |
10. | Kottakkaran Sooppy Nisar, Efficient results on Hilfer pantograph model with nonlocal integral condition, 2023, 80, 11100168, 342, 10.1016/j.aej.2023.08.061 | |
11. | R.N. Premakumari, Chandrali Baishya, Mohammad Esmael Samei, Manisha Krishna Naik, A novel optimal control strategy for nutrient–phytoplankton–zooplankton model with viral infection in plankton, 2024, 137, 10075704, 108157, 10.1016/j.cnsns.2024.108157 | |
12. | Sabri T. M. Thabet, Thabet Abdeljawad, Imed Kedim, M. Iadh Ayari, A new weighted fractional operator with respect to another function via a new modified generalized Mittag–Leffler law, 2023, 2023, 1687-2770, 10.1186/s13661-023-01790-7 | |
13. | Xinguang Zhang, Peng Chen, Hui Tian, Yonghong Wu, The Iterative Properties for Positive Solutions of a Tempered Fractional Equation, 2023, 7, 2504-3110, 761, 10.3390/fractalfract7100761 | |
14. | Latif Ur Rahman, Muhammad Arshad, Sabri T. M. Thabet, Imed Kedim, Xiaolong Qin, Iterative Construction of Fixed Points for Functional Equations and Fractional Differential Equations, 2023, 2023, 2314-4785, 1, 10.1155/2023/6677650 | |
15. | Ava Sh. Rafeeq, Sabri T.M. Thabet, Mohammed O. Mohammed, Imed Kedim, Miguel Vivas-Cortez, On Caputo-Hadamard fractional pantograph problem of two different orders with Dirichlet boundary conditions, 2024, 86, 11100168, 386, 10.1016/j.aej.2023.11.081 | |
16. | Brahim Tellab, Abdelkader Amara, Mohammed El-Hadi Mezabia, Khaled Zennir, Loay Alkhalifa, Study of a Coupled Ψ–Liouville–Riemann Fractional Differential System Characterized by Mixed Boundary Conditions, 2024, 8, 2504-3110, 510, 10.3390/fractalfract8090510 | |
17. | Deepesh Kumar Patel, Moosa Gabeleh, Mohammad Esmael Samei, On existence of solutions for -Hilfer type fractional BVP of generalized higher order, 2024, 43, 2238-3603, 10.1007/s40314-024-02681-y | |
18. | R. Poovarasan, Mohammad Esmael Samei, V. Govindaraj, Study of three-point impulsive boundary value problems governed by -Caputo fractional derivative, 2024, 70, 1598-5865, 3947, 10.1007/s12190-024-02122-3 | |
19. | Yanfang Li, Donal O’Regan, Jiafa Xu, Nontrivial Solutions for a First-order Impulsive Integral Boundary Value Problem on Time Scales, 2024, 23, 1575-5460, 10.1007/s12346-024-00954-9 | |
20. | Sabri T. M. Thabet, Miguel Vivas-Cortez, Imed Kedim, Mohammad Esmael Samei, M. Iadh Ayari, Solvability of a ϱ-Hilfer Fractional Snap Dynamic System on Unbounded Domains, 2023, 7, 2504-3110, 607, 10.3390/fractalfract7080607 | |
21. | M. Lavanya, B. Sundara Vadivoo, Kottakkaran Sooppy Nisar, Controllability Analysis of Neutral Stochastic Differential Equation Using -Hilfer Fractional Derivative with Rosenblatt Process, 2025, 24, 1575-5460, 10.1007/s12346-024-01178-7 | |
22. | Said Zibar, Brahim Tellab, Abdelkader Amara, Homan Emadifar, Atul Kumar, Sabir Widatalla, Existence, uniqueness and stability analysis of a nonlinear coupled system involving mixed ϕ-Riemann-Liouville and ψ-Caputo fractional derivatives, 2025, 2025, 1687-2770, 10.1186/s13661-025-01994-z | |
23. | R. Poovarasan, Mohammad Esmael Samei, V. Govindaraj, Analysis of existence, uniqueness, and stability for nonlinear fractional boundary value problems with novel integral boundary conditions, 2025, 1598-5865, 10.1007/s12190-025-02378-3 | |
24. | Abderrahman Elgmairi, M’hamed Elomari, Said Melliani, Hybrid Fractional Differential Equations Involving the -Caputo Derivative, 2025, 11, 2349-5103, 10.1007/s40819-025-01856-3 | |
25. | Kalimuthu Ramalakshmi, Mohammad Esmael Samei, Behnam Mohammadaliee, A prominent optimal control strategy for soil-transmitted helminth infections via generalized mathematical model of fractional differential equation, 2025, 3, 30505178, 100023, 10.1016/j.nls.2025.100023 |
1 clear; |
2 format short; |
3 syms v e; |
4 q_1=0.83; q_2=0.36; p_1=0.92; p_2=0.45; |
5 r_1=0.12; r_2=0.87; s_1=0.54; s_2=0.27; |
6 iota_1=0.05; iota_2=0.95; |
7 G1=2^v; G2=v; G3=log(v); G4=sqrt(v); |
8 g_10=v/2; g_20=sqrt(v); |
9 g_11=v^2/5; g_21=3*v/2; |
10 g_12=v/sqrt(2); g_22=sqrt(v)/7; |
11 g_13=sin(v*pi); g_23=cos(v*pi); |
12 mathrmv_1=int(g_10, v, iota_1, iota_2); |
13 mathrmv_2=int(g_20, v, iota_1, iota_2); |
14 mathrmu_1=int(g_11, v, iota_1, iota_2); |
15 mathrmu_2=int(g_21, v, iota_1, iota_2); |
16 mathrmw_1=int(g_12, v, iota_1, iota_2); |
17 mathrmw_2=int(g_22, v, iota_1, iota_2); |
18 mathrmx_1=int(g_13, v, iota_1, iota_2); |
19 mathrmx_2=int(g_23, v, iota_1, iota_2); |
20 ell_1=5/36; ell_2=1/(5*sqrt(3)); |
21 ell=max(ell_1, ell_2); |
22 h_1_0=5/36+1/(36*(1+sqrt(7))); |
23 h_2_0=1/(5*sqrt(3))+1/(18*(1+sqrt(15))); |
24 %G1 |
25 t=iota_1; |
26 column=1; |
27 nn=1; |
28 while t < =iota_2+0.08 |
29 MI(nn, column) = nn; |
30 MI(nn, column+1) = t; |
31 Phi_1=(eval(subs(G1, {v}, {iota_2}))... |
32 -eval(subs(G1, {v}, {iota_1})))^(q_1+p_1+r_1+s_1)... |
33 /gamma(q_1+p_1+r_1+s_1+1)+(eval(subs(G1, {v}, {iota_2}))... |
34 -eval(subs(G1, {v}, {iota_1})))^(p_1+r_1+s_1)... |
35 /gamma(p_1+r_1+s_1+1)+(eval(subs(G1, {v}, {iota_2}))... |
36 -eval(subs(G1, {v}, {iota_1})))^(r_1+s_1)... |
37 /gamma(r_1+s_1+1)+(eval(subs(G1, {v}, {iota_2}))... |
38 -eval(subs(G1, {v}, {iota_1})))^(s_1)/gamma(s_1+1); |
39 MI(nn, column+2)=Phi_1*ell_1; |
40 MI(nn, column+3)=Phi_1*ell_1 < 1; |
41 Phi_2=(eval(subs(G1, {v}, {iota_2}))... |
42 -eval(subs(G1, {v}, {iota_1})))^(q_2+p_2+r_2+s_2)... |
43 /gamma(q_2+p_2+r_2+s_2+1)+(eval(subs(G1, {v}, {iota_2}))... |
44 -eval(subs(G1, {v}, {iota_1})))^(p_2+r_2+s_2)... |
45 /gamma(p_2+r_2+s_2+1)+(eval(subs(G1, {v}, {iota_2}))... |
46 -eval(subs(G1, {v}, {iota_1})))^(r_2+s_2)... |
47 /gamma(r_2+s_2+1)+(eval(subs(G1, {v}, {iota_2}))... |
48 -eval(subs(G1, {v}, {iota_1})))^(s_2)/gamma(s_2+1); |
49 MI(nn, column+4)=Phi_2*ell_2; |
50 MI(nn, column+5)=Phi_2*ell_2 < 1; |
51 Phi=max(Phi_1, Phi_2); |
52 MI(nn, column+6)=Phi; |
53 MI(nn, column+7)=Phi*ell; |
54 MI(nn, column+8)=Phi*ell < 1; |
55 M_10=int(abs(g_10), v, iota_1, t); |
56 MI(nn, column+9)=M_10; |
57 M_11=int(abs(g_11), v, iota_1, t); |
58 MI(nn, column+10)=M_11; |
59 M_12=int(abs(g_12), v, iota_1, t); |
60 MI(nn, column+11)=M_12; |
61 M_13=int(abs(g_13), v, iota_1, t); |
62 MI(nn, column+12)=M_13; |
63 M_20=int(abs(g_20), v, iota_1, iota_2); |
64 MI(nn, column+13)=M_20; |
65 M_21=int(abs(g_21), v, iota_1, t); |
66 MI(nn, column+14)=M_21; |
67 M_22=int(abs(g_22), v, iota_1, t); |
68 MI(nn, column+15)=M_22; |
69 M_23=int(abs(g_23), v, iota_1, t); |
70 MI(nn, column+16)=M_23; |
71 M_1j=max(max(max(M_10, M_11), M_12), M_13); |
72 MI(nn, column+17)=M_1j; |
73 M_2j=max(max(max(M_20, M_21), M_22), M_23); |
74 MI(nn, column+18)=M_2j; |
75 Delta_1=M_10+M_11*(1+(eval(subs(G1, {v}, {iota_2}))... |
76 -eval(subs(G1, {v}, {iota_1})))^(q_1)/gamma(q_1+1))... |
77 +M_12*(1+(eval(subs(G1, {v}, {iota_2}))... |
78 -eval(subs(G1, {v}, {iota_1})))^(p_1)/gamma(p_1+1)... |
79 +(eval(subs(G1, {v}, {iota_2}))... |
80 -eval(subs(G1, {v}, {iota_1})))^(q_1+p_1)/gamma(q_1+p_1+1))... |
81 +M_13*(1+(eval(subs(G1, {v}, {iota_2}))... |
82 -eval(subs(G1, {v}, {iota_1})))^(r_1)/gamma(r_1+1)... |
83 +(eval(subs(G1, {v}, {iota_2}))... |
84 -eval(subs(G1, {v}, {iota_1})))^(p_1+r_1)/gamma(p_1+r_1+1)... |
85 +(eval(subs(G1, {v}, {iota_2}))... |
86 -eval(subs(G1, {v}, {iota_1})))^(q_1+p_1+r_1)... |
87 /gamma(q_1+p_1+r_1+1)); |
88 MI(nn, column+19)=Delta_1; |
89 Delta_2=M_20+M_21*(1+(eval(subs(G1, {v}, {iota_2}))... |
90 -eval(subs(G1, {v}, {iota_1})))^(q_2)/gamma(q_2+1))... |
91 +M_22*(1+(eval(subs(G1, {v}, {iota_2}))... |
92 -eval(subs(G1, {v}, {iota_1})))^(p_2)/gamma(p_2+1)... |
93 +(eval(subs(G1, {v}, {iota_2}))... |
94 -eval(subs(G1, {v}, {iota_1})))^(q_2+p_2)/gamma(q_2+p_2+1))... |
95 +M_23*(1+(eval(subs(G1, {v}, {iota_2}))... |
96 -eval(subs(G1, {v}, {iota_1})))^(r_2)/gamma(r_2+1)... |
97 +(eval(subs(G1, {v}, {iota_2}))... |
98 -eval(subs(G1, {v}, {iota_1})))^(p_2+r_2)/gamma(p_2+r_2+1)... |
99 +(eval(subs(G1, {v}, {iota_2}))... |
100 -eval(subs(G1, {v}, {iota_1})))^(q_2+p_2+r_2)... |
101 /gamma(q_2+p_2+r_2+1)); |
102 MI(nn, column+20)=Delta_2; |
103 D1=(Delta_1+h_1_0*Phi_1)/(1-ell_1*Phi_1); |
104 MI(nn, column+21)=D1; |
105 D2=(Delta_2+h_2_0*Phi_1)/(1-ell_2*Phi_2); |
106 MI(nn, column+22)=D2; |
107 MI(nn, column+23)=max(D1, D2); |
108 t=t+0.08; |
109 nn=nn+1; |
110 end; |
111 %G2 |
112 t=iota_1; |
113 column=25; |
114 nn=1; |
115 while t < =iota_2+0.08 |
116 MI(nn, column) = nn; |
117 MI(nn, column+1) = t; |
118 Phi_1=(eval(subs(G2, {v}, {iota_2}))... |
119 -eval(subs(G2, {v}, {iota_1})))^(q_1+p_1+r_1+s_1)... |
120 /gamma(q_1+p_1+r_1+s_1+1)+(eval(subs(G2, {v}, {iota_2}))... |
121 -eval(subs(G2, {v}, {iota_1})))^(p_1+r_1+s_1)... |
122 /gamma(p_1+r_1+s_1+1)+(eval(subs(G2, {v}, {iota_2}))... |
123 -eval(subs(G2, {v}, {iota_1})))^(r_1+s_1)... |
124 /gamma(r_1+s_1+1)+(eval(subs(G2, {v}, {iota_2}))... |
125 -eval(subs(G2, {v}, {iota_1})))^(s_1)/gamma(s_1+1); |
126 MI(nn, column+2)=Phi_1*ell_1; |
127 MI(nn, column+3)=Phi_1*ell_1 < 1; |
128 Phi_2=(eval(subs(G2, {v}, {iota_2}))... |
129 -eval(subs(G2, {v}, {iota_1})))^(q_2+p_2+r_2+s_2)... |
130 /gamma(q_2+p_2+r_2+s_2+1)+(eval(subs(G2, {v}, {iota_2}))... |
131 -eval(subs(G2, {v}, {iota_1})))^(p_2+r_2+s_2)... |
132 /gamma(p_2+r_2+s_2+1)+(eval(subs(G2, {v}, {iota_2}))... |
133 -eval(subs(G2, {v}, {iota_1})))^(r_2+s_2)... |
134 /gamma(r_2+s_2+1)+(eval(subs(G2, {v}, {iota_2}))... |
135 -eval(subs(G2, {v}, {iota_1})))^(s_2)/gamma(s_2+1); |
136 MI(nn, column+4)=Phi_2*ell_2; |
137 MI(nn, column+5)=Phi_2*ell_2 < 1; |
138 Phi=max(Phi_1, Phi_2); |
139 MI(nn, column+6)=Phi; |
140 MI(nn, column+7)=Phi*ell; |
141 MI(nn, column+8)=Phi*ell < 1; |
142 M_10=int(abs(g_10), v, iota_1, t); |
143 MI(nn, column+9)=M_10; |
144 M_11=int(abs(g_11), v, iota_1, t); |
145 MI(nn, column+10)=M_11; |
146 M_12=int(abs(g_12), v, iota_1, t); |
147 MI(nn, column+11)=M_12; |
148 M_13=int(abs(g_13), v, iota_1, t); |
149 MI(nn, column+12)=M_13; |
150 M_20=int(abs(g_20), v, iota_1, iota_2); |
151 MI(nn, column+13)=M_20; |
152 M_21=int(abs(g_21), v, iota_1, t); |
153 MI(nn, column+14)=M_21; |
154 M_22=int(abs(g_22), v, iota_1, t); |
155 MI(nn, column+15)=M_22; |
156 M_23=int(abs(g_23), v, iota_1, t); |
157 MI(nn, column+16)=M_23; |
158 M_1j=max(max(max(M_10, M_11), M_12), M_13); |
159 MI(nn, column+17)=M_1j; |
160 M_2j=max(max(max(M_20, M_21), M_22), M_23); |
161 MI(nn, column+18)=M_2j; |
162 Delta_1=M_10+M_11*(1+(eval(subs(G2, {v}, {iota_2}))... |
163 -eval(subs(G2, {v}, {iota_1})))^(q_1)/gamma(q_1+1))... |
164 +M_12*(1+(eval(subs(G2, {v}, {iota_2}))... |
165 -eval(subs(G2, {v}, {iota_1})))^(p_1)/gamma(p_1+1)... |
166 +(eval(subs(G2, {v}, {iota_2}))-eval(subs(G2, {v}, {iota_1})))^(q_1+p_1)... |
167 /gamma(q_1+p_1+1))+M_13*(1+(eval(subs(G2, {v}, {iota_2}))... |
168 -eval(subs(G2, {v}, {iota_1})))^(r_1)/gamma(r_1+1)... |
169 +(eval(subs(G2, {v}, {iota_2}))-eval(subs(G2, {v}, {iota_1})))^(p_1+r_1)... |
170 /gamma(p_1+r_1+1)+(eval(subs(G2, {v}, {iota_2}))... |
171 -eval(subs(G2, {v}, {iota_1})))^(q_1+p_1+r_1)/gamma(q_1+p_1+r_1+1)); |
172 MI(nn, column+19)=Delta_1; |
173 Delta_2=M_20+M_21*(1+(eval(subs(G2, {v}, {iota_2}))... |
174 -eval(subs(G2, {v}, {iota_1})))^(q_2)/gamma(q_2+1))... |
175 +M_22*(1+(eval(subs(G2, {v}, {iota_2}))... |
176 -eval(subs(G2, {v}, {iota_1})))^(p_2)/gamma(p_2+1)... |
177 +(eval(subs(G2, {v}, {iota_2}))... |
178 -eval(subs(G2, {v}, {iota_1})))^(q_2+p_2)/gamma(q_2+p_2+1))... |
179 +M_23*(1+(eval(subs(G2, {v}, {iota_2}))... |
180 -eval(subs(G2, {v}, {iota_1})))^(r_2)/gamma(r_2+1)... |
181 +(eval(subs(G2, {v}, {iota_2}))... |
182 -eval(subs(G2, {v}, {iota_1})))^(p_2+r_2)/gamma(p_2+r_2+1)... |
183 +(eval(subs(G2, {v}, {iota_2}))... |
184 -eval(subs(G2, {v}, {iota_1})))^(q_2+p_2+r_2)... |
185 /gamma(q_2+p_2+r_2+1)); |
186 MI(nn, column+20)=Delta_2; |
187 D1=(Delta_1+h_1_0*Phi_1)/(1-ell_1*Phi_1); |
188 MI(nn, column+21)=D1; |
189 D2=(Delta_2+h_2_0*Phi_1)/(1-ell_2*Phi_2); |
190 MI(nn, column+22)=D2; |
191 MI(nn, column+23)=max(D1, D2); |
192 t=t+0.08; |
193 nn=nn+1; |
194 end; |
195 %G3 |
196 t=iota_1; |
197 column=49; |
198 nn=1; |
199 while t < =iota_2+0.08 |
200 MI(nn, column) = nn; |
201 MI(nn, column+1) = t; |
202 Phi_1=(eval(subs(G3, {v}, {iota_2}))... |
203 -eval(subs(G3, {v}, {iota_1})))^(q_1+p_1+r_1+s_1)... |
204 /gamma(q_1+p_1+r_1+s_1+1)+(eval(subs(G3, {v}, {iota_2}))... |
205 -eval(subs(G3, {v}, {iota_1})))^(p_1+r_1+s_1)... |
206 /gamma(p_1+r_1+s_1+1)+(eval(subs(G3, {v}, {iota_2}))... |
207 -eval(subs(G3, {v}, {iota_1})))^(r_1+s_1)... |
208 /gamma(r_1+s_1+1)+(eval(subs(G3, {v}, {iota_2}))... |
209 -eval(subs(G3, {v}, {iota_1})))^(s_1)/gamma(s_1+1); |
210 MI(nn, column+2)=Phi_1*ell_1; |
211 MI(nn, column+3)=Phi_1*ell_1 < 1; |
212 Phi_2=(eval(subs(G3, {v}, {iota_2}))... |
213 -eval(subs(G3, {v}, {iota_1})))^(q_2+p_2+r_2+s_2)... |
214 /gamma(q_2+p_2+r_2+s_2+1)+(eval(subs(G3, {v}, {iota_2}))... |
215 -eval(subs(G3, {v}, {iota_1})))^(p_2+r_2+s_2)... |
216 /gamma(p_2+r_2+s_2+1)+(eval(subs(G3, {v}, {iota_2}))... |
217 -eval(subs(G3, {v}, {iota_1})))^(r_2+s_2)... |
218 /gamma(r_2+s_2+1)+(eval(subs(G3, {v}, {iota_2}))... |
219 -eval(subs(G3, {v}, {iota_1})))^(s_2)/gamma(s_2+1); |
220 MI(nn, column+4)=Phi_2*ell_2; |
221 MI(nn, column+5)=Phi_2*ell_2 < 1; |
222 Phi=max(Phi_1, Phi_2); |
223 MI(nn, column+6)=Phi; |
224 MI(nn, column+7)=Phi*ell; |
225 MI(nn, column+8)=Phi*ell < 1; |
226 M_10=int(abs(g_10), v, iota_1, t); |
227 MI(nn, column+9)=M_10; |
228 M_11=int(abs(g_11), v, iota_1, t); |
229 MI(nn, column+10)=M_11; |
230 M_12=int(abs(g_12), v, iota_1, t); |
231 MI(nn, column+11)=M_12; |
232 M_13=int(abs(g_13), v, iota_1, t); |
233 MI(nn, column+12)=M_13; |
234 M_20=int(abs(g_20), v, iota_1, iota_2); |
235 MI(nn, column+13)=M_20; |
236 M_21=int(abs(g_21), v, iota_1, t); |
237 MI(nn, column+14)=M_21; |
238 M_22=int(abs(g_22), v, iota_1, t); |
239 MI(nn, column+15)=M_22; |
240 M_23=int(abs(g_23), v, iota_1, t); |
241 MI(nn, column+16)=M_23; |
242 M_1j=max(max(max(M_10, M_11), M_12), M_13); |
243 MI(nn, column+17)=M_1j; |
244 M_2j=max(max(max(M_20, M_21), M_22), M_23); |
245 MI(nn, column+18)=M_2j; |
246 Delta_1=M_10+M_11*(1+(eval(subs(G3, {v}, {iota_2}))... |
247 -eval(subs(G3, {v}, {iota_1})))^(q_1)/gamma(q_1+1))... |
248 +M_12*(1+(eval(subs(G3, {v}, {iota_2}))... |
249 -eval(subs(G3, {v}, {iota_1})))^(p_1)/gamma(p_1+1)... |
250 +(eval(subs(G3, {v}, {iota_2}))... |
251 -eval(subs(G3, {v}, {iota_1})))^(q_1+p_1)/gamma(q_1+p_1+1))... |
252 +M_13*(1+(eval(subs(G3, {v}, {iota_2}))... |
253 -eval(subs(G3, {v}, {iota_1})))^(r_1)/gamma(r_1+1)... |
254 +(eval(subs(G3, {v}, {iota_2}))... |
255 -eval(subs(G3, {v}, {iota_1})))^(p_1+r_1)/gamma(p_1+r_1+1)... |
256 +(eval(subs(G3, {v}, {iota_2}))... |
257 -eval(subs(G3, {v}, {iota_1})))^(q_1+p_1+r_1)... |
258 /gamma(q_1+p_1+r_1+1)); |
259 MI(nn, column+19)=Delta_1; |
260 Delta_2=M_20+M_21*(1+(eval(subs(G3, {v}, {iota_2}))... |
261 -eval(subs(G3, {v}, {iota_1})))^(q_2)/gamma(q_2+1))... |
262 +M_22*(1+(eval(subs(G3, {v}, {iota_2}))... |
263 -eval(subs(G3, {v}, {iota_1})))^(p_2)/gamma(p_2+1)... |
264 +(eval(subs(G3, {v}, {iota_2}))... |
265 -eval(subs(G3, {v}, {iota_1})))^(q_2+p_2)/gamma(q_2+p_2+1))... |
266 +M_23*(1+(eval(subs(G3, {v}, {iota_2}))... |
267 -eval(subs(G3, {v}, {iota_1})))^(r_2)/gamma(r_2+1)... |
268 +(eval(subs(G3, {v}, {iota_2}))... |
269 -eval(subs(G3, {v}, {iota_1})))^(p_2+r_2)/gamma(p_2+r_2+1)... |
270 +(eval(subs(G3, {v}, {iota_2}))... |
271 -eval(subs(G3, {v}, {iota_1})))^(q_2+p_2+r_2)... |
272 /gamma(q_2+p_2+r_2+1)); |
273 MI(nn, column+20)=Delta_2; |
274 D1=(Delta_1+h_1_0*Phi_1)/(1-ell_1*Phi_1); |
275 MI(nn, column+21)=D1; |
276 D2=(Delta_2+h_2_0*Phi_1)/(1-ell_2*Phi_2); |
277 MI(nn, column+22)=D2; |
278 MI(nn, column+23)=max(D1, D2); |
279 t=t+0.08; |
280 nn=nn+1; |
281 end; |
282 %G4 |
283 t=iota_1; |
284 column=73; |
285 nn=1; |
286 while t < =iota_2+0.08 |
287 MI(nn, column) = nn; |
288 MI(nn, column+1) = t; |
289 Phi_1=(eval(subs(G4, {v}, {iota_2}))... |
290 -eval(subs(G4, {v}, {iota_1})))^(q_1+p_1+r_1+s_1)... |
291 /gamma(q_1+p_1+r_1+s_1+1)+(eval(subs(G4, {v}, {iota_2}))... |
292 -eval(subs(G4, {v}, {iota_1})))^(p_1+r_1+s_1)... |
293 /gamma(p_1+r_1+s_1+1)+(eval(subs(G4, {v}, {iota_2}))... |
294 -eval(subs(G4, {v}, {iota_1})))^(r_1+s_1)... |
295 /gamma(r_1+s_1+1)+(eval(subs(G4, {v}, {iota_2}))... |
296 -eval(subs(G4, {v}, {iota_1})))^(s_1)/gamma(s_1+1); |
297 MI(nn, column+2)=Phi_1*ell_1; |
298 MI(nn, column+3)=Phi_1*ell_1 < 1; |
299 Phi_2=(eval(subs(G4, {v}, {iota_2}))... |
300 -eval(subs(G4, {v}, {iota_1})))^(q_2+p_2+r_2+s_2)... |
301 /gamma(q_2+p_2+r_2+s_2+1)+(eval(subs(G4, {v}, {iota_2}))... |
302 -eval(subs(G4, {v}, {iota_1})))^(p_2+r_2+s_2)... |
303 /gamma(p_2+r_2+s_2+1)+(eval(subs(G4, {v}, {iota_2}))... |
304 -eval(subs(G4, {v}, {iota_1})))^(r_2+s_2)... |
305 /gamma(r_2+s_2+1)+(eval(subs(G4, {v}, {iota_2}))... |
306 -eval(subs(G4, {v}, {iota_1})))^(s_2)/gamma(s_2+1); |
307 MI(nn, column+4)=Phi_2*ell_2; |
308 MI(nn, column+5)=Phi_2*ell_2 < 1; |
309 Phi=max(Phi_1, Phi_2); |
310 MI(nn, column+6)=Phi; |
311 MI(nn, column+7)=Phi*ell; |
312 MI(nn, column+8)=Phi*ell < 1; |
313 M_10=int(abs(g_10), v, iota_1, t); |
314 MI(nn, column+9)=M_10; |
315 M_11=int(abs(g_11), v, iota_1, t); |
316 MI(nn, column+10)=M_11; |
317 M_12=int(abs(g_12), v, iota_1, t); |
318 MI(nn, column+11)=M_12; |
319 M_13=int(abs(g_13), v, iota_1, t); |
320 MI(nn, column+12)=M_13; |
321 M_20=int(abs(g_20), v, iota_1, iota_2); |
322 MI(nn, column+13)=M_20; |
323 M_21=int(abs(g_21), v, iota_1, t); |
324 MI(nn, column+14)=M_21; |
325 M_22=int(abs(g_22), v, iota_1, t); |
326 MI(nn, column+15)=M_22; |
327 M_23=int(abs(g_23), v, iota_1, t); |
328 MI(nn, column+16)=M_23; |
329 M_1j=max(max(max(M_10, M_11), M_12), M_13); |
330 MI(nn, column+17)=M_1j; |
331 M_2j=max(max(max(M_20, M_21), M_22), M_23); |
332 MI(nn, column+18)=M_2j; |
333 Delta_1=M_10+M_11*(1+(eval(subs(G4, {v}, {iota_2}))... |
334 -eval(subs(G4, {v}, {iota_1})))^(q_1)/gamma(q_1+1))... |
335 +M_12*(1+(eval(subs(G4, {v}, {iota_2}))... |
336 -eval(subs(G4, {v}, {iota_1})))^(p_1)/gamma(p_1+1)... |
337 +(eval(subs(G4, {v}, {iota_2}))... |
338 -eval(subs(G4, {v}, {iota_1})))^(q_1+p_1)/gamma(q_1+p_1+1))... |
339 +M_13*(1+(eval(subs(G4, {v}, {iota_2}))... |
340 -eval(subs(G4, {v}, {iota_1})))^(r_1)/gamma(r_1+1)... |
341 +(eval(subs(G4, {v}, {iota_2}))... |
342 -eval(subs(G4, {v}, {iota_1})))^(p_1+r_1)/gamma(p_1+r_1+1)... |
343 +(eval(subs(G4, {v}, {iota_2}))... |
344 -eval(subs(G4, {v}, {iota_1})))^(q_1+p_1+r_1)... |
345 /gamma(q_1+p_1+r_1+1)); |
346 MI(nn, column+19)=Delta_1; |
347 Delta_2=M_20+M_21*(1+(eval(subs(G4, {v}, {iota_2}))... |
348 -eval(subs(G4, {v}, {iota_1})))^(q_2)/gamma(q_2+1))... |
349 +M_22*(1+(eval(subs(G4, {v}, {iota_2}))... |
350 -eval(subs(G4, {v}, {iota_1})))^(p_2)/gamma(p_2+1)... |
351 +(eval(subs(G4, {v}, {iota_2}))... |
352 -eval(subs(G4, {v}, {iota_1})))^(q_2+p_2)/gamma(q_2+p_2+1))... |
353 +M_23*(1+(eval(subs(G4, {v}, {iota_2}))... |
354 -eval(subs(G4, {v}, {iota_1})))^(r_2)/gamma(r_2+1)... |
355 +(eval(subs(G4, {v}, {iota_2}))... |
356 -eval(subs(G4, {v}, {iota_1})))^(p_2+r_2)/gamma(p_2+r_2+1)... |
357 +(eval(subs(G4, {v}, {iota_2}))... |
358 -eval(subs(G4, {v}, {iota_1})))^(q_2+p_2+r_2)... |
359 /gamma(q_2+p_2+r_2+1)); |
360 MI(nn, column+20)=Delta_2; |
361 D1=(Delta_1+h_1_0*Phi_1)/(1-ell_1*Phi_1); |
362 MI(nn, column+21)=D1; |
363 D2=(Delta_2+h_2_0*Phi_1)/(1-ell_2*Phi_2); |
364 MI(nn, column+22)=D2; |
365 MI(nn, column+23)=max(D1, D2); |
366 t=t+0.08; |
367 nn=nn+1; |
368 end; |
1 clear; |
2 format short; |
3 syms v e; |
4 q_1=0.83; q_2=0.36; p_1=0.92; p_2=0.45; |
5 r_1=0.12; r_2=0.87; s_1=0.54; s_2=0.27; |
6 iota_1=0.05; iota_2=0.95; |
7 G1=2^v; G2=v; G3=log(v); G4=sqrt(v); |
8 g_10=v/2; g_20=sqrt(v); |
9 g_11=v^2/5; g_21=3*v/2; |
10 g_12=v/sqrt(2); g_22=sqrt(v)/7; |
11 g_13=sin(v*pi); g_23=cos(v*pi); |
12 mathrmv_1=int(g_10, v, iota_1, iota_2); |
13 mathrmv_2=int(g_20, v, iota_1, iota_2); |
14 mathrmu_1=int(g_11, v, iota_1, iota_2); |
15 mathrmu_2=int(g_21, v, iota_1, iota_2); |
16 mathrmw_1=int(g_12, v, iota_1, iota_2); |
17 mathrmw_2=int(g_22, v, iota_1, iota_2); |
18 mathrmx_1=int(g_13, v, iota_1, iota_2); |
19 mathrmx_2=int(g_23, v, iota_1, iota_2); |
20 ell_1=5/36; ell_2=1/(5*sqrt(3)); |
21 ell=max(ell_1, ell_2); |
22 h_1_0=5/36+1/(36*(1+sqrt(7))); |
23 h_2_0=1/(5*sqrt(3))+1/(18*(1+sqrt(15))); |
24 %G1 |
25 t=iota_1; |
26 column=1; |
27 nn=1; |
28 while t < =iota_2+0.08 |
29 MI(nn, column) = nn; |
30 MI(nn, column+1) = t; |
31 Phi_1=(eval(subs(G1, {v}, {iota_2}))... |
32 -eval(subs(G1, {v}, {iota_1})))^(q_1+p_1+r_1+s_1)... |
33 /gamma(q_1+p_1+r_1+s_1+1)+(eval(subs(G1, {v}, {iota_2}))... |
34 -eval(subs(G1, {v}, {iota_1})))^(p_1+r_1+s_1)... |
35 /gamma(p_1+r_1+s_1+1)+(eval(subs(G1, {v}, {iota_2}))... |
36 -eval(subs(G1, {v}, {iota_1})))^(r_1+s_1)... |
37 /gamma(r_1+s_1+1)+(eval(subs(G1, {v}, {iota_2}))... |
38 -eval(subs(G1, {v}, {iota_1})))^(s_1)/gamma(s_1+1); |
39 MI(nn, column+2)=Phi_1*ell_1; |
40 MI(nn, column+3)=Phi_1*ell_1 < 1; |
41 Phi_2=(eval(subs(G1, {v}, {iota_2}))... |
42 -eval(subs(G1, {v}, {iota_1})))^(q_2+p_2+r_2+s_2)... |
43 /gamma(q_2+p_2+r_2+s_2+1)+(eval(subs(G1, {v}, {iota_2}))... |
44 -eval(subs(G1, {v}, {iota_1})))^(p_2+r_2+s_2)... |
45 /gamma(p_2+r_2+s_2+1)+(eval(subs(G1, {v}, {iota_2}))... |
46 -eval(subs(G1, {v}, {iota_1})))^(r_2+s_2)... |
47 /gamma(r_2+s_2+1)+(eval(subs(G1, {v}, {iota_2}))... |
48 -eval(subs(G1, {v}, {iota_1})))^(s_2)/gamma(s_2+1); |
49 MI(nn, column+4)=Phi_2*ell_2; |
50 MI(nn, column+5)=Phi_2*ell_2 < 1; |
51 Phi=max(Phi_1, Phi_2); |
52 MI(nn, column+6)=Phi; |
53 MI(nn, column+7)=Phi*ell; |
54 MI(nn, column+8)=Phi*ell < 1; |
55 M_10=int(abs(g_10), v, iota_1, t); |
56 MI(nn, column+9)=M_10; |
57 M_11=int(abs(g_11), v, iota_1, t); |
58 MI(nn, column+10)=M_11; |
59 M_12=int(abs(g_12), v, iota_1, t); |
60 MI(nn, column+11)=M_12; |
61 M_13=int(abs(g_13), v, iota_1, t); |
62 MI(nn, column+12)=M_13; |
63 M_20=int(abs(g_20), v, iota_1, iota_2); |
64 MI(nn, column+13)=M_20; |
65 M_21=int(abs(g_21), v, iota_1, t); |
66 MI(nn, column+14)=M_21; |
67 M_22=int(abs(g_22), v, iota_1, t); |
68 MI(nn, column+15)=M_22; |
69 M_23=int(abs(g_23), v, iota_1, t); |
70 MI(nn, column+16)=M_23; |
71 M_1j=max(max(max(M_10, M_11), M_12), M_13); |
72 MI(nn, column+17)=M_1j; |
73 M_2j=max(max(max(M_20, M_21), M_22), M_23); |
74 MI(nn, column+18)=M_2j; |
75 Delta_1=M_10+M_11*(1+(eval(subs(G1, {v}, {iota_2}))... |
76 -eval(subs(G1, {v}, {iota_1})))^(q_1)/gamma(q_1+1))... |
77 +M_12*(1+(eval(subs(G1, {v}, {iota_2}))... |
78 -eval(subs(G1, {v}, {iota_1})))^(p_1)/gamma(p_1+1)... |
79 +(eval(subs(G1, {v}, {iota_2}))... |
80 -eval(subs(G1, {v}, {iota_1})))^(q_1+p_1)/gamma(q_1+p_1+1))... |
81 +M_13*(1+(eval(subs(G1, {v}, {iota_2}))... |
82 -eval(subs(G1, {v}, {iota_1})))^(r_1)/gamma(r_1+1)... |
83 +(eval(subs(G1, {v}, {iota_2}))... |
84 -eval(subs(G1, {v}, {iota_1})))^(p_1+r_1)/gamma(p_1+r_1+1)... |
85 +(eval(subs(G1, {v}, {iota_2}))... |
86 -eval(subs(G1, {v}, {iota_1})))^(q_1+p_1+r_1)... |
87 /gamma(q_1+p_1+r_1+1)); |
88 MI(nn, column+19)=Delta_1; |
89 Delta_2=M_20+M_21*(1+(eval(subs(G1, {v}, {iota_2}))... |
90 -eval(subs(G1, {v}, {iota_1})))^(q_2)/gamma(q_2+1))... |
91 +M_22*(1+(eval(subs(G1, {v}, {iota_2}))... |
92 -eval(subs(G1, {v}, {iota_1})))^(p_2)/gamma(p_2+1)... |
93 +(eval(subs(G1, {v}, {iota_2}))... |
94 -eval(subs(G1, {v}, {iota_1})))^(q_2+p_2)/gamma(q_2+p_2+1))... |
95 +M_23*(1+(eval(subs(G1, {v}, {iota_2}))... |
96 -eval(subs(G1, {v}, {iota_1})))^(r_2)/gamma(r_2+1)... |
97 +(eval(subs(G1, {v}, {iota_2}))... |
98 -eval(subs(G1, {v}, {iota_1})))^(p_2+r_2)/gamma(p_2+r_2+1)... |
99 +(eval(subs(G1, {v}, {iota_2}))... |
100 -eval(subs(G1, {v}, {iota_1})))^(q_2+p_2+r_2)... |
101 /gamma(q_2+p_2+r_2+1)); |
102 MI(nn, column+20)=Delta_2; |
103 D1=(Delta_1+h_1_0*Phi_1)/(1-ell_1*Phi_1); |
104 MI(nn, column+21)=D1; |
105 D2=(Delta_2+h_2_0*Phi_1)/(1-ell_2*Phi_2); |
106 MI(nn, column+22)=D2; |
107 MI(nn, column+23)=max(D1, D2); |
108 t=t+0.08; |
109 nn=nn+1; |
110 end; |
111 %G2 |
112 t=iota_1; |
113 column=25; |
114 nn=1; |
115 while t < =iota_2+0.08 |
116 MI(nn, column) = nn; |
117 MI(nn, column+1) = t; |
118 Phi_1=(eval(subs(G2, {v}, {iota_2}))... |
119 -eval(subs(G2, {v}, {iota_1})))^(q_1+p_1+r_1+s_1)... |
120 /gamma(q_1+p_1+r_1+s_1+1)+(eval(subs(G2, {v}, {iota_2}))... |
121 -eval(subs(G2, {v}, {iota_1})))^(p_1+r_1+s_1)... |
122 /gamma(p_1+r_1+s_1+1)+(eval(subs(G2, {v}, {iota_2}))... |
123 -eval(subs(G2, {v}, {iota_1})))^(r_1+s_1)... |
124 /gamma(r_1+s_1+1)+(eval(subs(G2, {v}, {iota_2}))... |
125 -eval(subs(G2, {v}, {iota_1})))^(s_1)/gamma(s_1+1); |
126 MI(nn, column+2)=Phi_1*ell_1; |
127 MI(nn, column+3)=Phi_1*ell_1 < 1; |
128 Phi_2=(eval(subs(G2, {v}, {iota_2}))... |
129 -eval(subs(G2, {v}, {iota_1})))^(q_2+p_2+r_2+s_2)... |
130 /gamma(q_2+p_2+r_2+s_2+1)+(eval(subs(G2, {v}, {iota_2}))... |
131 -eval(subs(G2, {v}, {iota_1})))^(p_2+r_2+s_2)... |
132 /gamma(p_2+r_2+s_2+1)+(eval(subs(G2, {v}, {iota_2}))... |
133 -eval(subs(G2, {v}, {iota_1})))^(r_2+s_2)... |
134 /gamma(r_2+s_2+1)+(eval(subs(G2, {v}, {iota_2}))... |
135 -eval(subs(G2, {v}, {iota_1})))^(s_2)/gamma(s_2+1); |
136 MI(nn, column+4)=Phi_2*ell_2; |
137 MI(nn, column+5)=Phi_2*ell_2 < 1; |
138 Phi=max(Phi_1, Phi_2); |
139 MI(nn, column+6)=Phi; |
140 MI(nn, column+7)=Phi*ell; |
141 MI(nn, column+8)=Phi*ell < 1; |
142 M_10=int(abs(g_10), v, iota_1, t); |
143 MI(nn, column+9)=M_10; |
144 M_11=int(abs(g_11), v, iota_1, t); |
145 MI(nn, column+10)=M_11; |
146 M_12=int(abs(g_12), v, iota_1, t); |
147 MI(nn, column+11)=M_12; |
148 M_13=int(abs(g_13), v, iota_1, t); |
149 MI(nn, column+12)=M_13; |
150 M_20=int(abs(g_20), v, iota_1, iota_2); |
151 MI(nn, column+13)=M_20; |
152 M_21=int(abs(g_21), v, iota_1, t); |
153 MI(nn, column+14)=M_21; |
154 M_22=int(abs(g_22), v, iota_1, t); |
155 MI(nn, column+15)=M_22; |
156 M_23=int(abs(g_23), v, iota_1, t); |
157 MI(nn, column+16)=M_23; |
158 M_1j=max(max(max(M_10, M_11), M_12), M_13); |
159 MI(nn, column+17)=M_1j; |
160 M_2j=max(max(max(M_20, M_21), M_22), M_23); |
161 MI(nn, column+18)=M_2j; |
162 Delta_1=M_10+M_11*(1+(eval(subs(G2, {v}, {iota_2}))... |
163 -eval(subs(G2, {v}, {iota_1})))^(q_1)/gamma(q_1+1))... |
164 +M_12*(1+(eval(subs(G2, {v}, {iota_2}))... |
165 -eval(subs(G2, {v}, {iota_1})))^(p_1)/gamma(p_1+1)... |
166 +(eval(subs(G2, {v}, {iota_2}))-eval(subs(G2, {v}, {iota_1})))^(q_1+p_1)... |
167 /gamma(q_1+p_1+1))+M_13*(1+(eval(subs(G2, {v}, {iota_2}))... |
168 -eval(subs(G2, {v}, {iota_1})))^(r_1)/gamma(r_1+1)... |
169 +(eval(subs(G2, {v}, {iota_2}))-eval(subs(G2, {v}, {iota_1})))^(p_1+r_1)... |
170 /gamma(p_1+r_1+1)+(eval(subs(G2, {v}, {iota_2}))... |
171 -eval(subs(G2, {v}, {iota_1})))^(q_1+p_1+r_1)/gamma(q_1+p_1+r_1+1)); |
172 MI(nn, column+19)=Delta_1; |
173 Delta_2=M_20+M_21*(1+(eval(subs(G2, {v}, {iota_2}))... |
174 -eval(subs(G2, {v}, {iota_1})))^(q_2)/gamma(q_2+1))... |
175 +M_22*(1+(eval(subs(G2, {v}, {iota_2}))... |
176 -eval(subs(G2, {v}, {iota_1})))^(p_2)/gamma(p_2+1)... |
177 +(eval(subs(G2, {v}, {iota_2}))... |
178 -eval(subs(G2, {v}, {iota_1})))^(q_2+p_2)/gamma(q_2+p_2+1))... |
179 +M_23*(1+(eval(subs(G2, {v}, {iota_2}))... |
180 -eval(subs(G2, {v}, {iota_1})))^(r_2)/gamma(r_2+1)... |
181 +(eval(subs(G2, {v}, {iota_2}))... |
182 -eval(subs(G2, {v}, {iota_1})))^(p_2+r_2)/gamma(p_2+r_2+1)... |
183 +(eval(subs(G2, {v}, {iota_2}))... |
184 -eval(subs(G2, {v}, {iota_1})))^(q_2+p_2+r_2)... |
185 /gamma(q_2+p_2+r_2+1)); |
186 MI(nn, column+20)=Delta_2; |
187 D1=(Delta_1+h_1_0*Phi_1)/(1-ell_1*Phi_1); |
188 MI(nn, column+21)=D1; |
189 D2=(Delta_2+h_2_0*Phi_1)/(1-ell_2*Phi_2); |
190 MI(nn, column+22)=D2; |
191 MI(nn, column+23)=max(D1, D2); |
192 t=t+0.08; |
193 nn=nn+1; |
194 end; |
195 %G3 |
196 t=iota_1; |
197 column=49; |
198 nn=1; |
199 while t < =iota_2+0.08 |
200 MI(nn, column) = nn; |
201 MI(nn, column+1) = t; |
202 Phi_1=(eval(subs(G3, {v}, {iota_2}))... |
203 -eval(subs(G3, {v}, {iota_1})))^(q_1+p_1+r_1+s_1)... |
204 /gamma(q_1+p_1+r_1+s_1+1)+(eval(subs(G3, {v}, {iota_2}))... |
205 -eval(subs(G3, {v}, {iota_1})))^(p_1+r_1+s_1)... |
206 /gamma(p_1+r_1+s_1+1)+(eval(subs(G3, {v}, {iota_2}))... |
207 -eval(subs(G3, {v}, {iota_1})))^(r_1+s_1)... |
208 /gamma(r_1+s_1+1)+(eval(subs(G3, {v}, {iota_2}))... |
209 -eval(subs(G3, {v}, {iota_1})))^(s_1)/gamma(s_1+1); |
210 MI(nn, column+2)=Phi_1*ell_1; |
211 MI(nn, column+3)=Phi_1*ell_1 < 1; |
212 Phi_2=(eval(subs(G3, {v}, {iota_2}))... |
213 -eval(subs(G3, {v}, {iota_1})))^(q_2+p_2+r_2+s_2)... |
214 /gamma(q_2+p_2+r_2+s_2+1)+(eval(subs(G3, {v}, {iota_2}))... |
215 -eval(subs(G3, {v}, {iota_1})))^(p_2+r_2+s_2)... |
216 /gamma(p_2+r_2+s_2+1)+(eval(subs(G3, {v}, {iota_2}))... |
217 -eval(subs(G3, {v}, {iota_1})))^(r_2+s_2)... |
218 /gamma(r_2+s_2+1)+(eval(subs(G3, {v}, {iota_2}))... |
219 -eval(subs(G3, {v}, {iota_1})))^(s_2)/gamma(s_2+1); |
220 MI(nn, column+4)=Phi_2*ell_2; |
221 MI(nn, column+5)=Phi_2*ell_2 < 1; |
222 Phi=max(Phi_1, Phi_2); |
223 MI(nn, column+6)=Phi; |
224 MI(nn, column+7)=Phi*ell; |
225 MI(nn, column+8)=Phi*ell < 1; |
226 M_10=int(abs(g_10), v, iota_1, t); |
227 MI(nn, column+9)=M_10; |
228 M_11=int(abs(g_11), v, iota_1, t); |
229 MI(nn, column+10)=M_11; |
230 M_12=int(abs(g_12), v, iota_1, t); |
231 MI(nn, column+11)=M_12; |
232 M_13=int(abs(g_13), v, iota_1, t); |
233 MI(nn, column+12)=M_13; |
234 M_20=int(abs(g_20), v, iota_1, iota_2); |
235 MI(nn, column+13)=M_20; |
236 M_21=int(abs(g_21), v, iota_1, t); |
237 MI(nn, column+14)=M_21; |
238 M_22=int(abs(g_22), v, iota_1, t); |
239 MI(nn, column+15)=M_22; |
240 M_23=int(abs(g_23), v, iota_1, t); |
241 MI(nn, column+16)=M_23; |
242 M_1j=max(max(max(M_10, M_11), M_12), M_13); |
243 MI(nn, column+17)=M_1j; |
244 M_2j=max(max(max(M_20, M_21), M_22), M_23); |
245 MI(nn, column+18)=M_2j; |
246 Delta_1=M_10+M_11*(1+(eval(subs(G3, {v}, {iota_2}))... |
247 -eval(subs(G3, {v}, {iota_1})))^(q_1)/gamma(q_1+1))... |
248 +M_12*(1+(eval(subs(G3, {v}, {iota_2}))... |
249 -eval(subs(G3, {v}, {iota_1})))^(p_1)/gamma(p_1+1)... |
250 +(eval(subs(G3, {v}, {iota_2}))... |
251 -eval(subs(G3, {v}, {iota_1})))^(q_1+p_1)/gamma(q_1+p_1+1))... |
252 +M_13*(1+(eval(subs(G3, {v}, {iota_2}))... |
253 -eval(subs(G3, {v}, {iota_1})))^(r_1)/gamma(r_1+1)... |
254 +(eval(subs(G3, {v}, {iota_2}))... |
255 -eval(subs(G3, {v}, {iota_1})))^(p_1+r_1)/gamma(p_1+r_1+1)... |
256 +(eval(subs(G3, {v}, {iota_2}))... |
257 -eval(subs(G3, {v}, {iota_1})))^(q_1+p_1+r_1)... |
258 /gamma(q_1+p_1+r_1+1)); |
259 MI(nn, column+19)=Delta_1; |
260 Delta_2=M_20+M_21*(1+(eval(subs(G3, {v}, {iota_2}))... |
261 -eval(subs(G3, {v}, {iota_1})))^(q_2)/gamma(q_2+1))... |
262 +M_22*(1+(eval(subs(G3, {v}, {iota_2}))... |
263 -eval(subs(G3, {v}, {iota_1})))^(p_2)/gamma(p_2+1)... |
264 +(eval(subs(G3, {v}, {iota_2}))... |
265 -eval(subs(G3, {v}, {iota_1})))^(q_2+p_2)/gamma(q_2+p_2+1))... |
266 +M_23*(1+(eval(subs(G3, {v}, {iota_2}))... |
267 -eval(subs(G3, {v}, {iota_1})))^(r_2)/gamma(r_2+1)... |
268 +(eval(subs(G3, {v}, {iota_2}))... |
269 -eval(subs(G3, {v}, {iota_1})))^(p_2+r_2)/gamma(p_2+r_2+1)... |
270 +(eval(subs(G3, {v}, {iota_2}))... |
271 -eval(subs(G3, {v}, {iota_1})))^(q_2+p_2+r_2)... |
272 /gamma(q_2+p_2+r_2+1)); |
273 MI(nn, column+20)=Delta_2; |
274 D1=(Delta_1+h_1_0*Phi_1)/(1-ell_1*Phi_1); |
275 MI(nn, column+21)=D1; |
276 D2=(Delta_2+h_2_0*Phi_1)/(1-ell_2*Phi_2); |
277 MI(nn, column+22)=D2; |
278 MI(nn, column+23)=max(D1, D2); |
279 t=t+0.08; |
280 nn=nn+1; |
281 end; |
282 %G4 |
283 t=iota_1; |
284 column=73; |
285 nn=1; |
286 while t < =iota_2+0.08 |
287 MI(nn, column) = nn; |
288 MI(nn, column+1) = t; |
289 Phi_1=(eval(subs(G4, {v}, {iota_2}))... |
290 -eval(subs(G4, {v}, {iota_1})))^(q_1+p_1+r_1+s_1)... |
291 /gamma(q_1+p_1+r_1+s_1+1)+(eval(subs(G4, {v}, {iota_2}))... |
292 -eval(subs(G4, {v}, {iota_1})))^(p_1+r_1+s_1)... |
293 /gamma(p_1+r_1+s_1+1)+(eval(subs(G4, {v}, {iota_2}))... |
294 -eval(subs(G4, {v}, {iota_1})))^(r_1+s_1)... |
295 /gamma(r_1+s_1+1)+(eval(subs(G4, {v}, {iota_2}))... |
296 -eval(subs(G4, {v}, {iota_1})))^(s_1)/gamma(s_1+1); |
297 MI(nn, column+2)=Phi_1*ell_1; |
298 MI(nn, column+3)=Phi_1*ell_1 < 1; |
299 Phi_2=(eval(subs(G4, {v}, {iota_2}))... |
300 -eval(subs(G4, {v}, {iota_1})))^(q_2+p_2+r_2+s_2)... |
301 /gamma(q_2+p_2+r_2+s_2+1)+(eval(subs(G4, {v}, {iota_2}))... |
302 -eval(subs(G4, {v}, {iota_1})))^(p_2+r_2+s_2)... |
303 /gamma(p_2+r_2+s_2+1)+(eval(subs(G4, {v}, {iota_2}))... |
304 -eval(subs(G4, {v}, {iota_1})))^(r_2+s_2)... |
305 /gamma(r_2+s_2+1)+(eval(subs(G4, {v}, {iota_2}))... |
306 -eval(subs(G4, {v}, {iota_1})))^(s_2)/gamma(s_2+1); |
307 MI(nn, column+4)=Phi_2*ell_2; |
308 MI(nn, column+5)=Phi_2*ell_2 < 1; |
309 Phi=max(Phi_1, Phi_2); |
310 MI(nn, column+6)=Phi; |
311 MI(nn, column+7)=Phi*ell; |
312 MI(nn, column+8)=Phi*ell < 1; |
313 M_10=int(abs(g_10), v, iota_1, t); |
314 MI(nn, column+9)=M_10; |
315 M_11=int(abs(g_11), v, iota_1, t); |
316 MI(nn, column+10)=M_11; |
317 M_12=int(abs(g_12), v, iota_1, t); |
318 MI(nn, column+11)=M_12; |
319 M_13=int(abs(g_13), v, iota_1, t); |
320 MI(nn, column+12)=M_13; |
321 M_20=int(abs(g_20), v, iota_1, iota_2); |
322 MI(nn, column+13)=M_20; |
323 M_21=int(abs(g_21), v, iota_1, t); |
324 MI(nn, column+14)=M_21; |
325 M_22=int(abs(g_22), v, iota_1, t); |
326 MI(nn, column+15)=M_22; |
327 M_23=int(abs(g_23), v, iota_1, t); |
328 MI(nn, column+16)=M_23; |
329 M_1j=max(max(max(M_10, M_11), M_12), M_13); |
330 MI(nn, column+17)=M_1j; |
331 M_2j=max(max(max(M_20, M_21), M_22), M_23); |
332 MI(nn, column+18)=M_2j; |
333 Delta_1=M_10+M_11*(1+(eval(subs(G4, {v}, {iota_2}))... |
334 -eval(subs(G4, {v}, {iota_1})))^(q_1)/gamma(q_1+1))... |
335 +M_12*(1+(eval(subs(G4, {v}, {iota_2}))... |
336 -eval(subs(G4, {v}, {iota_1})))^(p_1)/gamma(p_1+1)... |
337 +(eval(subs(G4, {v}, {iota_2}))... |
338 -eval(subs(G4, {v}, {iota_1})))^(q_1+p_1)/gamma(q_1+p_1+1))... |
339 +M_13*(1+(eval(subs(G4, {v}, {iota_2}))... |
340 -eval(subs(G4, {v}, {iota_1})))^(r_1)/gamma(r_1+1)... |
341 +(eval(subs(G4, {v}, {iota_2}))... |
342 -eval(subs(G4, {v}, {iota_1})))^(p_1+r_1)/gamma(p_1+r_1+1)... |
343 +(eval(subs(G4, {v}, {iota_2}))... |
344 -eval(subs(G4, {v}, {iota_1})))^(q_1+p_1+r_1)... |
345 /gamma(q_1+p_1+r_1+1)); |
346 MI(nn, column+19)=Delta_1; |
347 Delta_2=M_20+M_21*(1+(eval(subs(G4, {v}, {iota_2}))... |
348 -eval(subs(G4, {v}, {iota_1})))^(q_2)/gamma(q_2+1))... |
349 +M_22*(1+(eval(subs(G4, {v}, {iota_2}))... |
350 -eval(subs(G4, {v}, {iota_1})))^(p_2)/gamma(p_2+1)... |
351 +(eval(subs(G4, {v}, {iota_2}))... |
352 -eval(subs(G4, {v}, {iota_1})))^(q_2+p_2)/gamma(q_2+p_2+1))... |
353 +M_23*(1+(eval(subs(G4, {v}, {iota_2}))... |
354 -eval(subs(G4, {v}, {iota_1})))^(r_2)/gamma(r_2+1)... |
355 +(eval(subs(G4, {v}, {iota_2}))... |
356 -eval(subs(G4, {v}, {iota_1})))^(p_2+r_2)/gamma(p_2+r_2+1)... |
357 +(eval(subs(G4, {v}, {iota_2}))... |
358 -eval(subs(G4, {v}, {iota_1})))^(q_2+p_2+r_2)... |
359 /gamma(q_2+p_2+r_2+1)); |
360 MI(nn, column+20)=Delta_2; |
361 D1=(Delta_1+h_1_0*Phi_1)/(1-ell_1*Phi_1); |
362 MI(nn, column+21)=D1; |
363 D2=(Delta_2+h_2_0*Phi_1)/(1-ell_2*Phi_2); |
364 MI(nn, column+22)=D2; |
365 MI(nn, column+23)=max(D1, D2); |
366 t=t+0.08; |
367 nn=nn+1; |
368 end; |