
Citation: Jonathan Trauth, Johannes Scheffer, Sophia Hasenjäger, Christof Taxis. Strategies to investigate protein turnover with fluorescent protein reporters in eukaryotic organisms[J]. AIMS Biophysics, 2020, 7(2): 90-118. doi: 10.3934/biophy.2020008
[1] | Wael S. Abu El Azm, Ramy Aldallal, Hassan M. Aljohani, Said G. Nassr . Estimations of competing lifetime data from inverse Weibull distribution under adaptive progressively hybrid censored. Mathematical Biosciences and Engineering, 2022, 19(6): 6252-6275. doi: 10.3934/mbe.2022292 |
[2] | Walid Emam, Ghadah Alomani . Predictive modeling of reliability engineering data using a new version of the flexible Weibull model. Mathematical Biosciences and Engineering, 2023, 20(6): 9948-9964. doi: 10.3934/mbe.2023436 |
[3] | Walid Emam, Khalaf S. Sultan . Bayesian and maximum likelihood estimations of the Dagum parameters under combined-unified hybrid censoring. Mathematical Biosciences and Engineering, 2021, 18(3): 2930-2951. doi: 10.3934/mbe.2021148 |
[4] | Manal M. Yousef, Rehab Alsultan, Said G. Nassr . Parametric inference on partially accelerated life testing for the inverted Kumaraswamy distribution based on Type-II progressive censoring data. Mathematical Biosciences and Engineering, 2023, 20(2): 1674-1694. doi: 10.3934/mbe.2023076 |
[5] | M. Nagy, M. H. Abu-Moussa, Adel Fahad Alrasheedi, A. Rabie . Expected Bayesian estimation for exponential model based on simple step stress with Type-I hybrid censored data. Mathematical Biosciences and Engineering, 2022, 19(10): 9773-9791. doi: 10.3934/mbe.2022455 |
[6] | Said G. Nassr, Amal S. Hassan, Rehab Alsultan, Ahmed R. El-Saeed . Acceptance sampling plans for the three-parameter inverted Topp–Leone model. Mathematical Biosciences and Engineering, 2022, 19(12): 13628-13659. doi: 10.3934/mbe.2022636 |
[7] | M. E. Bakr, Abdulhakim A. Al-Babtain, Zafar Mahmood, R. A. Aldallal, Saima Khan Khosa, M. M. Abd El-Raouf, Eslam Hussam, Ahmed M. Gemeay . Statistical modelling for a new family of generalized distributions with real data applications. Mathematical Biosciences and Engineering, 2022, 19(9): 8705-8740. doi: 10.3934/mbe.2022404 |
[8] | Amal S. Hassan, Najwan Alsadat, Christophe Chesneau, Ahmed W. Shawki . A novel weighted family of probability distributions with applications to world natural gas, oil, and gold reserves. Mathematical Biosciences and Engineering, 2023, 20(11): 19871-19911. doi: 10.3934/mbe.2023880 |
[9] | M. G. M. Ghazal, H. M. M. Radwan . A reduced distribution of the modified Weibull distribution and its applications to medical and engineering data. Mathematical Biosciences and Engineering, 2022, 19(12): 13193-13213. doi: 10.3934/mbe.2022617 |
[10] | Hatim Solayman Migdadi, Nesreen M. Al-Olaimat, Omar Meqdadi . Inference and optimal design for the k-level step-stress accelerated life test based on progressive Type-I interval censored power Rayleigh data. Mathematical Biosciences and Engineering, 2023, 20(12): 21407-21431. doi: 10.3934/mbe.2023947 |
In several lifetime tests, including, industrial, lifetime and clinical applications, progressive censoring is very useful. Progressive censoring permits the removal of the experimental units surviving until the test finishes. Let an experiment of experiment with n independent units in which it is not desirable to detect all failure times under the cost and time limitations, so only part of failures of the units are observed and the other part are removed from the experiment, such a sample is called a censored sample. Assume that one of the units was broken by accident after the test began, but before all of the units had burned out. If the experiment is still ongoing, this unit must be removed from the life test. The progressive censoring scheme gives a methodology for analyzing this type of data in this case. Some of the most important works on this subject are Balakrishnan and Aggarwala [1], Balakrishnan [2], and Cramer and Iliopoulos [3].
The experimentation time can be very long if the units are very reliable, which is a disadvantage of progressive Type-II censored schemes. Kundu and Joarder [4] and Childs et al. [5] address this problem by proposing a new type of censoring in which the stopping time of the experiment is minimum value of {Xm:m:n,T}, where the time T is fixed time before the start of the test. This type of censored sampling is called a progressive hybrid censoring sample (PHCS). The total time of the experiment under a PHCS will not exceed T. Several authors have studied PHCSs. See, for example, Panahi in [6], Alshenawy et al. in [7], Hemmati and Khorram in [8], and Lin and Huang in [9].
However, the weakness of a PHCS is that it cannot be implemented when a few failures can be detected before time T. For this reason, Cho et al. [10] proposed a general type of censoring, called a generalized Type-I PHCS, in which a smaller number of failures is predetermined. A lifetime test experiment would save the time and costs of failures using this censoring scheme. Moreover, the estimates of the statistical efficiency are improved by the experiment having more failures. In the following section, the generalized Type-I PHCS and its advantages are explained. For recent work on this topic, see, for example, Moihe El-Din et al. [11], Mohie El-Din et al. [12], and Nagy et al. [13].
The Weibull distribution is one of the most important in reliability and life testing, and it is widely utilized in various domains such as reliability theory and clinical trials. For this reason, we used this distribution to express truly real data. The Weibull distribution has the probability density (PD), cumulative distribution (CD), survival (S), and hazard (H) functions given as follows.
f(x;λ,μ)=λμxμ−1e−λxμ,x>0, | (1.1) |
F(x;λ,μ)=1−e−λxμ,x>0,λ>0,μ>0. | (1.2) |
S(x;λ,μ)=ˉF(x;λ,μ)=1−F(x;λ,μ), H(x;λ,μ)=λμxμ−1,x>0,λ>0,μ>0. | (1.3) |
For Bayesian inference on the Weibull distribution, see, for example, Mohie El-Din and Nagy [14], and Lin et al. in [15].
In this paper, we address the development of point and interval estimation and classical and Bayesian inference for the Weibull distribution based on the generalized Type-I PHCS. The Bayesian estimate for any parameter β, denoted by ˆβBS, in terms of the squared error loss function (SELF), is the expected value of the posterior distribution and given by
ˆβBS=Eβ|x_[β]. | (1.4) |
The LINEX loss function (LLF) can be expressed as follows.
LBL(ˆβ,β)=exp[υ(ˆβ−β)]−υ(ˆβ−β)−1, υ≠0, | (1.5) |
The Bayesian estimator of β, denoted by ˆβBL under the (LLF), the value ˆβBL that minimizes Eβ|X_[LBL(ˆβ,β)] is given by
ˆβBL=−1υln{Eβ|x_[exp(−υβ)]}, | (1.6) |
Calabria and Pulcini [16] considered the question of the choice of the value of parameter v.
The general entropy loss function (GELF) is another widely used asymmetric loss function. It is given by
LBE(ˆβ,β)∝(ˆββ)κ−κln(ˆββ)−1. | (1.7) |
The Bayesian estimate ˆβBE relative to the GE loss function is given by
ˆβBE={Eβ|x_[β]−κ}−1κ. | (1.8) |
The remainder of this article is organized as ollows. Section 2 summarizes the model of the generalized Type-I PHCS. Section 3 extracts the maximum likelihood estimates (ML) and the Bayesian estimates for the unknown parameters and SF and HF under three loss functions. Section 4 derives the Bayesian one-sample prediction for all censoring stage failure times of all withdrawn units. In Section 5, we derive the Bayesian prediction for all withdrawn units in the censoring stage {Ri,i=1,...,m}, which is called one-sample Bayesian prediction; and in Section 6, we derive the Bayesian prediction of an unobserved future progressive sample from the same distribution, which is called two-sample Bayesian prediction. In Section 7, simulation studies are conducted to compare the efficiency of the proposed inference techniques. In Section 8, a real-life data set is used to demonstrate the theoretical findings. Finally, the paper is concluded in Section 9.
Consider lifetime testing in which n equivalent units are tested. The generalized Type-I PHCS is as follows. Let T>0 and k,m∈{1,2,...,n} be prefixed integers in which k<m with the predetermined censoring scheme R=(R1,R2,...,Rm) satisfying n=m+R1+…+Rm. When the first failure occurs, R1 of the remaining units are randomly eliminated. When the second failure occurs R2, of the surviving units are eliminated from the experiment. This process repeats until the termination time T∗=max{Xk:m:n,min{Xm:m:n,T}} is reached, at which moment the reset surviving units are eliminated from the test. The "generalised Type-I PHCS" modifies the PHCS by allowing the experiment to continue beyond T if only a few failures are observed up to T. Ideally, the experimenters would like to observe m failures within this system, but they will observe at least k failures. D is the number of failures observed up to T (see Figure 1).
As mentioned earlier, one of observations from the following types is given under the generalized Type-I PHCS:
1. Suppose the kth failure time occurs after T. Then, experiment is terminated at Xk:m:n and the observations are {X1:m:n<...<Xk:m:n}.
2. Suppose that T is reached after the kth failure and before the mth failure. In this case, the termination time is T and we observe {X1:m:n<...<Xk:m:n<Xk+1:m:n<...<XD:m:n}.
3. Suppose that the mth fault was discovered after the kth failure and before T. Then, the termination time is Xm:m:n, and we will find {X1:m:n<...<Xk:m:n<Xk+1:m:n<...<Xm:m:n}.
The joint PDF based on the generalized Type-I PHCS for all cases is now given by:
fX_(x_)=[D∗∏i=1m∑j=i(R∗j+1)]D∗∏i=1f(xi:D∗:n)[ˉF(xi:D∗:n)]R∗i[ˉF(T)]R∗τ, | (2.1) |
where R∗j is the jth value of the vector R∗,
R∗={(R1,…,RD,0,...,0,R∗k=n−k−D∑j=1Rj),Case−I,(R1,…,RD),Case−II,(R1,…,Rm),Case−III, | (2.2) |
R∗τ is the number of units eliminated at time T, as determined by
R∗τ={0,Case−I,n−D−D∑j=1Rj,Case−II,0,Case−III, | (2.3) |
D∗={kCase−I,DCase−II,mCase−III, | (2.4) |
and
x_={(x1:m:n,...,xk:m:n),Case−I(x1:m:n,...,xD:m:n),Case−II,(x1:m:n,...,xm:m:n),Case−III. | (2.5) |
The likelihood function of λ,μ under the generalized Type-I PHCS can be derived using (1.1) and (1.2) in (2.1), as
L(λ,μ;x_)=[D∗∏i=1m∑j=i(R∗j+1)]λD∗μD∗D∗∏i=1xμ−1iexp[−λW(μ|x_)], | (2.6) |
where W(μ|x_)=D∗∑i=1(R∗i+1)xμi+R∗τTμ and xi=xi:D∗:n for simplicity of notation.
From Equation (2.6), the related log-likelihood function can be found as
lnL(λ,μ|x_)=const.+D∗(lnλ+lnμ)+(μ−1)D∗∑i=1ln(xi)−λW(μ|x_), | (3.1) |
equating the first derivatives of (3.1) with respect to μ and λ to zero, we obtain
∂lnL(λ,μ|x_)∂λ=D∗λ−W(μ|x_)=0, | (3.2) |
∂lnL(λ,μ|x_)∂μ=D∗μ+D∗∑i=1ln(xi)−λ[D∗∑i=1(R∗i+1)xμilnxi+R∗τTμlnT]=0. | (3.3) |
The ML estimators of lambdaand mu are then obtained by
ˆλML(μ)=D∗W(μ|x_), | (3.4) |
ˆμML=D∗ˆλML(μ)[D∗∑i=1(R∗i+1)xμilnxi+R∗τTμlnT]. | (3.5) |
By using the numerical technique with the Newton-Raphson iteration method, the ML estimates ˆλML and ˆμML can be obtained by solving (3.2) and (3.3), respectively. Due to the invariance property, the related ML estimations of the SF and HF are therefore given by
ˆSML(t)=exp(−ˆλMLtˆμML), | (3.6) |
ˆHML(t)=ˆλMLˆμMLtˆμML−1. | (3.7) |
The observed Fisher information matrix of parameters lambda and mu for large D∗, is given by
I(ˆλ,ˆμ)=[−∂2lnL(λ,μ|x_)∂λ2−∂2lnL(λ,μ|x_)∂λ∂μ−∂2lnL(λ,μ|x_)∂μ∂λ−∂2lnL(λ,μ|x_)∂μ2](ˆλML,ˆμML) | (3.8) |
where
∂2lnL(λ,μ|x_)∂λ2=−D∗λ2, |
∂2lnL(λ,μ|x_)∂μ2=−D∗μ2−D∗∑i=1[λ(R∗i+1)+1][(lnxi)2xμi(1+xμi)2], |
∂2lnL(λ,μ|x_)∂λ∂μ=−[D∗∑i=1(R∗i+1)xμilnxi(1+xμi)], |
and a 100(1−γ)% two-sided approximate confidence intervals for the parameters λ and μ are then
(ˆλ−zγ/2√V(ˆλ),ˆλ+zγ/2√V(ˆλ)), | (3.9) |
and
(ˆμ−zγ/2√V(ˆμ),ˆμ+zγ/2√V(ˆμ)), | (3.10) |
respectively, where V(ˆλ) and V(ˆμ)are the estimated variances of ˆλML and ˆμML, which are given by the first and the second diagonal element of I−1(ˆλ,ˆμ) and zγ/2 is the upper (γ/2) percentile of the standard normal distribution.
Greene [17] used the delta method to construct the approximate confidence intervals for the SF and HF as a function of the MLEs. This method is used in this subsection to determine the variance of the simpler linear function that can be utilized for inference from large samples, as well as the linear approximation of this function. See Greene [17] and Agresti [18].
G1=[∂S(t)∂λ∂S(t)∂μ]andG1=[∂H(t)∂λ∂H(t)∂μ] | (3.11) |
where
∂S(t)∂λ=−tμexp(−λtμ),∂S(t)∂μ=−λtμexp(−λtμ)ln(t), |
and
∂H(t)∂λ=μtμ−1,∂H(t)∂μ=λ[tμ−1+μtμ−1ln(t)]. |
The approximate estimates of V(ˆS(t)) and V(ˆH(t)) are then supplied, respectively, by
V(ˆS(t))≃[Gt1I−1(λ,μ)G1](ˆλML,ˆμML),V(ˆH(t))≃[Gt2I−1(λ,μ)G2](ˆλML,ˆμML), |
where Gti is the transpose of Gi, i=1,2. These results provide the approximate confidence intervals for S(t) and H(t) are
(ˆS(t)−zγ/2√V(ˆS(t)),ˆS(t)+zγ/2√V(ˆS(t))) | (3.12) |
and
(ˆH(t)−zγ/2√V(ˆH(t)),ˆH(t)+zγ/2√V(ˆH(t))). | (3.13) |
Assuming that both λ and μ are unknown parameters, a natural choice for the prior distributions of λ and μ is to assume that they are independent gamma distributions G(a1,b1) and G(a2,b2), respectively. As a result, the following is the joint prior distribution.
π(λ,μ) ∝ λa1−1exp(−λb1)μa2−1exp(−b2μ), | (4.1) |
a1, b1, a2, b2 are positive constants. If hyperparameters a1, b1, a2, b2 are set as zero, then the informative priors are reduced to the noninformative priors.
Upon combining (2.6) and (4.1), given the generalized Type-I PHCS, the posterior density function of λ,μ is obtained as
π∗(λ,μ|x_)=L(λ,μ|x_)π(λ,μ)/∫L(λ,μ|x_)π(λ,μ)dλdμ=I−1λD∗+a1−1μD∗+a2−1exp(−b2μ)(D∗∏i=1xμ−1i)exp{−λ[W(μ|x_)+b1]}, | (4.2) |
where
I=∞∫0∞∫0λD∗+a1−1μD∗+a2−1exp(−b2μ)(D∗∏i=1xμ−1i)exp{−λ[W(μ|x_)+b1]}dλdμ=Γ(D∗+a1)∞∫0μD∗+a2−1(D∗∏i=1xμ−1i)exp(−b2μ)[W(μ|x_)+b1]−(D∗+a1)dμ. | (4.3) |
Thus, from (1.4), the Bayesian estimates of λ and μ under the SELF are as follows.
ˆλBS=I−1Γ(D∗+a1+1)∞∫0μD∗+a2−1(D∗∏i=1xμ−1i)×exp(−b2μ)[W(μ|x_)+b1]−(D∗+a1+1)dμ, | (4.4) |
ˆμBS=I−1Γ(D∗+a1)∞∫0μD∗+a2(D∗∏i=1xμ−1i)×exp(−b2μ)[W(μ|x_)+b1]−(D∗+a1)dμ. | (4.5) |
From (1.6), we obtain the Bayesian estimator of λ and μ under the LLF,
ˆλBL=−1υln{I−1Γ(D∗+a1)∞∫0μD∗+a2−1(D∗∏i=1xμ−1i)×exp(−b2μ)[W(μ|x_)+υ+b1]−(D∗+a1)dμ}, | (4.6) |
ˆμBL=−1υln{I−1Γ(D∗+a1)∞∫0μD∗+a2−1(D∗∏i=1xμ−1i)×exp[−μ(b2+υ)][W(μ|x_)+b1]−(D∗+a1)dμ}. | (4.7) |
From (1.8), one obtains the Bayesian estimator of λ and μ under the GELF as follows:
ˆλBE={I−1Γ(D∗+a1−κ)∞∫0μD∗+a2−1(D∗∏i=1xμ−1i)×exp(−b2μ)[W(μ|x_)+b1]−(D∗+a1−κ)dμ}−1κ, | (4.8) |
ˆμBE={I−1Γ(D∗+a1)∞∫0μD∗+a2−κ−1(D∗∏i=1xμ−1i)×exp(−μb2)[W(μ|x_)+b1]−(D∗+a1)dμ}−1κ. | (4.9) |
Since the integrals in (4.4), (4.5), (4.6), (4.7), (4.8), and (4.9) cannot be computed analytically, the Markov chain Monte Carlo method (MCMC) is used to evaluate these integrals. Depending on the posterior distribution in (4.2), the conditional posterior distributions π∗1(λ|μ;x_) and π∗2(μ|λ;x_) of parameters λ and μ can now be computed and written as follows.
π∗1(λ|μ;x_)=[W(μ|x_)+b1]Γ(D∗+a1)λD∗+a1−1exp{−λ[W(μ|x_)+b1]} | (4.10) |
and
π∗2(μ|λ;x_)=I−1Γ(D∗+a1)μD∗+a2−1exp(−b2μ)(D∗∏i=1xμ−1i)[W(μ|x_)+b1]−(D∗+a1). | (4.11) |
It is clear that, the posterior density function π∗1(λ|μ;x_) is a gamma density, therefore, samples of λ can be easily generated. However, the posterior density function π∗2(μ|λ;x_) is not a specific distribution; therefore, it is not possible to generate samples directly by standard methods. From theorem 2 of Kundu [19], π∗2(μ|λ;x_) is a log-concave function; therefore, to generate random samples from these distributions, we use the Metropolis-Hastings [20]. The MCMC algorithm can be described as follows.
Algorithm 1 MCMC method. |
Step 1, start with λ(0)=ˆλML and μ(0)=ˆμML |
Step 2, set i=1 |
Step 3, Generate λ(i)∼GammaDist.[D∗+a,W(μ(i−1)|x_)+b1]=π∗1(λ|μ(i−1);x_) |
Step 4, Generate a proposal μ(∗) from N(μ(i−1),V(μ)) |
Step 5, Calculate the acceptance probabilities dμ=min[1,π∗2(μ(∗)|λ(i−1))π∗1(μ(i−1)|λ(i−1))] |
Step 6, Generate u1 that follows a U(0,1) distribution. If u1≤dμ, set μ(i)=μ(∗); otherwise, set μ(i)=μ(i−1) |
Step 7, set i=i+1, repeat steps 3 to 7, N times and obtain (λ(j),μ(j)), j=1,2,...,N. |
Step 8, Remove the first B values for λ and μ, which is the burn-in period of λ(j) and μ(j), respectively, where j=1,2,...,N−B. |
Assuming g(λ,μ) is an arbitrary function in λ and μ, the Bayesian estimates of g are obtained using the MCMC values as follows.
Based on SELF, LLF, and GELF, the Bayesian estimates of g are then, respectively, given by
^g(λ,μ)BS=1N−BN−B∑i=1g(λ(i),μ(i)), | (4.12) |
^g(λ,μ)BL=−1υLn[1N−BN−B∑i=1eυg(λ(i),μ(i))], | (4.13) |
^g(λ,μ)BE=[1N−BN−B∑i=1[g(λ(i),μ(i))]−κ]−1/κ, | (4.14) |
The 100(1−γ)% Bayesian confidence interval or credible interval (L,U) for parameter β (β is λ or μ) if
U∫Lπ∗(β|x_)dβ=1−γ, | (4.15) |
Since the integration in (4.15) cannot be solved analytically, the 100(1−γ) MCMC-approximated credibility intervals for λ and μ using the (N−B) using the (N - B) generated values after sorting in ascending order, (λ(1),λ(2),...,λ(N−B)) and (μ(1),μ(2),...,μ(N−B)), are given as follows,
(λ[(N−B)γ/2],λ[(N−B)(1−γ)/2])(μ[(N−B)γ/2],μ[(N−B)(1−γ)/2]) |
The absolute difference between the upper and lower bounds determines the length of the credible intervals.
For ρ=1,2,...,R∗j, let Zρ:R∗j denote the ρth order statistic out of R∗j removed units at stage j. Then, the conditional DF of Zρ:R∗j, given the observed generalized Type-I PHCS, is given, as in Basak et al.[21], by
g(Zρ:R∗j|x_)=g(z|x_)=R∗j!(ρ−1)!(R∗j−ρ)![G(z)−G(zj)]ρ−1[1−G(z)]R∗j−ρg(z)[1−G(zj)]R∗j, z>zj, | (5.1) |
where
j={1,...,kifT<Xk:m:n<Xm:m:n,1,...,D,τifXk:m:n<T<Xm:m:n,1,...,mifXk:m:n<Xm:m:n<T, |
with zτ=T.
By using (1.1) and (1.2) in (5.1), given a generalized Type-I PHCS, the conditional DF of Zρ:R∗j is then given as follows:
g(z|x_)=ρ−1∑q=0Cqλμxμ−1exp{−λ[ϖq(zμ−zμj)]}, z>zj, | (5.2) |
where Cq=(−1)q(ρ−1q)R∗j!(ρ−1)!(R∗j−ρ)! and ϖq=q+R∗j−ρ+1 for q=0,...,ρ−1.
Upon combining (4.2) and (5.2) and using the MCMC technique, the Bayesian predictive DF of Zρ:R∗j, given a generalized Type-I PHCS, is obtained as
g∗(z|x_)=∞∫0∞∫0g(z|x_)π∗(λ,μ|x_)dλdμ=1N−BN−B∑i=1ρ−1∑q=0Cqλ(i)μ(i)zμ(i)−1exp{−λ(i)[ϖq(zμ(i)−zμ(i)j)]}. | (5.3) |
The Bayesian predictive SF of Zρ:R∗j, given generalized Type-I PHCS, is given as
G∗(t|x_)=∞∫tg∗(z|x_)dx=1N−BN−B∑i=1ρ−1∑q=0Cqϖqexp{−λ(i)[ϖq(tμ(i)−zμ(i)j)]}. | (5.4) |
The Bayesian point predictor of Zρ:R∗j under the SELF is the mean of the predictive DF, given by
ˆZρ:R∗j=∞∫0zg∗(z|x_)dx, |
Let W1:ℓ:N≤W2:ℓ:N≤…≤Wℓ:ℓ:N be a future independent progressive Type-II censored sample from the same population with censoring scheme S=(S1,...,Sℓ). In this section, we develop a general procedure for deriving the point and interval predictions for Ws:ℓ:N, 1≤s≤ℓ, based on the observed generalized Type-I PHCS. The marginal DF of Ws:ℓ:N is given by Balakrishnan et al. [22] as
gWs:ℓ:N(ws|λ)=g(ws|λ)=c(N,s)s−1∑q=0cq,s−1[1−G(ws)]Mq,s−1g(ws), | (6.1) |
where 1≤s≤ρ, c(N,s)=N(N−S1−1)...(N−S1...−Ss−1+1),Mq,s=N−S1−...−Ss−q−1−s+q+1,and cq,s−1=(−1)q{[q∏u=1s−q+u−1∑υ=s−q(Sυ+1)][s−q−1∏u=1s−q−1∑υ=u(Sυ+1)]}−1.
Upon substituting (1.1) and (1.2) in (6.1), the marginal DF of Ws:ℓ:N is then obtained as
g(ws|λ)=c(N,s)s−1∑q=0cq,s−1λμyμ−1sexp{−λ[Mq,swμs]}, ws>0. | (6.2) |
Upon combining (4.2)and (6.2) and using the MCMC method, given a generalized Type-I PHCS, the Bayesian predictive DF of Ws:ℓ:N is obtained as
g∗(ws|x_)=∞∫0∞∫0g(ws|x_)π∗(λ,μ|x_)dλdμ=c(N,s)N−BN−B∑i=1s−1∑q=0cq,s−1λ(i)μ(i)wμ(i)−1sexp{−λ(i)[Mq,swμ(i)s]}. | (6.3) |
From (6.3), we simply obtain the predictive SF function of Ws:ℓ:N, given a generalized Type-I PHCS, as
G∗(t|x_)=∞∫tg∗(ws|x_)dys=c(N,s)N−BN−B∑i=1s−1∑q=0cq,s−1Mq,sexp{−λ(i)[Mq,stμ(i)]}. | (6.4) |
The Bayesian point predictor of Ws:ℓ:N, 1≤s≤m, under the SELF is the mean of the predictive DF, given by
ˆWs:ℓ:N=∞∫0wsg∗(ws|x_)dys, | (6.5) |
where g∗Ws:ℓ:N(ws|x_) is given as in (6.3).
By solving the following two equations, the Bayesian predictive bounds of the 100(1−γ)% equi-tailed (ET)interval for Zρ:R∗j and Ws:ℓ:N, 1≤s≤m can be obtained respectively,
G∗(LET|x_)=γ2andG∗(UET|x_)=1−γ2, | (6.6) |
where G∗(t|x_) is given as in (5.4) and (6.4), where LET and UET denote the lower and upper bounds, respectively. Furthermore, for the highest posterior density (HPD) method, the following two equations need to be solved:
G∗(LHPD|x_)−G∗(UHPD|x_)=1−γ, |
and
g∗(LHPD|x_)−g∗(UHPD|x_)=0, |
where g∗(z|x_) is as in (5.3) and (6.3), where LHPD and UHPD denote the HPD lower and upper bounds, respectively.
In this section, a Monte Carlo simulation study was conducted to compare the efficiency of ML and Bayesian estimates. Using different values of n,m,k and T, 5000 generalized Type-I PHCSs were generated from the Weibull distribution (with λ=1 and μ=2). The values of T are chosen such that the three cases of generalized Type-I PHCS occur. Thus, in the first case, a T that lies in the first quarter of the data such that T∗=Xk:m:n is chosen. In the second case, a T that lies in the third quarter such that T∗=T is chosen. Finally, a T that is sufficiently large such that T∗=Xm:m:n is chosen. We computed the ML estimate and the Bayesian estimates of λ, μ, S(t), and H(t) (with t=0.5) under the SELF, LLF (with υ = 0.5) and GELF (with κ = 0.5) using IP and NIP. We also calculated the mean squared error (MSE) and the expected bias (EB) for each estimate.
The 90% and 95% asymptotic and Bayesian credible confidence intervals with the average length (AL) and the estimated coverage probabilities (CPs) for ˆλ, ˆμ, ^S(t), and ^H(t) are computed.
Different samples of size (n) with different effective sample sizes (m,k) are used to conduct the simulation study. The process of removing the SF units is performed with these censoring schemes.
1. Scheme 1: Ri=2(n−m)m for odd integers i and Ri=0 for even integers of i.
2. Scheme 2: Ri=2(n−m)m for even integers i and Ri=0 for add integers of i..
3. Scheme 3: Ri=0 for i=1,2,...,m−1, Ri=n−m for i=m.
All these cases have been assumed according to the case of generalized Type-I progressive censoring and all Bayesian results are computed based on two different choices for the hyperparameters (a1,b1,a2,b2).
1. For the case of IP:a1=200, b1=200, a2=200 and b2=400 (by putting the marginal prior distribution of λ with mean a1b1=1 and small variance a1b21=0.005 and the marginal prior distribution of μ with mean a2b2=1 and variance a2b22=0.005).
2. For the case of NIP:a1=b1=a2=b2=0.
The simulated results are displayed in the Appendix of this paper.
To illustrate all conclusions reached for the Weibull distribution, we used a real data consists of 19 values. These data refer to breakthrough times of an offending liquid between electrodes at a voltage of 34 kilovolts, as prepared by Viveros and Balakrishnan in [23] from Table 6.1 of Nelson ([24], p.228). We will use these real data to consider the following progressively censored schemes.
Suppose m=10, R=(0,0,3,0,0,3,0,0,3,0), Then, we have the following progressive data: 0.19, 0.78, 0.96, 2.78, 3.16, 4.15, 4.85, 7.35, 8.01, and 31.75. If we consider a different T, then we have three different generalized Type-I PHCSs.
1. Scheme I: Suppose T=4. Since T<X7:10:19<X10:10:19, then the experiment would have terminated at X7:7:19, with R∗=(0,0,3,0,0,0,9) and R∗τ=0 and we would have the following data: 0.19, 0.78, 0.96, 2.78, 3.16, 4.15, and 4.67.
2. Scheme II: Suppose T=7.5. Since X7:10:19<T<X10:10:19, then the experiment would have terminated at T=8, with R∗ = (0, 0, 3, 0, 0, 3, 0, 0) and R∗τ=5 and we would have the following data: 0.19, 0.78, 0.96, 2.78, 3.16, 4.15, 4.85, and 7.35.
3. Scheme III: Suppose k=7 and T=35. Since X7:10:19<X10:10:19<T, then the experiment would have terminated at X10:10:19, with R∗=R and R∗τ=0 and we would have the following data: 0.19, 0.78, 0.96, 2.78, 3.16, 4.15, 4.85, 7.35, 8.01, and 31.75.
Based on the generated generalized Type-I PHCS and two different choices of hyperparameters (a1,b1,a2,b2) as in the Monte Carlo simulation, Table 1 shows the point predictor and 95% Bayesian prediction bounds of Zρ:R∗k for three different censoring schemes, and Table 2 shows the point predictor and 95% Bayesian prediction bounds of Ws:ℓ:N from the future progressively censored sample of size ℓ=10 from a sample of size N=20 with progressive censoring scheme S=(0,0,3,0,0,3,0,0,3,1) for the previous four censoring schemes.
IP | NIP | |||||||
Sch. | j | ρ | ˆXρ:R∗j | ET interval | HPD interval | ˆXρ:R∗j | ET interval | HPD interval |
1 | 3 | 1 | 4.824 | (1.322, 21.783) | (1.214, 17.062) | 6.410 | (1.324, 23.275) | (1.214, 18.034) |
2 | 10.634 | (2.417, 42.868) | (1.319, 34.499) | 14.202 | (2.429, 46.302) | (1.308, 36.810) | ||
3 | 22.254 | (5.271, 86.933) | (2.348, 70.530) | 29.787 | (5.289, 94.280) | (2.274, 75.524) | ||
7 | 1 | 5.914 | (5.943, 12.764) | (5.908, 11.190) | 7.639 | (5.944, 13.261) | (5.908, 11.514) | |
2 | 7.367 | (6.254, 17.586) | (5.939, 15.267) | 9.587 | (6.258, 18.558) | (5.935, 15.923) | ||
3 | 9.027 | (6.817, 22.790) | (6.182, 19.570) | 11.814 | (6.821, 24.302) | (6.071, 20.612) | ||
4 | 10.964 | (7.581, 28.762) | (6.654, 24.889) | 14.411 | (7.581, 30.909) | (6.608, 26.363) | ||
5 | 13.288 | (8.553, 35.920) | (7.294, 31.039) | 17.528 | (8.544, 38.832) | (7.213, 33.049) | ||
6 | 16.192 | (9.782, 44.951) | (8.125, 38.766) | 21.424 | (9.761, 48.820) | (8.000, 41.448) | ||
7 | 20.066 | (11.390, 57.239) | (9.351, 48.369) | 26.619 | (11.351, 62.390) | (9.026, 52.794) | ||
8 | 25.877 | (13.657, 76.426) | (10.679, 65.357) | 34.412 | (13.592, 83.499) | (10.421, 70.278) | ||
9 | 37.497 | (17.494,118.537) | (12.895, 99.972) | 49.997 | (17.400,129.445) | (12.532,107.555) | ||
2 | 3 | 1 | 4.924 | (1.330, 21.776) | (1.214, 17.251) | 6.488 | (1.332, 22.842) | (1.214, 17.983) |
2 | 10.886 | (2.506, 42.386) | (1.343, 34.584) | 14.399 | (2.526, 44.762) | (1.337, 36.266) | ||
3 | 22.809 | (5.601, 85.629) | (5.198, 69.693) | 30.221 | (5.656, 90.660) | (5.227, 73.313) | ||
6 | 1 | 8.082 | (5.365, 25.811) | (5.250, 21.286) | 10.524 | (5.367, 26.877) | (5.250, 22.019) | |
2 | 14.044 | (6.541, 46.422) | (5.379, 38.619) | 18.435 | (6.562, 48.797) | (5.372, 40.302) | ||
3 | 25.967 | (9.637, 89.664) | (9.233, 73.728) | 34.256 | (9.691, 94.695) | (9.262, 77.348) | ||
9 | 1 | 10.305 | (10.188, 22.456) | (10.120, 19.742) | 13.284 | (10.191, 23.096) | (10.120, 20.181) | |
2 | 13.285 | (10.826, 32.161) | (10.192, 28.030) | 17.239 | (10.837, 33.440) | (10.190, 28.937) | ||
3 | 17.260 | (12.126, 44.641) | (12.105, 38.397) | 22.513 | (12.152, 46.768) | (10.856, 39.936) | ||
4 | 23.220 | (14.248, 63.813) | (12.029, 55.213) | 30.425 | (14.288, 67.225) | (11.978, 57.679) | ||
5 | 35.144 | (18.060,105.916) | (14.149, 90.288) | 46.246 | (18.126,111.946) | (14.055, 94.654) | ||
3 | 3 | 1 | 5.061 | (1.335, 22.283) | (1.214, 17.716) | 6.661 | (1.337, 23.291) | (1.214, 18.425) |
2 | 11.226 | (2.572, 43.235) | (1.356, 35.439) | 14.832 | (2.597, 45.441) | (1.351, 37.039) | ||
3 | 23.556 | (5.834, 87.257) | (2.664, 72.209) | 31.172 | (5.910, 91.905) | (2.639, 75.613) | ||
6 | 1 | 8.219 | (5.370, 26.318) | (5.250, 21.752) | 10.697 | (5.372, 27.327) | (5.250, 22.460) | |
2 | 14.384 | (6.607, 47.271) | (5.391, 39.474) | 18.867 | (6.632, 49.477) | (5.386, 41.075) | ||
3 | 26.714 | (9.870, 91.293) | (6.612, 75.361) | 35.207 | (9.945, 95.940) | (6.674, 79.648) | ||
9 | 1 | 26.714 | (9.870, 91.293) | (9.142, 75.361) | 15.580 | (10.255, 32.209) | (10.133, 27.343) | |
2 | 18.205 | (11.490, 52.153) | (10.274, 44.357) | 23.750 | (11.515, 54.360) | (10.269, 45.957) | ||
3 | 30.536 | (14.752, 96.175) | (11.495, 80.244) | 40.090 | (14.828,100.823) | (11.514, 83.663) |
IP | NIP | ||||||
Sch. | s | ˆYs:N | ET interval | HPD interval | ˆYs:N | ET interval | HPD interval |
1 | 1 | 0.704 | (0.016, 2.927) | (0.000, 2.255) | 0.739 | (0.016, 3.139) | (0.000, 2.393) |
2 | 0.972 | (0.143, 4.811) | (0.013, 3.858) | 1.014 | (0.144, 5.212) | (0.012, 4.127) | |
3 | 1.314 | (0.361, 6.671) | (0.114, 5.470) | 1.381 | (0.362, 7.270) | (0.106, 5.878) | |
4 | 1.760 | (0.668, 9.119) | (0.299, 7.574) | 1.861 | (0.668, 9.976) | (0.281, 8.162) | |
5 | 2.216 | (1.036, 11.675) | (0.545, 9.782) | 2.356 | (1.032, 12.810) | (0.514, 10.566) | |
6 | 2.696 | (1.457, 14.399) | (0.842, 12.142) | 2.878 | (1.448, 15.838) | (0.794, 13.139) | |
7 | 3.481 | (2.039, 18.751) | (1.237, 15.844) | 3.724 | (2.023, 20.644) | (1.169, 17.159) | |
8 | 4.352 | (2.726, 23.618) | (1.717, 20.008) | 4.666 | (2.702, 26.033) | (1.622, 21.689) | |
9 | 5.356 | (3.544, 29.252) | (2.293, 24.833) | 5.753 | (3.509, 32.275) | (2.167, 26.942) | |
10 | 9.350 | (5.264, 50.149) | (3.233, 41.790) | 9.952 | (5.218, 54.977) | (3.068, 45.151) | |
2 | 1 | 0.722 | (0.017, 2.926) | (0.000, 2.282) | 0.750 | (0.017, 3.077) | (0.000, 2.386) |
2 | 0.978 | (0.154, 4.751) | (0.016, 3.865) | 1.060 | (0.156, 5.028) | (0.016, 4.061) | |
3 | 1.308 | (0.391, 6.536) | (0.134, 5.450) | 1.423 | (0.396, 6.943) | (0.131, 5.742) | |
4 | 1.738 | (0.727, 8.892) | (0.350, 7.520) | 1.898 | (0.734, 9.468) | (0.341, 7.938) | |
5 | 2.172 | (1.132, 11.338) | (0.638, 9.684) | 2.382 | (1.140, 12.097) | (0.622, 10.237) | |
6 | 2.627 | (1.596, 13.939) | (0.984, 11.990) | 2.890 | (1.606, 14.898) | (0.959, 12.690) | |
7 | 3.380 | (2.238, 18.128) | (1.444, 15.628) | 3.726 | (2.249, 19.387) | (1.408, 16.549) | |
8 | 4.213 | (3.000, 22.800) | (2.003, 19.709) | 4.650 | (3.011, 24.402) | (1.954, 20.885) | |
9 | 5.168 | (3.905, 28.199) | (2.675, 24.436) | 5.714 | (3.916, 30.202) | (2.608, 25.909) | |
10 | 9.146 | (5.795, 48.785) | (3.750, 41.359) | 10.042 | (5.814, 52.007) | (3.667, 43.723) | |
3 | 1 | 0.748 | (0.017, 2.998) | (0.000, 2.348) | 0.775 | (0.018, 3.142) | (0.000, 2.449) |
2 | 1.042 | (0.162, 4.847) | (0.018, 3.964) | 1.051 | (0.164, 5.104) | (0.017, 4.150) | |
3 | 1.386 | (0.412, 6.650) | (0.146, 5.579) | 1.405 | (0.419, 7.024) | (0.144, 5.854) | |
4 | 1.836 | (0.768, 9.030) | (0.380, 7.686) | 1.867 | (0.779, 9.557) | (0.374, 8.077) | |
5 | 2.288 | (1.196, 11.496) | (0.691, 9.887) | 2.335 | (1.211, 12.187) | (0.680, 10.403) | |
6 | 2.761 | (1.690, 14.117) | (1.066, 12.229) | 2.825 | (1.708, 14.987) | (1.050, 12.881) | |
7 | 3.551 | (2.371, 18.349) | (1.564, 15.931) | 3.637 | (2.394, 19.492) | (1.541, 16.788) | |
8 | 4.418 | (3.181, 23.064) | (2.170, 20.083) | 4.534 | (3.209, 24.515) | (2.137, 21.175) | |
9 | 5.414 | (4.142, 28.510) | (2.897, 24.888) | 5.563 | (4.176, 30.322) | (2.855, 26.255) | |
10 | 9.635 | (6.145, 49.504) | (4.051, 42.221) | 9.839 | (6.198, 52.438) | (4.002, 44.426) |
The Bayesian and ML estimates of the unknown parameters and the SF and HF of the Weibull distribution when the observed sample is a generalized Type-I PHCS sample are obtained. In the Bayesian approach, the SELF, LLF and GELF based on IP and NIP distributions are considered. The 90% and 95% asymptotic and credible confidence intervals for the parameters and for the SF and HF are also constructed. The Bayesian point and interval predictions of future order statistics samples from the same population for a progressive Type-II of an unpredictable future sample were also developed. From the numerical results, we derive the following conclusions:
1. From Tables 1–2, the HPD prediction intervals appear to be more accurate than the ET prediction intervals, and the means of the Bayesian point predictor inside the Bayesian prediction intervals.
2. From Tables 3–6 in the appendix, the Bayesian estimates using the IP are better than the MLEs. Furthermore, the results of the ML estimates are similar to the Bayesian estimators with NIP. Thus, when we have no prior knowledge of the unknown parameters, it is often easier to use the ML instead of the Bayesian estimators, since the computation of the Bayesian estimator is more complicated. Moreover, in most cases, the MSE decreases as n and m increase.
Bayesian | |||||||||
{ˆλBS | {ˆλBL | {ˆλBE | |||||||
Sch. | T | (n,m,k) | ˆλML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.5082 | 0.0244 | 0.5305 | 0.0239 | 0.3282 | 0.0243 | 0.3739 |
(40, 20, 15) | 0.5186 | 0.0192 | 0.5693 | 0.0187 | 0.3517 | 0.0190 | 0.4026 | ||
(60, 30, 20) | 0.4127 | 0.0173 | 0.4355 | 0.0170 | 0.2675 | 0.0171 | 0.3403 | ||
T=0.7 | (30, 20, 15) | 0.2879 | 0.0259 | 0.2666 | 0.0252 | 0.2114 | 0.0255 | 0.2243 | |
(40, 20, 15) | 0.6400 | 0.0203 | 0.6240 | 0.0199 | 0.3760 | 0.0202 | 0.4454 | ||
(60, 30, 20) | 0.2110 | 0.0172 | 0.2007 | 0.0170 | 0.1646 | 0.0172 | 0.1708 | ||
T=1.5 | (30, 20, 15) | 0.2843 | 0.0250 | 0.2671 | 0.0242 | 0.2085 | 0.0245 | 0.2198 | |
(40, 20, 15) | 0.5891 | 0.0226 | 0.5973 | 0.0222 | 0.3726 | 0.0225 | 0.4423 | ||
(60, 30, 20) | 0.2528 | 0.0175 | 0.2440 | 0.0171 | 0.1921 | 0.0172 | 0.2036 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.5166 | 0.0252 | 0.5284 | 0.0245 | 0.3486 | 0.0250 | 0.3869 |
(40, 20, 15) | 0.5489 | 0.0197 | 0.5772 | 0.0194 | 0.3644 | 0.0197 | 0.4159 | ||
(60, 30, 20) | 0.3080 | 0.0174 | 0.3002 | 0.0172 | 0.2285 | 0.0174 | 0.2459 | ||
T=0.7 | (30, 20, 15) | 0.3489 | 0.0255 | 0.3314 | 0.0247 | 0.2473 | 0.0250 | 0.2673 | |
(40, 20, 15) | 0.5221 | 0.0191 | 0.5308 | 0.0187 | 0.3333 | 0.0190 | 0.3778 | ||
(60, 30, 20) | 0.2269 | 0.0164 | 0.2135 | 0.0160 | 0.1734 | 0.0162 | 0.1794 | ||
T=1.5 | (30, 20, 15) | 0.3369 | 0.0265 | 0.3188 | 0.0256 | 0.2451 | 0.0259 | 0.2584 | |
(40, 20, 15) | 0.6190 | 0.0205 | 0.6676 | 0.0198 | 0.3925 | 0.0200 | 0.4631 | ||
(60, 30, 20) | 0.2130 | 0.0177 | 0.2087 | 0.0173 | 0.1658 | 0.0174 | 0.1737 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.5166 | 0.0252 | 0.5284 | 0.0245 | 0.3486 | 0.0250 | 0.3869 |
(40, 20, 15) | 1.4205 | 0.0173 | 2.3081 | 0.0169 | 0.7138 | 0.0171 | 1.1274 | ||
(60, 30, 20) | 0.3416 | 0.0162 | 0.3652 | 0.0159 | 0.2586 | 0.0161 | 0.2772 | ||
T=0.7 | (30, 20, 15) | 0.5049 | 0.0246 | 0.5692 | 0.0238 | 0.3290 | 0.0241 | 0.4095 | |
(40, 20, 15) | 1.2471 | 0.0183 | 1.7174 | 0.0179 | 0.6258 | 0.0181 | 0.9441 | ||
(60, 30, 20) | 0.3569 | 0.0152 | 0.3705 | 0.0149 | 0.2577 | 0.0151 | 0.2792 | ||
T=1.5 | (30, 20, 15) | 0.4781 | 0.0246 | 0.5283 | 0.0238 | 0.3279 | 0.0241 | 0.3805 | |
(40, 20, 15) | 1.4825 | 0.0182 | 2.0789 | 0.0179 | 0.6943 | 0.0181 | 1.0823 | ||
(60, 30, 20) | 0.3832 | 0.0164 | 0.4044 | 0.0161 | 0.2737 | 0.0163 | 0.3012 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.1962 | 0.0036 | 0.1983 | 0.0069 | 0.1024 | 0.0121 | 0.0855 |
(40, 20, 15) | 0.1816 | 0.0052 | 0.1950 | 0.0036 | 0.0900 | 0.0079 | 0.0715 | ||
(60, 30, 20) | 0.1219 | 0.0057 | 0.1268 | 0.0019 | 0.0649 | 0.0057 | 0.0502 | ||
T=0.7 | (30, 20, 15) | 0.1114 | 0.0075 | 0.0936 | 0.0029 | 0.0436 | 0.0080 | 0.0274 | |
(40, 20, 15) | 0.2209 | 0.0041 | 0.2048 | 0.0046 | 0.1182 | 0.0089 | 0.1086 | ||
(60, 30, 20) | 0.0984 | 0.0019 | 0.0884 | 0.0054 | 0.0519 | 0.0090 | 0.0403 | ||
T=1.5 | (30, 20, 15) | 0.1340 | 0.0092 | 0.1151 | 0.0012 | 0.0662 | 0.0063 | 0.0516 | |
(40, 20, 15) | 0.1950 | 0.0010 | 0.1840 | 0.0077 | 0.1037 | 0.0119 | 0.0935 | ||
(60, 30, 20) | 0.1235 | 0.0052 | 0.1125 | 0.0021 | 0.0748 | 0.0058 | 0.0647 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.2021 | 0.0034 | 0.2015 | 0.0070 | 0.1070 | 0.0122 | 0.0894 |
(40, 20, 15) | 0.1772 | 0.0006 | 0.1840 | 0.0079 | 0.0827 | 0.0122 | 0.0649 | ||
(60, 30, 20) | 0.1107 | 0.0002 | 0.1118 | 0.0072 | 0.0542 | 0.0109 | 0.0379 | ||
T=0.7 | (30, 20, 15) | 0.1516 | 0.0109 | 0.1333 | 0.0007 | 0.0785 | 0.0044 | 0.0645 | |
(40, 20, 15) | 0.2083 | 0.0036 | 0.2028 | 0.0049 | 0.1182 | 0.0091 | 0.1067 | ||
(60, 30, 20) | 0.1205 | 0.0051 | 0.1060 | 0.0021 | 0.0684 | 0.0057 | 0.0573 | ||
T=1.5 | (30, 20, 15) | 0.1597 | 0.0103 | 0.1411 | 0.0001 | 0.0889 | 0.0051 | 0.0757 | |
(40, 20, 15) | 0.2560 | 0.0116 | 0.2477 | 0.0030 | 0.1533 | 0.0012 | 0.1453 | ||
(60, 30, 20) | 0.1101 | 0.0089 | 0.1001 | 0.0016 | 0.0636 | 0.0020 | 0.0529 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.1928 | 0.0034 | 0.2015 | 0.0070 | 0.1070 | 0.0122 | 0.0894 |
(40, 20, 15) | 0.3861 | 0.0032 | 0.4732 | 0.0048 | 0.2402 | 0.0088 | 0.2642 | ||
(60, 30, 20) | 0.1597 | 0.0022 | 0.1710 | 0.0046 | 0.1106 | 0.0081 | 0.1002 | ||
T=0.7 | (30, 20, 15) | 0.1877 | 0.0107 | 0.1846 | 0.0008 | 0.1130 | 0.0040 | 0.1052 | |
(40, 20, 15) | 0.3373 | 0.0014 | 0.4115 | 0.0066 | 0.2144 | 0.0106 | 0.2268 | ||
(60, 30, 20) | 0.1610 | 0.0039 | 0.1703 | 0.0030 | 0.1106 | 0.0064 | 0.1009 | ||
T=1.5 | (30, 20, 15) | 0.1982 | 0.0107 | 0.1950 | 0.0007 | 0.1223 | 0.0041 | 0.1140 | |
(40, 20, 15) | 0.3659 | 0.0018 | 0.4368 | 0.0062 | 0.2275 | 0.0103 | 0.2443 | ||
(60, 30, 20) | 0.1717 | 0.0001 | 0.1788 | 0.0068 | 0.1167 | 0.0103 | 0.1076 |
Bayesian | |||||||||
ˆμBS | ˆμBL | ˆμBE | |||||||
Sch. | T | (n,m,k) | ˆμML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0410 | 0.0066 | 0.0361 | 0.0065 | 0.0337 | 0.0064 | 0.0320 |
(40, 20, 15) | 0.0307 | 0.0051 | 0.0270 | 0.0051 | 0.0257 | 0.0050 | 0.0250 | ||
(60, 30, 20) | 0.0236 | 0.0046 | 0.0214 | 0.0046 | 0.0207 | 0.0046 | 0.0203 | ||
T=0.7 | (30, 20, 15) | 0.0287 | 0.0070 | 0.0246 | 0.0068 | 0.0235 | 0.0066 | 0.0229 | |
(40, 20, 15) | 0.0304 | 0.0054 | 0.0259 | 0.0053 | 0.0248 | 0.0051 | 0.0239 | ||
(60, 30, 20) | 0.0187 | 0.0047 | 0.0163 | 0.0046 | 0.0158 | 0.0046 | 0.0155 | ||
T=1.5 | (30, 20, 15) | 0.0301 | 0.0069 | 0.0257 | 0.0067 | 0.0246 | 0.0066 | 0.0238 | |
(40, 20, 15) | 0.0299 | 0.0060 | 0.0259 | 0.0059 | 0.0248 | 0.0058 | 0.0240 | ||
(60, 30, 20) | 0.0185 | 0.0047 | 0.0161 | 0.0046 | 0.0156 | 0.0046 | 0.0152 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0459 | 0.0069 | 0.0409 | 0.0067 | 0.0382 | 0.0066 | 0.0364 |
(40, 20, 15) | 0.0310 | 0.0054 | 0.0272 | 0.0054 | 0.0259 | 0.0053 | 0.0253 | ||
(60, 30, 20) | 0.0215 | 0.0046 | 0.0190 | 0.0045 | 0.0184 | 0.0044 | 0.0180 | ||
T=0.7 | (30, 20, 15) | 0.0287 | 0.0066 | 0.0248 | 0.0066 | 0.0237 | 0.0064 | 0.0228 | |
(40, 20, 15) | 0.0256 | 0.0052 | 0.0220 | 0.0051 | 0.0210 | 0.0050 | 0.0202 | ||
(60, 30, 20) | 0.0176 | 0.0042 | 0.0153 | 0.0041 | 0.0148 | 0.0041 | 0.0144 | ||
T=1.5 | (30, 20, 15) | 0.0308 | 0.0069 | 0.0268 | 0.0067 | 0.0255 | 0.0066 | 0.0246 | |
(40, 20, 15) | 0.0279 | 0.0053 | 0.0243 | 0.0053 | 0.0231 | 0.0052 | 0.0221 | ||
(60, 30, 20) | 0.0161 | 0.0046 | 0.0140 | 0.0045 | 0.0136 | 0.0044 | 0.0133 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0459 | 0.0069 | 0.0409 | 0.0067 | 0.0382 | 0.0066 | 0.0364 |
(40, 20, 15) | 0.0462 | 0.0046 | 0.0423 | 0.0046 | 0.0393 | 0.0046 | 0.0370 | ||
(60, 30, 20) | 0.0248 | 0.0043 | 0.0226 | 0.0042 | 0.0216 | 0.0042 | 0.0207 | ||
T=0.7 | (30, 20, 15) | 0.0350 | 0.0062 | 0.0304 | 0.0062 | 0.0286 | 0.0061 | 0.0272 | |
(40, 20, 15) | 0.0428 | 0.0051 | 0.0394 | 0.0050 | 0.0369 | 0.0049 | 0.0348 | ||
(60, 30, 20) | 0.0232 | 0.0041 | 0.0208 | 0.0040 | 0.0199 | 0.0040 | 0.0192 | ||
T=1.5 | (30, 20, 15) | 0.0401 | 0.0067 | 0.0354 | 0.0066 | 0.0333 | 0.0065 | 0.0318 | |
(40, 20, 15) | 0.0469 | 0.0050 | 0.0420 | 0.0050 | 0.0392 | 0.0049 | 0.0371 | ||
(60, 30, 20) | 0.0254 | 0.0045 | 0.0224 | 0.0044 | 0.0214 | 0.0043 | 0.0205 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0556 | 0.0107 | 0.0453 | 0.0083 | 0.0378 | 0.0038 | 0.0247 |
(40, 20, 15) | 0.0338 | 0.0057 | 0.0263 | 0.0039 | 0.0204 | 0.0006 | 0.0095 | ||
(60, 30, 20) | 0.0248 | 0.0047 | 0.0194 | 0.0032 | 0.0150 | 0.0003 | 0.0069 | ||
T=0.7 | (30, 20, 15) | 0.0335 | 0.0084 | 0.0246 | 0.0061 | 0.0194 | 0.0015 | 0.0096 | |
(40, 20, 15) | 0.0446 | 0.0077 | 0.0333 | 0.0059 | 0.0285 | 0.0025 | 0.0198 | ||
(60, 30, 20) | 0.0269 | 0.0064 | 0.0210 | 0.0050 | 0.0178 | 0.0021 | 0.0118 | ||
T=1.5 | (30, 20, 15) | 0.0426 | 0.0090 | 0.0324 | 0.0067 | 0.0273 | 0.0022 | 0.0181 | |
(40, 20, 15) | 0.0439 | 0.0092 | 0.0337 | 0.0074 | 0.0291 | 0.0041 | 0.0205 | ||
(60, 30, 20) | 0.0319 | 0.0063 | 0.0260 | 0.0048 | 0.0229 | 0.0020 | 0.0171 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0592 | 0.0104 | 0.0480 | 0.0081 | 0.0403 | 0.0036 | 0.0272 |
(40, 20, 15) | 0.0350 | 0.0081 | 0.0258 | 0.0064 | 0.0200 | 0.0030 | 0.0093 | ||
(60, 30, 20) | 0.0262 | 0.0073 | 0.0200 | 0.0058 | 0.0157 | 0.0030 | 0.0077 | ||
T=0.7 | (30, 20, 15) | 0.0438 | 0.0082 | 0.0348 | 0.0059 | 0.0293 | 0.0015 | 0.0194 | |
(40, 20, 15) | 0.0426 | 0.0073 | 0.0339 | 0.0056 | 0.0291 | 0.0023 | 0.0203 | ||
(60, 30, 20) | 0.0305 | 0.0056 | 0.0224 | 0.0042 | 0.0192 | 0.0014 | 0.0133 | ||
T=1.5 | (30, 20, 15) | 0.0473 | 0.0086 | 0.0378 | 0.0062 | 0.0327 | 0.0018 | 0.0234 | |
(40, 20, 15) | 0.0494 | 0.0045 | 0.0384 | 0.0028 | 0.0335 | 0.0005 | 0.0248 | ||
(60, 30, 20) | 0.0239 | 0.0031 | 0.0184 | 0.0017 | 0.0153 | 0.0011 | 0.0095 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0592 | 0.0104 | 0.0480 | 0.0081 | 0.0403 | 0.0036 | 0.0272 |
(40, 20, 15) | 0.0701 | 0.0073 | 0.0608 | 0.0057 | 0.0534 | 0.0026 | 0.0413 | ||
(60, 30, 20) | 0.0404 | 0.0066 | 0.0353 | 0.0051 | 0.0310 | 0.0024 | 0.0233 | ||
T=0.7 | (30, 20, 15) | 0.0516 | 0.0070 | 0.0422 | 0.0048 | 0.0360 | 0.0005 | 0.0252 | |
(40, 20, 15) | 0.0656 | 0.0084 | 0.0581 | 0.0068 | 0.0510 | 0.0037 | 0.0391 | ||
(60, 30, 20) | 0.0388 | 0.0054 | 0.0332 | 0.0040 | 0.0291 | 0.0013 | 0.0215 | ||
T=1.5 | (30, 20, 15) | 0.0561 | 0.0073 | 0.0464 | 0.0050 | 0.0402 | 0.0007 | 0.0296 | |
(40, 20, 15) | 0.0685 | 0.0077 | 0.0595 | 0.0061 | 0.0524 | 0.0030 | 0.0404 | ||
(60, 30, 20) | 0.0444 | 0.0082 | 0.0375 | 0.0068 | 0.0332 | 0.0041 | 0.0256 |
Bayesian | |||||||||
^S(t)BS | ^S(t)BL | ^S(t)BE | |||||||
Sch. | T | (n,m,k) | ^S(t)ML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0005 | 3.90×10−6 | 0.0016 | 3.90×10−6 | 0.0014 | 2.60×10−6 | 0.0003 |
(40, 20, 15) | 0.0010 | 3.90×10−6 | 0.0026 | 3.90×10−6 | 0.0025 | 1.30×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0007 | 3.90×10−6 | 0.0016 | 3.90×10−6 | 0.0014 | 2.60×10−6 | 0.0004 | ||
T=0.7 | (30, 20, 15) | 0.0005 | 5.20×10−6 | 0.0012 | 5.20×10−6 | 0.0010 | 2.60×10−6 | 0.0003 | |
(40, 20, 15) | 0.0007 | 3.90×10−6 | 0.0014 | 3.90×10−6 | 0.0014 | 2.60×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0003 | 5.20×10−6 | 0.0007 | 5.20×10−6 | 0.0007 | 2.60×10−6 | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0003 | 3.90×10−6 | 0.0008 | 3.90×10−6 | 0.0008 | 2.60×10−6 | 0.0003 | |
(40, 20, 15) | 0.0005 | 5.20×10−6 | 0.0012 | 5.20×10−6 | 0.0012 | 2.60×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0003 | 5.20×10−6 | 0.0005 | 5.20×10−6 | 0.0005 | 2.60×10−6 | 0.0001 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0007 | 3.90×10−6 | 0.0018 | 3.90×10−6 | 0.0017 | 2.60×10−6 | 0.0004 |
(40, 20, 15) | 0.0012 | 3.90×10−6 | 0.0029 | 3.90×10−6 | 0.0027 | 2.60×10−6 | 0.0005 | ||
(60, 30, 20) | 0.0008 | 3.90×10−6 | 0.0017 | 3.90×10−6 | 0.0016 | 2.60×10−6 | 0.0005 | ||
T=0.7 | (30, 20, 15) | 0.0005 | 5.20×10−6 | 0.0010 | 5.20×10−6 | 0.0010 | 2.60×10−6 | 0.0004 | |
(40, 20, 15) | 0.0005 | 3.90×10−6 | 0.0012 | 3.90×10−6 | 0.0012 | 2.60×10−6 | 0.0003 | ||
(60, 30, 20) | 0.0003 | 5.20×10−6 | 0.0005 | 5.20×10−6 | 0.0005 | 2.60×10−6 | 0.0001 | ||
T=1.5 | (30, 20, 15) | 0.0004 | 5.20×10−6 | 0.0008 | 5.20×10−6 | 0.0008 | 2.60×10−6 | 0.0003 | |
(40, 20, 15) | 0.0004 | 3.90×10−6 | 0.0009 | 3.90×10−6 | 0.0009 | 2.60×10−6 | 0.0003 | ||
(60, 30, 20) | 0.0003 | 5.20×10−6 | 0.0004 | 5.20×10−6 | 0.0004 | 2.60×10−6 | 0.0001 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0007 | 3.90×10−6 | 0.0018 | 3.90×10−6 | 0.0017 | 2.60×10−6 | 0.0004 |
(40, 20, 15) | 0.0007 | 2.60×10−6 | 0.0017 | 2.60×10−6 | 0.0016 | 1.30×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0004 | 3.90×10−6 | 0.0008 | 3.90×10−6 | 0.0008 | 2.60×10−6 | 0.0003 | ||
T=0.7 | (30, 20, 15) | 0.0003 | 3.90×10−6 | 0.0007 | 3.90×10−6 | 0.0007 | 2.60×10−6 | 0.0003 | |
(40, 20, 15) | 0.0007 | 3.90×10−6 | 0.0017 | 3.90×10−6 | 0.0016 | 1.30×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0003 | 3.90×10−6 | 0.0007 | 3.90×10−6 | 0.0007 | 2.60×10−6 | 0.0001 | ||
T=1.5 | (30, 20, 15) | 0.0003 | 3.90×10−6 | 0.0007 | 3.90×10−6 | 0.0007 | 2.60×10−6 | 0.0001 | |
(40, 20, 15) | 0.0008 | 3.90×10−6 | 0.0018 | 3.90×10−6 | 0.0017 | 1.30×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0003 | 3.90×10−6 | 0.0007 | 3.90×10−6 | 0.0007 | 2.60×10−6 | 0.0001 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0070 | 0.0014 | 0.0270 | 0.0014 | 0.0260 | 0.0007 | 0.0014 |
(40, 20, 15) | 0.0120 | 0.0014 | 0.0350 | 0.0014 | 0.0340 | 0.0007 | 0.0003 | ||
(60, 30, 20) | 0.0090 | 0.0013 | 0.0250 | 0.0013 | 0.0250 | 0.0007 | 0.0004 | ||
T=0.7 | (30, 20, 15) | 0.0069 | 0.0014 | 0.0220 | 0.0013 | 0.0210 | 0.0007 | 0.0009 | |
(40, 20, 15) | 0.0073 | 0.0013 | 0.0230 | 0.0013 | 0.0230 | 0.0007 | 0.0007 | ||
(60, 30, 20) | 0.0049 | 0.0014 | 0.0150 | 0.0013 | 0.0150 | 0.0005 | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0045 | 0.0012 | 0.0170 | 0.0012 | 0.0170 | 0.0008 | 0.0004 | |
(40, 20, 15) | 0.0069 | 0.0014 | 0.0220 | 0.0014 | 0.0220 | 0.0007 | 0.0001 | ||
(60, 30, 20) | 0.0032 | 0.0012 | 0.0120 | 0.0012 | 0.0120 | 0.0007 | 0.0008 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0082 | 0.0014 | 0.0280 | 0.0014 | 0.0280 | 0.0007 | 0.0003 |
(40, 20, 15) | 0.0130 | 0.0014 | 0.0360 | 0.0014 | 0.0350 | 0.0007 | 0.0010 | ||
(60, 30, 20) | 0.0096 | 0.0014 | 0.0250 | 0.0014 | 0.0250 | 0.0007 | 0.0010 | ||
T=0.7 | (30, 20, 15) | 0.0055 | 0.0012 | 0.0190 | 0.0012 | 0.0190 | 0.0008 | 0.0010 | |
(40, 20, 15) | 0.0062 | 0.0013 | 0.0210 | 0.0013 | 0.0210 | 0.0007 | 0.0008 | ||
(60, 30, 20) | 0.0039 | 0.0013 | 0.0140 | 0.0013 | 0.0140 | 0.0007 | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0045 | 0.0013 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0003 | |
(40, 20, 15) | 0.0038 | 0.0012 | 0.0190 | 0.0012 | 0.0180 | 0.0008 | 0.0021 | ||
(60, 30, 20) | 0.0034 | 0.0013 | 0.0130 | 0.0013 | 0.0120 | 0.0007 | 0.0008 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0082 | 0.0014 | 0.0280 | 0.0014 | 0.0280 | 0.0007 | 0.0003 |
(40, 20, 15) | 0.0074 | 0.0013 | 0.0260 | 0.0013 | 0.0260 | 0.0008 | 0.0025 | ||
(60, 30, 20) | 0.0055 | 0.0013 | 0.0170 | 0.0013 | 0.0170 | 0.0007 | 0.0010 | ||
T=0.7 | (30, 20, 15) | 0.0035 | 0.0013 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0020 | |
(40, 20, 15) | 0.0070 | 0.0013 | 0.0260 | 0.0013 | 0.0260 | 0.0008 | 0.0027 | ||
(60, 30, 20) | 0.0041 | 0.0013 | 0.0150 | 0.0013 | 0.0150 | 0.0007 | 0.0018 | ||
T=1.5 | (30, 20, 15) | 0.0039 | 0.0012 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0017 | |
(40, 20, 15) | 0.0080 | 0.0014 | 0.0270 | 0.0013 | 0.0260 | 0.0007 | 0.0020 | ||
(60, 30, 20) | 0.0042 | 0.0013 | 0.0150 | 0.0013 | 0.0150 | 0.0007 | 0.0018 |
Bayesian | |||||||||
^H(t)BS | ^H(t)BL | ^H(t)BE | |||||||
Sch. | T | (n,m,k) | ^H(t)ML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0250 | 4.20×10−5 | 0.0390 | 4.20×10−5 | 0.0320 | 4.20×10−5 | 0.0200 |
(40, 20, 15) | 0.0220 | 4.20×10−5 | 0.0350 | 4.20×10−5 | 0.0300 | 4.20×10−5 | 0.0190 | ||
(60, 30, 20) | 0.0250 | 5.60×10−5 | 0.0370 | 5.60×10−5 | 0.0270 | 5.60×10−5 | 0.0240 | ||
T=0.7 | (30, 20, 15) | 0.0110 | 5.60×10−5 | 0.0130 | 5.60×10−5 | 0.0130 | 7.00×10−5 | 0.0095 | |
(40, 20, 15) | 0.0290 | 5.60×10−5 | 0.0400 | 5.60×10−5 | 0.0330 | 5.60×10−5 | 0.0220 | ||
(60, 30, 20) | 0.0084 | 8.40×10−5 | 0.0110 | 8.40×10−5 | 0.0100 | 8.40×10−5 | 0.0081 | ||
T=1.5 | (30, 20, 15) | 0.0120 | 7.00×10−5 | 0.0150 | 7.00×10−5 | 0.0140 | 7.00×10−5 | 0.0110 | |
(40, 20, 15) | 0.0240 | 5.60×10−5 | 0.0350 | 5.60×10−5 | 0.0300 | 5.60×10−5 | 0.0210 | ||
(60, 30, 20) | 0.0100 | 7.00×10−5 | 0.0130 | 8.40×10−5 | 0.0120 | 8.40×10−5 | 0.0095 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0260 | 4.20×10−5 | 0.0390 | 4.20×10−5 | 0.0340 | 5.60×10−5 | 0.0220 |
(40, 20, 15) | 0.0220 | 4.20×10−5 | 0.0340 | 4.20×10−5 | 0.0300 | 4.20×10−5 | 0.0190 | ||
(60, 30, 20) | 0.0120 | 5.60×10−5 | 0.0170 | 5.60×10−5 | 0.0150 | 5.60×10−5 | 0.0110 | ||
T=0.7 | (30, 20, 15) | 0.0130 | 5.60×10−5 | 0.0180 | 5.60×10−5 | 0.0170 | 7.00×10−5 | 0.0120 | |
(40, 20, 15) | 0.0190 | 5.60×10−5 | 0.0280 | 5.60×10−5 | 0.0250 | 5.60×10−5 | 0.0160 | ||
(60, 30, 20) | 0.0086 | 7.00×10−5 | 0.0110 | 7.00×10−5 | 0.0110 | 8.40×10−5 | 0.0081 | ||
T=1.5 | (30, 20, 15) | 0.0130 | 7.00×10−5 | 0.0170 | 7.00×10−5 | 0.0160 | 7.00×10−5 | 0.0120 | |
(40, 20, 15) | 0.0260 | 4.20×10−5 | 0.0420 | 4.20×10−5 | 0.0350 | 5.60×10−5 | 0.0230 | ||
(60, 30, 20) | 0.0076 | 7.00×10−5 | 0.0100 | 7.00×10−5 | 0.0096 | 7.00×10−5 | 0.0074 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0260 | 4.20×10−5 | 0.0390 | 4.20×10−5 | 0.0340 | 5.60×10−5 | 0.0220 |
(40, 20, 15) | 0.0750 | 4.20×10−5 | 0.2200 | 4.20×10−5 | 0.1100 | 4.20×10−5 | 0.0680 | ||
(60, 30, 20) | 0.0150 | 5.60×10−5 | 0.0230 | 5.60×10−5 | 0.0210 | 5.60×10−5 | 0.0140 | ||
T=0.7 | (30, 20, 15) | 0.0260 | 5.60×10−5 | 0.0430 | 5.60×10−5 | 0.0340 | 5.60×10−5 | 0.0240 | |
(40, 20, 15) | 0.0660 | 4.20×10−5 | 0.1500 | 4.20×10−5 | 0.0910 | 4.20×10−5 | 0.0570 | ||
(60, 30, 20) | 0.0160 | 5.60×10−5 | 0.0230 | 5.60×10−5 | 0.0210 | 5.60×10−5 | 0.0140 | ||
T=1.5 | (30, 20, 15) | 0.0250 | 5.60×10−5 | 0.0430 | 5.60×10−5 | 0.0340 | 5.60×10−5 | 0.0230 | |
(40, 20, 15) | 0.0870 | 4.20×10−5 | 0.2000 | 4.20×10−5 | 0.1000 | 4.20×10−5 | 0.0700 | ||
(60, 30, 20) | 0.0170 | 5.60×10−5 | 0.0260 | 5.60×10−5 | 0.0230 | 5.60×10−5 | 0.0150 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0600 | 1.70×10−4 | 0.0880 | 3.20×10−4 | 0.0800 | 0.0027 | 0.0320 |
(40, 20, 15) | 0.0510 | 3.60×10−4 | 0.0810 | 5.20×10−4 | 0.0730 | 0.0028 | 0.0240 | ||
(60, 30, 20) | 0.0360 | 2.80×10−5 | 0.0540 | 1.10×10−4 | 0.0490 | 0.0024 | 0.0180 | ||
T=0.7 | (30, 20, 15) | 0.0330 | 3.80×10−4 | 0.0400 | 5.20×10−4 | 0.0370 | 0.0028 | 0.0110 | |
(40, 20, 15) | 0.0610 | 9.80×10−5 | 0.0810 | 5.60×10−5 | 0.0740 | 0.0024 | 0.0370 | ||
(60, 30, 20) | 0.0290 | 1.10×10−5 | 0.0370 | 1.50×10−4 | 0.0350 | 0.0024 | 0.0160 | ||
T=1.5 | (30, 20, 15) | 0.0400 | 2.40×10−4 | 0.0480 | 9.80×10−5 | 0.0450 | 0.0021 | 0.0200 | |
(40, 20, 15) | 0.0550 | 1.50×10−4 | 0.0740 | 3.10×10−4 | 0.0680 | 0.0025 | 0.0330 | ||
(60, 30, 20) | 0.0340 | 5.90×10−4 | 0.0440 | 4.50×10−4 | 0.0420 | 0.0017 | 0.0230 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0640 | 3.40×10−4 | 0.0920 | 4.90×10−4 | 0.0840 | 0.0028 | 0.0350 |
(40, 20, 15) | 0.0510 | 3.50×10−4 | 0.0780 | 5.00×10−4 | 0.0700 | 0.0028 | 0.0230 | ||
(60, 30, 20) | 0.0330 | 1.40×10−5 | 0.0490 | 1.40×10−4 | 0.0450 | 0.0024 | 0.0140 | ||
T=0.7 | (30, 20, 15) | 0.0440 | 3.80×10−4 | 0.0550 | 2.20×10−4 | 0.0510 | 0.0021 | 0.0240 | |
(40, 20, 15) | 0.0550 | 4.20×10−5 | 0.0770 | 1.10×10−4 | 0.0720 | 0.0024 | 0.0340 | ||
(60, 30, 20) | 0.0330 | 4.90×10−4 | 0.0410 | 3.50×10−4 | 0.0390 | 0.0018 | 0.0190 | ||
T=1.5 | (30, 20, 15) | 0.0460 | 2.50×10−4 | 0.0570 | 1.10×10−4 | 0.0540 | 0.0021 | 0.0280 | |
(40, 20, 15) | 0.0670 | 4.20×10−4 | 0.0920 | 2.80×10−4 | 0.0850 | 0.0020 | 0.0450 | ||
(60, 30, 20) | 0.0280 | 1.30×10−4 | 0.0370 | 1.10×10−5 | 0.0350 | 0.0023 | 0.0160 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0640 | 3.40×10−4 | 0.0920 | 4.90×10−4 | 0.0840 | 0.0028 | 0.0350 |
(40, 20, 15) | 0.1100 | 3.40×10−4 | 0.2000 | 1.80×10−4 | 0.1600 | 0.0021 | 0.0860 | ||
(60, 30, 20) | 0.0460 | 3.90×10−4 | 0.0700 | 2.40×10−4 | 0.0650 | 0.0020 | 0.0340 | ||
T=0.7 | (30, 20, 15) | 0.0560 | 1.30×10−4 | 0.0770 | 1.10×10−5 | 0.0710 | 0.0024 | 0.0370 | |
(40, 20, 15) | 0.0970 | 2.90×10−4 | 0.1700 | 1.40×10−4 | 0.1400 | 0.0023 | 0.0740 | ||
(60, 30, 20) | 0.0460 | 3.60×10−4 | 0.0680 | 2.10×10−4 | 0.0640 | 0.0021 | 0.0330 | ||
T=1.5 | (30, 20, 15) | 0.0600 | 1.10×10−4 | 0.0830 | 4.20×10−5 | 0.0760 | 0.0024 | 0.0410 | |
(40, 20, 15) | 0.1100 | 8.40×10−5 | 0.1800 | 7.00×10−5 | 0.1500 | 0.0024 | 0.0810 | ||
(60, 30, 20) | 0.0500 | 5.70×10−4 | 0.0730 | 4.20×10−4 | 0.0680 | 0.0018 | 0.0370 |
3. From Tables 7–10 in the appendix, the AL of confidence intervals decreases as T increases, and the credible intervals perform well compared to the asymptotic confidence intervals. Finally, in all cases AL of the confidence intervals, the 95% intervals are larger than the 90% intervals.
ˆλB | |||||||||||||
ˆλML | IP | NIP | |||||||||||
90% | 95% | 90% | 95% | 90% | 95% | ||||||||
T | (n,m,k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch.I | |||||||||||||
T=0.3 | (30, 20, 15) | 2.733 | 0.918 | 3.161 | 0.950 | 0.911 | 0.940 | 1.078 | 0.965 | 2.683 | 0.863 | 3.138 | 0.928 |
(40, 20, 15) | 2.871 | 0.930 | 3.309 | 0.945 | 0.828 | 0.947 | 0.986 | 0.970 | 2.810 | 0.879 | 3.317 | 0.925 | |
(60, 30, 20) | 2.135 | 0.907 | 2.544 | 0.941 | 0.769 | 0.948 | 0.920 | 0.969 | 2.098 | 0.867 | 2.511 | 0.922 | |
T=0.7 | (30, 20, 15) | 1.665 | 0.873 | 1.935 | 0.943 | 0.741 | 0.934 | 0.877 | 0.965 | 1.614 | 0.851 | 1.864 | 0.927 |
(40, 20, 15) | 2.012 | 0.924 | 2.417 | 0.935 | 0.674 | 0.945 | 0.803 | 0.964 | 1.956 | 0.877 | 2.360 | 0.892 | |
(60, 30, 20) | 1.393 | 0.878 | 1.638 | 0.946 | 0.623 | 0.931 | 0.737 | 0.969 | 1.355 | 0.856 | 1.596 | 0.918 | |
T=1.5 | (30, 20, 15) | 1.420 | 0.901 | 1.692 | 0.942 | 0.658 | 0.945 | 0.780 | 0.965 | 1.378 | 0.871 | 1.634 | 0.927 |
(40, 20, 15) | 1.748 | 0.931 | 2.067 | 0.945 | 0.602 | 0.946 | 0.708 | 0.965 | 1.707 | 0.864 | 2.015 | 0.907 | |
(60, 30, 20) | 1.208 | 0.907 | 1.461 | 0.940 | 0.554 | 0.937 | 0.656 | 0.965 | 1.173 | 0.889 | 1.420 | 0.913 | |
Sch.II | |||||||||||||
T=0.3 | (30, 20, 15) | 2.727 | 0.908 | 3.181 | 0.940 | 0.909 | 0.930 | 1.079 | 0.965 | 2.653 | 0.858 | 3.143 | 0.912 |
(40, 20, 15) | 2.917 | 0.920 | 3.260 | 0.937 | 0.824 | 0.955 | 0.972 | 0.965 | 2.883 | 0.867 | 3.243 | 0.923 | |
(60, 30, 20) | 2.098 | 0.899 | 2.499 | 0.930 | 0.766 | 0.946 | 0.908 | 0.968 | 2.047 | 0.865 | 2.456 | 0.907 | |
T=0.7 | (30, 20, 15) | 1.648 | 0.886 | 1.984 | 0.942 | 0.738 | 0.944 | 0.876 | 0.961 | 1.592 | 0.858 | 1.930 | 0.917 |
(40, 20, 15) | 2.328 | 0.905 | 2.408 | 0.943 | 0.673 | 0.944 | 0.795 | 0.964 | 2.296 | 0.848 | 2.355 | 0.913 | |
(60, 30, 20) | 1.367 | 0.901 | 1.661 | 0.941 | 0.616 | 0.947 | 0.734 | 0.970 | 1.334 | 0.875 | 1.612 | 0.913 | |
T=1.5 | (30, 20, 15) | 1.481 | 0.879 | 1.726 | 0.935 | 0.654 | 0.934 | 0.782 | 0.959 | 1.455 | 0.858 | 1.683 | 0.907 |
(40, 20, 15) | 1.866 | 0.938 | 2.224 | 0.951 | 0.596 | 0.948 | 0.710 | 0.966 | 1.811 | 0.863 | 2.189 | 0.922 | |
(60, 30, 20) | 1.203 | 0.900 | 1.442 | 0.946 | 0.547 | 0.945 | 0.653 | 0.965 | 1.169 | 0.881 | 1.407 | 0.913 | |
Sch.III | |||||||||||||
T=0.3 | (30, 20, 15) | 2.425 | 0.915 | 3.181 | 0.940 | 0.887 | 0.927 | 1.079 | 0.965 | 2.382 | 0.879 | 3.143 | 0.912 |
(40, 20, 15) | 3.676 | 0.928 | 4.329 | 0.951 | 0.798 | 0.948 | 0.945 | 0.974 | 3.932 | 0.857 | 4.748 | 0.912 | |
(60, 30, 20) | 2.083 | 0.913 | 2.451 | 0.945 | 0.742 | 0.951 | 0.875 | 0.964 | 2.057 | 0.854 | 2.459 | 0.911 | |
T=0.7 | (30, 20, 15) | 1.771 | 0.919 | 2.142 | 0.949 | 0.721 | 0.940 | 0.855 | 0.966 | 1.727 | 0.866 | 2.120 | 0.920 |
(40, 20, 15) | 3.077 | 0.924 | 3.378 | 0.952 | 0.656 | 0.942 | 0.773 | 0.968 | 3.272 | 0.844 | 3.600 | 0.916 | |
(60, 30, 20) | 1.670 | 0.913 | 1.993 | 0.949 | 0.601 | 0.949 | 0.715 | 0.967 | 1.669 | 0.859 | 1.986 | 0.917 | |
T=1.5 | (30, 20, 15) | 1.544 | 0.924 | 1.920 | 0.951 | 0.644 | 0.925 | 0.762 | 0.970 | 1.512 | 0.886 | 1.913 | 0.907 |
(40, 20, 15) | 2.793 | 0.927 | 3.096 | 0.943 | 0.580 | 0.948 | 0.685 | 0.967 | 2.910 | 0.837 | 3.291 | 0.896 | |
(60, 30, 20) | 1.517 | 0.913 | 1.792 | 0.955 | 0.534 | 0.937 | 0.634 | 0.957 | 1.502 | 0.844 | 1.792 | 0.917 |
Bayesian | |||||||||||||
ˆμML | IP | NIP | |||||||||||
90% | 95% | 90% | 95% | 90% | 95% | ||||||||
T | (n,m,k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch.I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.933 | 0.901 | 1.101 | 0.983 | 0.456 | 0.955 | 0.541 | 0.989 | 0.910 | 0.891 | 1.055 | 0.961 |
(40, 20, 15) | 0.833 | 0.904 | 0.979 | 0.968 | 0.393 | 0.940 | 0.466 | 0.991 | 0.804 | 0.876 | 0.937 | 0.951 | |
(60, 30, 20) | 0.710 | 0.915 | 0.837 | 0.963 | 0.366 | 0.952 | 0.427 | 0.987 | 0.695 | 0.890 | 0.805 | 0.931 | |
T=0.7 | (30, 20, 15) | 0.726 | 0.917 | 0.855 | 0.962 | 0.423 | 0.963 | 0.496 | 0.984 | 0.706 | 0.898 | 0.819 | 0.942 |
(40, 20, 15) | 0.688 | 0.916 | 0.814 | 0.960 | 0.364 | 0.957 | 0.432 | 0.990 | 0.671 | 0.896 | 0.783 | 0.931 | |
(60, 30, 20) | 0.556 | 0.895 | 0.661 | 0.945 | 0.335 | 0.939 | 0.396 | 0.986 | 0.542 | 0.882 | 0.642 | 0.927 | |
T=1.5 | (30, 20, 15) | 0.645 | 0.918 | 0.766 | 0.959 | 0.387 | 0.952 | 0.457 | 0.983 | 0.632 | 0.901 | 0.739 | 0.938 |
(40, 20, 15) | 0.614 | 0.928 | 0.735 | 0.966 | 0.331 | 0.954 | 0.393 | 0.970 | 0.594 | 0.893 | 0.707 | 0.930 | |
(60, 30, 20) | 0.500 | 0.917 | 0.599 | 0.949 | 0.306 | 0.954 | 0.363 | 0.987 | 0.488 | 0.899 | 0.578 | 0.927 | |
Sch.II | |||||||||||||
T=0.3 | (30, 20, 15) | 0.931 | 0.908 | 1.106 | 0.973 | 0.455 | 0.955 | 0.537 | 0.990 | 0.900 | 0.893 | 1.061 | 0.935 |
(40, 20, 15) | 0.820 | 0.905 | 0.971 | 0.971 | 0.388 | 0.955 | 0.462 | 0.983 | 0.797 | 0.882 | 0.929 | 0.949 | |
(60, 30, 20) | 0.700 | 0.918 | 0.834 | 0.975 | 0.362 | 0.962 | 0.426 | 0.982 | 0.681 | 0.905 | 0.798 | 0.949 | |
T=0.7 | (30, 20, 15) | 0.719 | 0.912 | 0.858 | 0.972 | 0.417 | 0.958 | 0.494 | 0.991 | 0.703 | 0.888 | 0.834 | 0.952 |
(40, 20, 15) | 0.757 | 0.918 | 0.816 | 0.970 | 0.358 | 0.957 | 0.423 | 0.985 | 0.735 | 0.899 | 0.785 | 0.956 | |
(60, 30, 20) | 0.555 | 0.907 | 0.662 | 0.969 | 0.334 | 0.960 | 0.391 | 0.983 | 0.545 | 0.879 | 0.637 | 0.947 | |
T=1.5 | (30, 20, 15) | 0.654 | 0.909 | 0.768 | 0.966 | 0.384 | 0.952 | 0.456 | 0.984 | 0.640 | 0.874 | 0.744 | 0.933 |
(40, 20, 15) | 0.633 | 0.907 | 0.751 | 0.971 | 0.331 | 0.960 | 0.388 | 0.980 | 0.615 | 0.874 | 0.721 | 0.954 | |
(60, 30, 20) | 0.506 | 0.890 | 0.593 | 0.971 | 0.307 | 0.939 | 0.357 | 0.988 | 0.490 | 0.872 | 0.578 | 0.953 | |
Sch.III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.915 | 0.926 | 1.106 | 0.973 | 0.447 | 0.941 | 0.537 | 0.990 | 0.891 | 0.891 | 1.061 | 0.935 |
(40, 20, 15) | 0.918 | 0.906 | 1.080 | 0.970 | 0.377 | 0.942 | 0.445 | 0.987 | 0.884 | 0.862 | 1.031 | 0.937 | |
(60, 30, 20) | 0.693 | 0.925 | 0.832 | 0.972 | 0.351 | 0.960 | 0.417 | 0.990 | 0.675 | 0.900 | 0.801 | 0.934 | |
T=0.7 | (30, 20, 15) | 0.772 | 0.922 | 0.914 | 0.980 | 0.415 | 0.955 | 0.485 | 0.997 | 0.750 | 0.902 | 0.884 | 0.964 |
(40, 20, 15) | 0.834 | 0.925 | 0.990 | 0.974 | 0.345 | 0.950 | 0.411 | 0.987 | 0.806 | 0.876 | 0.941 | 0.935 | |
(60, 30, 20) | 0.641 | 0.919 | 0.760 | 0.968 | 0.326 | 0.955 | 0.383 | 0.992 | 0.623 | 0.890 | 0.729 | 0.947 | |
T=1.5 | (30, 20, 15) | 0.704 | 0.921 | 0.842 | 0.971 | 0.382 | 0.942 | 0.446 | 0.992 | 0.686 | 0.896 | 0.808 | 0.947 |
(40, 20, 15) | 0.773 | 0.914 | 0.911 | 0.963 | 0.318 | 0.956 | 0.377 | 0.979 | 0.739 | 0.878 | 0.860 | 0.923 | |
(60, 30, 20) | 0.589 | 0.928 | 0.702 | 0.970 | 0.297 | 0.949 | 0.354 | 0.987 | 0.573 | 0.904 | 0.677 | 0.940 |
^S(t)B | |||||||||||||
^S(t)ML | IP | NIP | |||||||||||
90% | 95% | 90% | 95% | 90% | 95% | ||||||||
T | (n,m,k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch.I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.088 | 0.736 | 0.110 | 0.797 | 0.021 | 0.980 | 0.026 | 0.985 | 0.138 | 0.922 | 0.185 | 0.949 |
(40, 20, 15) | 0.113 | 0.771 | 0.140 | 0.813 | 0.022 | 0.987 | 0.026 | 0.993 | 0.164 | 0.919 | 0.215 | 0.948 | |
(60, 30, 20) | 0.091 | 0.803 | 0.110 | 0.849 | 0.021 | 0.976 | 0.026 | 0.978 | 0.123 | 0.907 | 0.158 | 0.945 | |
T=0.7 | (30, 20, 15) | 0.068 | 0.789 | 0.088 | 0.856 | 0.020 | 0.965 | 0.024 | 0.963 | 0.099 | 0.903 | 0.133 | 0.946 |
(40, 20, 15) | 0.069 | 0.727 | 0.092 | 0.799 | 0.020 | 0.954 | 0.024 | 0.948 | 0.105 | 0.926 | 0.144 | 0.919 | |
(60, 30, 20) | 0.057 | 0.812 | 0.069 | 0.875 | 0.019 | 0.980 | 0.023 | 0.985 | 0.075 | 0.914 | 0.097 | 0.929 | |
T=1.5 | (30, 20, 15) | 0.058 | 0.790 | 0.069 | 0.838 | 0.018 | 0.965 | 0.022 | 0.918 | 0.084 | 0.918 | 0.108 | 0.939 |
(40, 20, 15) | 0.066 | 0.758 | 0.083 | 0.809 | 0.018 | 0.954 | 0.022 | 0.985 | 0.098 | 0.909 | 0.132 | 0.934 | |
(60, 30, 20) | 0.049 | 0.833 | 0.058 | 0.856 | 0.018 | 0.980 | 0.021 | 0.903 | 0.066 | 0.948 | 0.083 | 0.929 | |
Sch.II | |||||||||||||
T=0.3 | (30, 20, 15) | 0.089 | 0.743 | 0.113 | 0.769 | 0.021 | 0.980 | 0.026 | 0.985 | 0.140 | 0.921 | 0.188 | 0.943 |
(40, 20, 15) | 0.111 | 0.754 | 0.143 | 0.802 | 0.021 | 0.965 | 0.026 | 0.963 | 0.159 | 0.904 | 0.215 | 0.954 | |
(60, 30, 20) | 0.092 | 0.814 | 0.110 | 0.859 | 0.021 | 0.954 | 0.026 | 0.948 | 0.125 | 0.921 | 0.156 | 0.934 | |
T=0.7 | (30, 20, 15) | 0.068 | 0.794 | 0.080 | 0.802 | 0.020 | 0.943 | 0.024 | 0.933 | 0.098 | 0.910 | 0.124 | 0.944 |
(40, 20, 15) | 0.105 | 0.730 | 0.088 | 0.802 | 0.020 | 0.932 | 0.024 | 0.918 | 0.150 | 0.912 | 0.139 | 0.940 | |
(60, 30, 20) | 0.055 | 0.821 | 0.066 | 0.836 | 0.019 | 0.980 | 0.023 | 0.985 | 0.074 | 0.913 | 0.094 | 0.930 | |
T=1.5 | (30, 20, 15) | 0.054 | 0.765 | 0.067 | 0.793 | 0.018 | 0.943 | 0.022 | 0.888 | 0.078 | 0.905 | 0.104 | 0.928 |
(40, 20, 15) | 0.063 | 0.735 | 0.073 | 0.781 | 0.018 | 0.932 | 0.022 | 0.985 | 0.096 | 0.895 | 0.123 | 0.950 | |
(60, 30, 20) | 0.048 | 0.827 | 0.059 | 0.884 | 0.018 | 0.980 | 0.021 | 0.873 | 0.064 | 0.913 | 0.085 | 0.934 | |
Sch.III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.101 | 0.782 | 0.113 | 0.769 | 0.021 | 0.979 | 0.026 | 0.985 | 0.144 | 0.919 | 0.188 | 0.943 |
(40, 20, 15) | 0.089 | 0.668 | 0.114 | 0.730 | 0.021 | 0.943 | 0.026 | 0.933 | 0.132 | 0.888 | 0.180 | 0.926 | |
(60, 30, 20) | 0.070 | 0.778 | 0.085 | 0.808 | 0.021 | 0.932 | 0.025 | 0.918 | 0.093 | 0.901 | 0.120 | 0.936 | |
T=0.7 | (30, 20, 15) | 0.065 | 0.766 | 0.074 | 0.815 | 0.020 | 0.921 | 0.024 | 0.903 | 0.093 | 0.908 | 0.119 | 0.951 |
(40, 20, 15) | 0.088 | 0.684 | 0.105 | 0.758 | 0.020 | 0.910 | 0.024 | 0.888 | 0.129 | 0.891 | 0.170 | 0.933 | |
(60, 30, 20) | 0.063 | 0.803 | 0.074 | 0.830 | 0.019 | 0.980 | 0.023 | 0.985 | 0.083 | 0.906 | 0.107 | 0.937 | |
T=1.5 | (30, 20, 15) | 0.058 | 0.788 | 0.069 | 0.797 | 0.018 | 0.921 | 0.022 | 0.858 | 0.084 | 0.947 | 0.109 | 0.941 |
(40, 20, 15) | 0.078 | 0.684 | 0.099 | 0.747 | 0.018 | 0.910 | 0.023 | 0.985 | 0.116 | 0.883 | 0.158 | 0.927 | |
(60, 30, 20) | 0.057 | 0.787 | 0.069 | 0.803 | 0.018 | 0.980 | 0.022 | 0.903 | 0.077 | 0.899 | 0.098 | 0.939 |
^H(t)B | |||||||||||||
^H(t)ML | IP | NIP | |||||||||||
90% | 95% | 90% | 95% | 90% | 95% | ||||||||
T | (n,m,k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch.I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.472 | 0.716 | 0.537 | 0.769 | 0.078 | 0.961 | 0.093 | 0.966 | 0.475 | 0.943 | 0.556 | 0.963 |
(40, 20, 15) | 0.473 | 0.750 | 0.533 | 0.784 | 0.078 | 0.980 | 0.092 | 1.000 | 0.474 | 0.933 | 0.559 | 0.956 | |
(60, 30, 20) | 0.344 | 0.781 | 0.408 | 0.819 | 0.078 | 1.000 | 0.091 | 1.000 | 0.345 | 0.922 | 0.416 | 0.959 | |
T=0.7 | (30, 20, 15) | 0.310 | 0.767 | 0.354 | 0.825 | 0.074 | 1.031 | 0.087 | 1.000 | 0.300 | 0.924 | 0.343 | 0.953 |
(40, 20, 15) | 0.344 | 0.707 | 0.417 | 0.770 | 0.067 | 0.963 | 0.080 | 0.955 | 0.339 | 0.946 | 0.417 | 0.925 | |
(60, 30, 20) | 0.256 | 0.790 | 0.301 | 0.843 | 0.072 | 1.000 | 0.086 | 1.000 | 0.249 | 0.926 | 0.294 | 0.937 | |
T=1.5 | (30, 20, 15) | 0.288 | 0.768 | 0.343 | 0.808 | 0.072 | 1.000 | 0.085 | 1.000 | 0.280 | 0.931 | 0.332 | 0.938 |
(40, 20, 15) | 0.332 | 0.737 | 0.397 | 0.780 | 0.067 | 0.975 | 0.079 | 0.995 | 0.330 | 0.930 | 0.395 | 0.942 | |
(60, 30, 20) | 0.243 | 0.810 | 0.296 | 0.825 | 0.071 | 1.000 | 0.084 | 1.000 | 0.235 | 0.959 | 0.290 | 0.931 | |
Sch.II | |||||||||||||
T=0.3 | (30, 20, 15) | 0.470 | 0.722 | 0.546 | 0.742 | 0.078 | 0.927 | 0.093 | 0.975 | 0.466 | 0.936 | 0.562 | 0.949 |
(40, 20, 15) | 0.485 | 0.733 | 0.527 | 0.773 | 0.078 | 0.967 | 0.092 | 0.989 | 0.494 | 0.924 | 0.547 | 0.955 | |
(60, 30, 20) | 0.333 | 0.792 | 0.398 | 0.828 | 0.077 | 1.035 | 0.091 | 1.000 | 0.329 | 0.937 | 0.401 | 0.945 | |
T=0.7 | (30, 20, 15) | 0.310 | 0.773 | 0.375 | 0.773 | 0.074 | 0.967 | 0.088 | 1.000 | 0.299 | 0.925 | 0.369 | 0.955 |
(40, 20, 15) | 0.429 | 0.710 | 0.438 | 0.773 | 0.074 | 0.967 | 0.087 | 0.959 | 0.434 | 0.935 | 0.440 | 0.949 | |
(60, 30, 20) | 0.253 | 0.798 | 0.308 | 0.806 | 0.073 | 1.007 | 0.086 | 1.000 | 0.247 | 0.926 | 0.300 | 0.940 | |
T=1.5 | (30, 20, 15) | 0.315 | 0.744 | 0.357 | 0.765 | 0.072 | 0.956 | 0.085 | 1.000 | 0.314 | 0.925 | 0.350 | 0.935 |
(40, 20, 15) | 0.387 | 0.715 | 0.455 | 0.753 | 0.073 | 0.941 | 0.086 | 0.965 | 0.380 | 0.926 | 0.461 | 0.961 | |
(60, 30, 20) | 0.248 | 0.805 | 0.290 | 0.852 | 0.071 | 1.000 | 0.084 | 1.000 | 0.239 | 0.925 | 0.285 | 0.941 | |
Sch.III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.417 | 0.761 | 0.546 | 0.742 | 0.078 | 0.927 | 0.093 | 1.000 | 0.420 | 0.935 | 0.562 | 0.949 |
(40, 20, 15) | 0.663 | 0.649 | 0.779 | 0.704 | 0.078 | 0.880 | 0.093 | 0.877 | 0.771 | 0.906 | 0.944 | 0.933 | |
(60, 30, 20) | 0.348 | 0.756 | 0.412 | 0.779 | 0.077 | 0.973 | 0.091 | 1.000 | 0.349 | 0.917 | 0.427 | 0.948 | |
T=0.7 | (30, 20, 15) | 0.362 | 0.745 | 0.429 | 0.786 | 0.074 | 0.983 | 0.088 | 1.000 | 0.358 | 0.930 | 0.437 | 0.962 |
(40, 20, 15) | 0.607 | 0.666 | 0.665 | 0.731 | 0.075 | 0.914 | 0.089 | 0.898 | 0.695 | 0.912 | 0.758 | 0.946 | |
(60, 30, 20) | 0.332 | 0.781 | 0.394 | 0.800 | 0.074 | 1.000 | 0.087 | 1.000 | 0.338 | 0.923 | 0.405 | 0.952 | |
T=1.5 | (30, 20, 15) | 0.338 | 0.766 | 0.429 | 0.769 | 0.073 | 0.961 | 0.086 | 1.000 | 0.335 | 0.962 | 0.443 | 0.953 |
(40, 20, 15) | 0.621 | 0.666 | 0.689 | 0.720 | 0.073 | 0.900 | 0.087 | 0.898 | 0.686 | 0.903 | 0.796 | 0.936 | |
(60, 30, 20) | 0.331 | 0.765 | 0.394 | 0.774 | 0.072 | 0.968 | 0.086 | 1.000 | 0.333 | 0.923 | 0.408 | 0.950 |
This work is supported by Researchers Supporting Project number (RSP-2021/323), King Saud University, Riyadh, Saudi Arabia.
We are grateful to the referees and the editor for their careful reading and their constructive comments, which leads to this greatly improved paper.
The authors acknowledge financial support from the Researchers Supporting Project number (RSP-2021/323), King Saud University, Riyadh, Saudi Arabia.
The authors declare there is no conflict of interest.
[1] |
Mishin AS, Belousov VV, Solntsev KM, et al. (2015) Novel uses of fluorescent proteins. Curr Opin Chem Biol 27: 1-9. doi: 10.1016/j.cbpa.2015.05.002
![]() |
[2] |
Shcherbakova DM, Baloban M, Verkhusha VV (2015) Near-infrared fluorescent proteins engineered from bacterial phytochromes. Curr Opin Chem Biol 27: 52-63. doi: 10.1016/j.cbpa.2015.06.005
![]() |
[3] |
Rodriguez EA, Campbell RE, Lin JY, et al. (2017) The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem Sci 42: 111-129. doi: 10.1016/j.tibs.2016.09.010
![]() |
[4] |
Hampton RY, Koning A, Wright R, et al. (1996) In vivo examination of membrane protein localization and degradation with green fluorescent protein. Proc Natl Acad Sci 93: 828-833. doi: 10.1073/pnas.93.2.828
![]() |
[5] |
Terskikh A, Fradkov A, Ermakova G, et al. (2000) ‘Fluorescent timer’: Protein that changes color with time. Science 290: 1585-1588. doi: 10.1126/science.290.5496.1585
![]() |
[6] |
Subach FV, Subach OM, Gundorov IS, et al. (2009) Monomeric fluorescent timers that change color from blue to red report on cellular trafficking. Nat Chem Biol 5: 118-126. doi: 10.1038/nchembio.138
![]() |
[7] |
Khmelinskii A, Keller PJ, Bartosik A, et al. (2012) Tandem fluorescent protein timers for in vivo analysis of protein dynamics. Nat Biotechnol 30: 708-714. doi: 10.1038/nbt.2281
![]() |
[8] |
Zhang L, Gurskaya NG, Merzlyak EM, et al. (2007) Method for real-time monitoring of protein degradation at the single cell level. Biotechniques 42: 446-450. doi: 10.2144/000112453
![]() |
[9] |
Taxis C, Hitt R, Park SH, et al. (2003) Use of modular substrates demonstrates mechanistic diversity and reveals differences in chaperone requirement of ERAD. J Biol Chem 278: 35903-35913. doi: 10.1074/jbc.M301080200
![]() |
[10] |
Balleza E, Kim JM, Cluzel P (2018) Systematic characterization of maturation time of fluorescent proteins in living cells. Nat Methods 15: 47-51. doi: 10.1038/nmeth.4509
![]() |
[11] |
Maeder CI, Hink MA, Kinkhabwala A, et al. (2007) Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling. Nat Cell Biol 9: 1319-1326. doi: 10.1038/ncb1652
![]() |
[12] |
Subach OM, Cranfill PJ, Davidson MW, et al. (2011) An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore. PLoS One 6: e28674. doi: 10.1371/journal.pone.0028674
![]() |
[13] |
Langan RA, Boyken SE, Ng AH, et al. (2019) De novo design of bioactive protein switches. Nature 572: 205-210. doi: 10.1038/s41586-019-1432-8
![]() |
[14] |
Subach OM, Gundorov IS, Yoshimura M, et al. (2008) Conversion of red fluorescent protein into a bright blue probe. Chem Biol 15: 1116-1124. doi: 10.1016/j.chembiol.2008.08.006
![]() |
[15] |
Wei J, Gibbs JS, Hickman HD, et al. (2015) Ubiquitous autofragmentation of fluorescent proteins creates abundant defective ribosomal products (DRiPs) for immunosurveillance. J Biol Chem 290: 16431-16439. doi: 10.1074/jbc.M115.658062
![]() |
[16] |
Goedhart J, Von Stetten D, Noirclerc-Savoye M, et al. (2012) Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun 3: 751. doi: 10.1038/ncomms1738
![]() |
[17] |
Ng AH, Nguyen TH, Gómez-Schiavon M, et al. (2019) Modular and tunable biological feedback control using a de novo protein switch. Nature 572: 265-269. doi: 10.1038/s41586-019-1425-7
![]() |
[18] |
Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6: 178-182. doi: 10.1016/S0960-9822(02)00450-5
![]() |
[19] |
Rizzo MA, Springer GH, Granada B, et al. (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22: 445-449. doi: 10.1038/nbt945
![]() |
[20] |
Cubitt AB, Woollenweber LA, Heim R (1998) Understanding structure-function relationships in the Aequorea victoria green fluorescent protein. Methods Cell Biol 58: 19-30. doi: 10.1016/S0091-679X(08)61946-9
![]() |
[21] | Patterson G, Day RN, Piston D (2001) Fluorescent protein spectra. J Cell Sci 114: 837-838. |
[22] |
Cookson NA, Mather WH, Danino T, et al. (2011) Queueing up for enzymatic processing: correlated signaling through coupled degradation. Mol Syst Biol 7: 561. doi: 10.1038/msb.2011.94
![]() |
[23] |
Jungbluth M, Renicke C, Taxis C (2010) Targeted protein depletion in Saccharomyces cerevisiae by activation of a bidirectional degron. BMC Syst Biol 4: 176. doi: 10.1186/1752-0509-4-176
![]() |
[24] |
Taxis C, Stier G, Spadaccini R, et al. (2009) Efficient protein depletion by genetically controlled deprotection of a dormant N-degron. Mol Syst Biol 5: 267. doi: 10.1038/msb.2009.25
![]() |
[25] |
Hasenjäger S, Trauth J, Hepp S, et al. (2019) Optogenetic downregulation of protein levels with an ultrasensitive switch. ACS Synth Biol 8: 1026-1036. doi: 10.1021/acssynbio.8b00471
![]() |
[26] |
Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173: 33-38. doi: 10.1016/0378-1119(95)00685-0
![]() |
[27] |
Pepperkok R, Squire A, Geley S, et al. (1999) Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy. Curr Biol 9: 269-272. doi: 10.1016/S0960-9822(99)80117-1
![]() |
[28] |
Seefeldt B, Kasper R, Seidel T, et al. (2008) Fluorescent proteins for single-molecule fluorescence applications. J Biophotonics 1: 74-82. doi: 10.1002/jbio.200710024
![]() |
[29] |
Sarkisyan KS, Goryashchenko AS, Lidsky PV, et al. (2015) Green fluorescent protein with anionic tryptophan-based chromophore and long fluorescence lifetime. Biophys J 109: 380-389. doi: 10.1016/j.bpj.2015.06.018
![]() |
[30] |
Halter M, Tona A, Bhadriraju K, et al. (2007) Automated live cell imaging of green fluorescent protein degradation in individual fibroblasts. Cytom Part A: J Int Soc Anal Cytol 71: 827-834. doi: 10.1002/cyto.a.20461
![]() |
[31] |
Yen HCS, Xu Q, Chou DM, et al. (2008) Global protein stability profiling in mammalian cells. Science 322: 918-923. doi: 10.1126/science.1160489
![]() |
[32] |
Yen HCS, Elledge SJ (2008) Identification of SCF ubiquitin ligase substrates by global protein stability profiling. Science 322: 923-929. doi: 10.1126/science.1160462
![]() |
[33] |
Reichard EL, Chirico GG, Dewey WJ, et al. (2016) Substrate ubiquitination controls the unfolding ability of the proteasome. J Biol Chem 291: 18547-18561. doi: 10.1074/jbc.M116.720151
![]() |
[34] |
Lin HC, Yeh CW, Chen YF, et al. (2018) C-terminal end-directed protein elimination by CRL2 ubiquitin ligases. Mol Cell 70: 602-613. doi: 10.1016/j.molcel.2018.04.006
![]() |
[35] |
Khmelinskii A, Meurer M, Ho CT, et al. (2016) Incomplete proteasomal degradation of green fluorescent proteins in the context of tandem fluorescent protein timers. Mol Biol Cell 27: 360-370. doi: 10.1091/mbc.e15-07-0525
![]() |
[36] |
Krentz NAJ, van Hoof D, Li Z, et al. (2017) Phosphorylation of NEUROG3 links endocrine differentiation to the cell cycle in pancreatic progenitors. Dev Cell 41: 129-142. doi: 10.1016/j.devcel.2017.02.006
![]() |
[37] |
Link CD, Fonte V, Hiester B, et al. (2006) Conversion of green fluorescent protein into a toxic, aggregation-prone protein by C-terminal addition of a short peptide. J Biol Chem 281: 1808-1816. doi: 10.1074/jbc.M505581200
![]() |
[38] |
Papagiannakis A, de Jonge JJ, Zhang Z, et al. (2017) Quantitative characterization of the auxin-inducible degron: a guide for dynamic protein depletion in single yeast cells. Sci Rep 7: 1-13. doi: 10.1038/s41598-017-04791-6
![]() |
[39] |
Usherenko S, Stibbe H, Muscò M, et al. (2014) Photo-sensitive degron variants for tuning protein stability by light. BMC Syst Biol 8: 128. doi: 10.1186/s12918-014-0128-9
![]() |
[40] |
Qian SB, Ott DE, Schubert U, et al. (2002) Fusion proteins with COOH-terminal ubiquitin are stable and maintain dual functionality in vivo. J Biol Chem 277: 38818-38826. doi: 10.1074/jbc.M205547200
![]() |
[41] |
Li X, Zhao X, Fang Y, et al. (1998) Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem 273: 34970-34975. doi: 10.1074/jbc.273.52.34970
![]() |
[42] |
Iconomou M, Saunders DN (2016) Systematic approaches to identify E3 ligase substrates. Biochem J 473: 4083-4101. doi: 10.1042/BCJ20160719
![]() |
[43] |
Shaner NC, Lin MZ, McKeown MR, et al. (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5: 545-551. doi: 10.1038/nmeth.1209
![]() |
[44] |
Zacharias DA, Violin JD, Newton AC, et al. (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296: 913-916. doi: 10.1126/science.1068539
![]() |
[45] |
Shimomura O, Johnson F H, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59: 223-239. doi: 10.1002/jcp.1030590302
![]() |
[46] |
Niwa H, Inouye S, Hirano T, et al. (1996) Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proc Natl Acad Sci 93: 13617-13622. doi: 10.1073/pnas.93.24.13617
![]() |
[47] |
Prasher DC, Eckenrode VK, Ward WW, et al. (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111: 229-233. doi: 10.1016/0378-1119(92)90691-H
![]() |
[48] |
Patterson GH, Knobel SM, Sharif WD, et al. (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73: 2782-2790. doi: 10.1016/S0006-3495(97)78307-3
![]() |
[49] |
Iizuka R, Yamagishi-Shirasaki M, Funatsu T (2011) Kinetic study of de novo chromophore maturation of fluorescent proteins. Anal Biochem 414: 173-178. doi: 10.1016/j.ab.2011.03.036
![]() |
[50] |
Yoo TH, Link AJ, Tirrell DA (2007) Evolution of a fluorinated green fluorescent protein. Proc Natl Acad Sci 104: 13887-13890. doi: 10.1073/pnas.0701904104
![]() |
[51] |
Pédelacq JD, Cabantous S, Tran T, et al. (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24: 79-88. doi: 10.1038/nbt1172
![]() |
[52] |
Durrieu L, Kirrmaier D, Schneidt T, et al. (2018) Bicoid gradient formation mechanism and dynamics revealed by protein lifetime analysis. Mol Syst Biol 14: e8355. doi: 10.15252/msb.20188355
![]() |
[53] |
Kowalski L, Bragoszewski P, Khmelinskii A, et al. (2018) Determinants of the cytosolic turnover of mitochondrial intermembrane space proteins. BMC Biol 16: 66. doi: 10.1186/s12915-018-0536-1
![]() |
[54] |
Dederer V, Khmelinskii A, Huhn AG, et al. (2019) Cooperation of mitochondrial and ER factors in quality control of tail-anchored proteins. Elife 8: e45506. doi: 10.7554/eLife.45506
![]() |
[55] |
Alber AB, Paquet ER, Biserni M, et al. (2018) Single live cell monitoring of protein turnover reveals intercellular variability and cell-cycle dependence of degradation rates. Mol Cell 71: 1079-1091. doi: 10.1016/j.molcel.2018.07.023
![]() |
[56] |
Zhang H, Linster E, Gannon L, et al. (2019) Tandem fluorescent protein timers for noninvasive relative protein lifetime measurement in plants. Plant Physiol 180: 718-731. doi: 10.1104/pp.19.00051
![]() |
[57] |
Fernandez-Rodriguez J, Voigt CA (2016) Post-translational control of genetic circuits using Potyvirus proteases. Nucleic Acids Res 44: 6493-6502. doi: 10.1093/nar/gkw537
![]() |
[58] |
Yu H, Singh Gautam AKS, Wilmington SR, et al. (2016) Conserved sequence preferences contribute to substrate recognition by the proteasome. J Biol Chem 291: 14526-14539. doi: 10.1074/jbc.M116.727578
![]() |
[59] |
Donà E, Barry JD, Valentin G, et al. (2013) Directional tissue migration through a self-generated chemokine gradient. Nature 503: 285-289. doi: 10.1038/nature12635
![]() |
[60] |
Khmelinskii A, Blaszczak E, Pantazopoulou M, et al. (2014) Protein quality control at the inner nuclear membrane. Nature 516: 410-413. doi: 10.1038/nature14096
![]() |
[61] |
Kats I, Khmelinskii A, Kschonsak M, et al. (2018) Mapping degradation signals and pathways in a eukaryotic N-terminome. Mol Cell 70: 488-501. doi: 10.1016/j.molcel.2018.03.033
![]() |
[62] |
Castells-Ballester J, Zatorska E, Meurer M, et al. (2018) Monitoring protein dynamics in protein o-mannosyltransferase mutants in vivo by tandem fluorescent protein timers. Molecules 23: 2622. doi: 10.3390/molecules23102622
![]() |
[63] |
Heim R, Cubitt AB, Tsien RY (1995) Improved green fluorescence. Nature 373: 663-664. doi: 10.1038/373663b0
![]() |
[64] |
Benanti JA, Cheung SK, Brady MC, et al. (2007) A proteomic screen reveals SCFGrr1 targets that regulate the glycolytic-gluconeogenic switch. Nat Cell Biol 9: 1184-1191. doi: 10.1038/ncb1639
![]() |
[65] |
Costantini LM, Baloban M, Markwardt ML, et al. (2015) A palette of fluorescent proteins optimized for diverse cellular environments. Nat Commun 6: 7670. doi: 10.1038/ncomms8670
![]() |
[66] |
Kremers GJ, Goedhart J, van den Heuvel DJ, et al. (2007) Improved green and blue fluorescent proteins for expression in bacteria and mammalian cells. Biochemistry 46: 3775-3783. doi: 10.1021/bi0622874
![]() |
[67] |
Sekar K, Gentile AM, Bostick JW, et al. (2016) N-terminal-based targeted, inducible protein degradation in Escherichia coli. PLoS One 11: e0149746. doi: 10.1371/journal.pone.0149746
![]() |
[68] |
Shaner NC, Lambert GG, Chammas A, et al. (2013) A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat Methods 10: 407-409. doi: 10.1038/nmeth.2413
![]() |
[69] |
Molina RS, Tran TM, Campbell RE, et al. (2017) Blue-shifted green fluorescent protein homologues are brighter than enhanced green fluorescent protein under two-photon excitation. J Phys Chem Lett 8: 2548-2554. doi: 10.1021/acs.jpclett.7b00960
![]() |
[70] |
Griesbeck O, Baird GS, Campbell RE, et al. (2001) Reducing the environmental sensitivity of yellow fluorescent protein mechanism and applications. J Biol Chem 276: 29188-29194. doi: 10.1074/jbc.M102815200
![]() |
[71] |
Wiens MD, Hoffmann F, Chen Y, et al. (2018) Enhancing fluorescent protein photostability through robot-assisted photobleaching. Integr Biol 10: 419-428. doi: 10.1039/C8IB00063H
![]() |
[72] |
Cranfill PJ, Sell BR, Baird MA, et al. (2016) Quantitative assessment of fluorescent proteins. Nat Methods 13: 557-562. doi: 10.1038/nmeth.3891
![]() |
[73] |
Miyawaki A, Griesbeck O, Heim R, et al. (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci 96: 2135-2140. doi: 10.1073/pnas.96.5.2135
![]() |
[74] |
Ormö M, Cubitt AB, Kallio K, et al. (1996) Crystal structure of the aequorea victoria green fluorescent protein. Science 273: 1392-1395. doi: 10.1126/science.273.5280.1392
![]() |
[75] |
Rekas A, Alattia JR, Nagai T, et al. (2002) Crystal structure of venus, a yellow fluorescent protein with improved maturation and reduced environmental sensitivity. J Biol Chem 277: 50573-50578. doi: 10.1074/jbc.M209524200
![]() |
[76] |
Zhao W, Pferdehirt L, Segatori L (2018) Quantitatively predictable control of cellular protein levels through proteasomal degradation. ACS Synth Biol 7: 540-552. doi: 10.1021/acssynbio.7b00325
![]() |
[77] |
Eden E, Geva-Zatorsky N, Issaeva I, et al. (2011) Proteome half-life dynamics in living human cells. Science 331: 764-768. doi: 10.1126/science.1199784
![]() |
[78] |
Nagai T, Ibata K, Park ES, et al. (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20: 87-90. doi: 10.1038/nbt0102-87
![]() |
[79] |
Chassin H, Müller M, Tigges M, et al. (2019) A modular degron library for synthetic circuits in mammalian cells. Nat Commun 10: 2013. doi: 10.1038/s41467-019-09974-5
![]() |
[80] |
Shaner NC, Campbell RE, Steinbach P a, et al. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22: 1567-1572. doi: 10.1038/nbt1037
![]() |
[81] |
Merzlyak EM, Goedhart J, Shcherbo D, et al. (2007) Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods 4: 555-557. doi: 10.1038/nmeth1062
![]() |
[82] |
Renicke C, Schuster D, Usherenko S, et al. (2013) A LOV2 domain-based optogenetic tool to control protein degradation and cellular function. Chem Biol 20: 619-626. doi: 10.1016/j.chembiol.2013.03.005
![]() |
[83] |
Strack RL, Strongin DE, Bhattacharyya D, et al. (2008) A noncytotoxic DsRed variant for whole-cell labeling. Nat Methods 5: 955-957. doi: 10.1038/nmeth.1264
![]() |
[84] |
Bindels DS, Haarbosch L, van Weeren L, et al. (2017) mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat Methods 14: 53-56. doi: 10.1038/nmeth.4074
![]() |
[85] |
Campbell RE, Tour O, Palmer AE, et al. (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci 99: 7877-7882. doi: 10.1073/pnas.082243699
![]() |
[86] |
Shcherbo D, Murphy CS, Ermakova GV, et al. (2009) Far-red fluorescent tags for protein imaging in living tissues. Biochem J 418: 567-574. doi: 10.1042/BJ20081949
![]() |
[87] |
Shcherbo D, Merzlyak EM, Chepurnykh TV, et al. (2007) Bright far-red fluorescent protein for whole-body imaging. Nat Methods 4: 741-746. doi: 10.1038/nmeth1083
![]() |
[88] |
Filonov GS, Piatkevich KD, Ting L-M, et al. (2011) Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat Biotechnol 29: 757-761. doi: 10.1038/nbt.1918
![]() |
[89] |
Nemet I, Ropelewski P, Imanishi Y (2015) Applications of phototransformable fluorescent proteins for tracking the dynamics of cellular components. Photochem Photobiol Sci 14: 1787-1806. doi: 10.1039/C5PP00174A
![]() |
[90] |
Vilchez D, Saez I, Dillin A (2014) The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 5: 5659. doi: 10.1038/ncomms6659
![]() |
[91] |
Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67: 425-479. doi: 10.1146/annurev.biochem.67.1.425
![]() |
[92] |
Pickart CM (2004) Back to the future with ubiquitin. Cell 116: 181-190. doi: 10.1016/S0092-8674(03)01074-2
![]() |
[93] |
Ardley HC, Robinson PA (2005) E3 ubiquitin ligases. Essays Biochem 41: 15-30. doi: 10.1042/EB0410015
![]() |
[94] |
Metzger MB, Pruneda JN, Klevit RE, et al. (2014) RING-type E3 ligases: Master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim Biophys Acta-Mol Cell Res 1843: 47-60. doi: 10.1016/j.bbamcr.2013.05.026
![]() |
[95] |
Thrower JS, Hoffman L, Rechsteiner M, et al. (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19: 94-102. doi: 10.1093/emboj/19.1.94
![]() |
[96] |
Yau R, Rape M (2016) The increasing complexity of the ubiquitin code. Nat Cell Biol 18: 579-586. doi: 10.1038/ncb3358
![]() |
[97] |
Kwon YT, Ciechanover A (2017) The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem Sci 42: 873-886. doi: 10.1016/j.tibs.2017.09.002
![]() |
[98] |
Yu H, Matouschek A (2017) Recognition of client proteins by the proteasome. Annu Rev Biophys 46: 149-173. doi: 10.1146/annurev-biophys-070816-033719
![]() |
[99] |
Varshavsky A (1991) Naming a targeting signal. Cell 64: 13-15. doi: 10.1016/0092-8674(91)90202-A
![]() |
[100] |
Ravid T, Hochstrasser M (2008) Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol 9: 679-689. doi: 10.1038/nrm2468
![]() |
[101] | Tomita T, Matouschek A (2019) Substrate selection by the proteasome through initiation regions. Protein Sci 28: 1222-1232. |
[102] |
Jariel-Encontre I, Bossis G, Piechaczyk M (2008) Ubiquitin-independent degradation of proteins by the proteasome. Biochim Biophys Acta - Rev Cancer 1786: 153-177. doi: 10.1016/j.bbcan.2008.05.004
![]() |
[103] |
Erales J, Coffino P (2014) Ubiquitin-independent proteasomal degradation. Biochim Biophys Acta-Mol Cell Res 1843: 216-221. doi: 10.1016/j.bbamcr.2013.05.008
![]() |
[104] |
Dohmen RJ, Willers I, Marques AJ (2007) Biting the hand that feeds: Rpn4-dependent feedback regulation of proteasome function. Biochim Biophys Acta-Mol Cell Res 1773: 1599-1604. doi: 10.1016/j.bbamcr.2007.05.015
![]() |
[105] |
Ha SW, Ju D, Xie Y (2012) The N-terminal domain of Rpn4 serves as a portable ubiquitin-independent degron and is recognized by specific 19S RP subunits. Biochem Biophys Res Commun 419: 226-231. doi: 10.1016/j.bbrc.2012.01.152
![]() |
[106] |
Lutz AP, Schladebeck S, Renicke C, et al. (2018) Proteasome activity is influenced by the HECT_2 protein Ipa1 in budding yeast. Genetics 209: 157-171. doi: 10.1534/genetics.118.300744
![]() |
[107] |
Scheffer J, Hasenjäger S, Taxis C (2019) Degradation of integral membrane proteins modified with the photosensitive degron module requires the cytosolic endoplasmic reticulum–associated degradation pathway. Mol Biol Cell 30: 2558-2570. doi: 10.1091/mbc.E18-12-0754
![]() |
[108] |
Hitchcock AL, Krebber H, Frietze S, et al. (2001) The conserved npl4 protein complex mediates proteasome-dependent membrane-bound transcription factor activation. Mol Biol Cell 12: 3226-3241. doi: 10.1091/mbc.12.10.3226
![]() |
[109] | Hoppe T, Matuschewski K, Rape M, et al. (2001) Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 14: 148-151. |
[110] |
Leestemaker Y, Ovaa H (2017) Tools to investigate the ubiquitin proteasome system. Drug Discov Today Technol 26: 25-31. doi: 10.1016/j.ddtec.2017.11.006
![]() |
[111] |
Conole D, Mondal M, Majmudar JD, et al. (2019) Recent developments in cell permeable deubiquitinating enzyme activity-based probes. Front Chem 7: 876. doi: 10.3389/fchem.2019.00876
![]() |
[112] |
Hewings DS, Flygare JA, Bogyo M, et al. (2017) Activity-based probes for the ubiquitin conjugation-deconjugation machinery: new chemistries, new tools, and new insights. FEBS J 284: 1555-1576. doi: 10.1111/febs.14039
![]() |
[113] |
Ella H, Reiss Y, Ravid T (2019) The hunt for degrons of the 26S proteasome. Biomolecules 9: 230. doi: 10.3390/biom9060230
![]() |
[114] |
Chalfie M, Tu Y, Euskirchen G, et al. (1994) Green fluorescent protein as a marker for gene expression. Science 263: 802-805. doi: 10.1126/science.8303295
![]() |
[115] |
Wang S, Hazelrigg T (1994) Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature 369: 400-403. doi: 10.1038/369400a0
![]() |
[116] |
Cronin SR, Hampton RY (1999) Measuring protein degradation with green fluorescent protein. Methods Enzymol 302: 58-73. doi: 10.1016/S0076-6879(99)02010-8
![]() |
[117] |
Cronin SR, Khoury A, Ferry DK, et al. (2000) Regulation of HMG-CoA reductase degradation requires the P-type ATPase Cod1p/Spf1p. J Cell Biol 148: 915-924. doi: 10.1083/jcb.148.5.915
![]() |
[118] |
Jiang X, Coffino P, Li X (2004) Development of a method for screening short-lived proteins using green fluorescent protein. Genome Biol 5: R81. doi: 10.1186/gb-2004-5-10-r81
![]() |
[119] |
Hampton RY, Rine J (1994) Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic reticulum, in yeast. J Cell Biol 125: 299-312. doi: 10.1083/jcb.125.2.299
![]() |
[120] |
Gierisch ME, Giovannucci TA, Dantuma NP (2020) Reporter-based screens for the ubiquitin/proteasome system. Front Chem 8: 64. doi: 10.3389/fchem.2020.00064
![]() |
[121] |
Dantuma NP, Lindsten K, Glas R, et al. (2000) Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nat Biotechnol 18: 538-543. doi: 10.1038/75406
![]() |
[122] |
van Wijk SJ, Fulda S, Dikic I, et al. (2019) Visualizing ubiquitination in mammalian cells. EMBO Rep 20: e46520. doi: 10.15252/embr.201846520
![]() |
[123] |
Rajan S, Djambazian H, Dang HCP, et al. (2011) The living microarray: A high-throughput platform for measuring transcription dynamics in single cells. BMC Genomics 12: 115. doi: 10.1186/1471-2164-12-115
![]() |
[124] |
Chou TF, Deshaies RJ (2011) Quantitative cell-based protein degradation assays to identify and classify drugs that target the ubiquitin-proteasome system. J Biol Chem 286: 16546-16554. doi: 10.1074/jbc.M110.215319
![]() |
[125] |
He L, Binari R, Huang J, et al. (2019) In vivo study of gene expression with an enhanced dual-color fluorescent transcriptional timer. Elife 8: e46181. doi: 10.7554/eLife.46181
![]() |
[126] |
Mei L, Fan Y, Lv X, et al. (2018) Long-term in vivo recording of circadian rhythms in brains of freely moving mice. Proc Natl Acad Sci 115: 4276-4281. doi: 10.1073/pnas.1717735115
![]() |
[127] |
Ando H, Hirose M, Kurosawa G, et al. (2017) Time-lapse imaging of microRNA activity reveals the kinetics of microRNA activation in single living cells. Sci Rep 7: 1-16. doi: 10.1038/s41598-016-0028-x
![]() |
[128] |
Sharifnia P, Kim KW, Wu Z, et al. (2017) Distinct cis elements in the 3′ UTR of the C. elegans cebp-1 mRNA mediate its regulation in neuronal development. Dev Biol 429: 240-248. doi: 10.1016/j.ydbio.2017.06.022
![]() |
[129] |
Toneff MJ, Sreekumar A, Tinnirello A, et al. (2016) The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states. BMC Biol 14: 47. doi: 10.1186/s12915-016-0269-y
![]() |
[130] |
Stacer AC, Wang H, Fenner J, et al. (2015) Imaging reporters for proteasome activity identify tumor- and metastasis-initiating cells. Mol Imaging 14: 414-428. doi: 10.2310/7290.2015.00016
![]() |
[131] |
Langenbach KJ, Elliott JT, Tona A, et al. (2006) Thin films of type 1 collagen for cell by cell analysis of morphology and tenascin-C promoter activity. BMC Biotechnol 6: 14. doi: 10.1186/1472-6750-6-14
![]() |
[132] |
Raser JM, O'Shea EK (2005) Noise in gene expression: Origins, consequences, and control. Science 309: 2010-2013. doi: 10.1126/science.1105891
![]() |
[133] |
Deng W, Bates JA, Wei H, et al. (2020) Tunable light and drug induced depletion of target proteins. Nat Commun 11: 304. doi: 10.1038/s41467-019-14160-8
![]() |
[134] |
Gilon T, Chomsky O, Kulka RG (2000) Degradation signals recognized by the Ubc6p-Ubc7p ubiquitin-conjugating enzyme pair. Mol Cell Biol 20: 7214-7219. doi: 10.1128/MCB.20.19.7214-7219.2000
![]() |
[135] |
Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292: 1552-1555. doi: 10.1126/science.292.5521.1552
![]() |
[136] |
Schipper-Krom S, Sanz AS, van Bodegraven EJ, et al. (2019) Visualizing proteasome activity and intracellular localization using fluorescent proteins and activity-based probes. Front Mol Biosci 6: 56. doi: 10.3389/fmolb.2019.00056
![]() |
[137] |
Dyson MR (2016) Fundamentals of expression in mammalian cells. Advances in Experimental Medicine and Biology Switzerland: Springer, 217-224. doi: 10.1007/978-3-319-27216-0_14
![]() |
[138] |
Voss U, Larrieu A, Wells DM (2013) From jellyfish to biosensors: The use of fluorescent proteins in plants. Int J Dev Biol 57: 525-533. doi: 10.1387/ijdb.130208dw
![]() |
[139] |
Colman-Lerner A, Gordon A, Serra E, et al. (2005) Regulated cell-to-cell variation in a cell-fate decision system. Nature 437: 699-706. doi: 10.1038/nature03998
![]() |
[140] |
Gordon A, Colman-lerner A, Chin TE, et al. (2007) Single-cell quantification of molecules and rates using open-source microscope-based cytometry. Nat Methods 4: 175-181. doi: 10.1038/nmeth1008
![]() |
[141] |
Grossmann G, Krebs M, Maizel A, et al. (2018) Green light for quantitative live-cell imaging in plants. J Cell Sci 131: jcs209270. doi: 10.1242/jcs.209270
![]() |
[142] |
Croce AC, Bottiroli G (2017) Autofluorescence spectroscopy for monitoring metabolism in animal cells and tissues. Histochemistry of Single Molecules New York: Humana Press, 15-43. doi: 10.1007/978-1-4939-6788-9_2
![]() |
[143] |
Feuchtinger A, Walch A, Dobosz M (2016) Deep tissue imaging: a review from a preclinical cancer research perspective. Histochem Cell Biol 146: 781-806. doi: 10.1007/s00418-016-1495-7
![]() |
[144] |
Zhao W, Bonem M, McWhite C, et al. (2014) Sensitive detection of proteasomal activation using the Deg-On mammalian synthetic gene circuit. Nat Commun 5: 3612. doi: 10.1038/ncomms4612
![]() |
[145] |
Adam V, Nienhaus K, Bourgeois D, et al. (2009) Structural basis of enhanced photoconversion yield in green fluorescent protein-like protein Dendra2. Biochemistry 48: 4905-4915. doi: 10.1021/bi900383a
![]() |
[146] |
Adam V, Moeyaert B, David CC, et al. (2011) Rational design of photoconvertible and biphotochromic fluorescent proteins for advanced microscopy applications. Chem Biol 18: 1241-1251. doi: 10.1016/j.chembiol.2011.08.007
![]() |
[147] |
Gurskaya NG, Verkhusha VV, Shcheglov AS, et al. (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24: 461-465. doi: 10.1038/nbt1191
![]() |
[148] |
Hoi H, Shaner NC, Davidson MW, et al. (2010) A monomeric photoconvertible fluorescent protein for imaging of dynamic protein localization. J Mol Biol 401: 776-791. doi: 10.1016/j.jmb.2010.06.056
![]() |
[149] |
Hamer G, Matilainen O, Holmberg CI (2010) A photoconvertible reporter of the ubiquitin-proteasome system in vivo. Nat Methods 7: 473-478. doi: 10.1038/nmeth.1460
![]() |
[150] |
Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297: 1873-1877. doi: 10.1126/science.1074952
![]() |
[151] | Heidary DK, Fox A, Richards CI, et al. (2017) A high-throughput screening assay using a photoconvertable protein for identifying inhibitors of transcription, translation, or proteasomal degradation. SLAS Discov 22: 399-407. |
[152] |
Kiuchi T, Nagai T, Ohashi K, et al. (2011) Measurements of spatiotemporal changes in G-actin concentration reveal its effect on stimulus-induced actin assembly and lamellipodium extension. J Cell Biol 193: 365-380. doi: 10.1083/jcb.201101035
![]() |
[153] |
Drocco JA, Grimm O, Tank DW, et al. (2011) Measurement and perturbation of morphogen lifetime: Effects on gradient shape. Biophys J 101: 1807-1815. doi: 10.1016/j.bpj.2011.07.025
![]() |
[154] | Rogers KW, Bläßle A, Schier AF, et al. (2015) Measuring protein stability in living zebrafish embryos using fluorescence decay after photoconversion (FDAP). JoVE 95: e52266. |
[155] |
Plachta N, Bollenbach T, Pease S, et al. (2011) Oct4 kinetics predict cell lineage patterning in the early mammalian embryo. Nat Cell Biol 13: 117-123. doi: 10.1038/ncb2154
![]() |
[156] |
Goldberg AL, Dice JF (1974) Intracellular protein degradation in mammalian and bacterial cells. Annu Rev Biochem 43: 835-869. doi: 10.1146/annurev.bi.43.070174.004155
![]() |
[157] |
Schimke RT, Doyle D (1970) Control of enzyme levels in animal tissues. Annu Rev Biochem 39: 929-976. doi: 10.1146/annurev.bi.39.070170.004433
![]() |
[158] |
McShane E, Sin C, Zauber H, et al. (2016) Kinetic analysis of protein stability reveals age-dependent degradation. Cell 167: 803-815.e21. doi: 10.1016/j.cell.2016.09.015
![]() |
[159] |
Verzijlbergen KF, Menendez-Benito V, van Welsem T, et al. (2010) Recombination-induced tag exchange to track old and new proteins. Proc Natl Acad Sci 107: 64-68. doi: 10.1073/pnas.0911164107
![]() |
[160] |
Buchwalter A, Schulte R, Tsai H, et al. (2019) Selective clearance of the inner nuclear membrane protein emerin by vesicular transport during ER stress. Elife 8: e49796. doi: 10.7554/eLife.49796
![]() |
[161] |
Toyama BH, Drigo RA, Lev-Ram V, et al. (2019) Visualization of long-lived proteins reveals age mosaicism within nuclei of postmitotic cells. J Cell Biol 218: 433-444. doi: 10.1083/jcb.201809123
![]() |
[162] |
van Deventer S, Menendez-Benito V, van Leeuwen F, et al. (2015) N-terminal acetylation and replicative age affect proteasome localization and cell fitness during aging. J Cell Sci 128: 109-117. doi: 10.1242/jcs.157354
![]() |
[163] |
Hughes AL, Hughes CE, Henderson KA, et al. (2016) Selective sorting and destruction of mitochondrial membrane proteins in aged yeast. Elife 5: e13943. doi: 10.7554/eLife.13943
![]() |
[164] |
Thayer NH, Leverich CK, Fitzgibbon MP, et al. (2014) Identification of long-lived proteins retained in cells undergoing repeated asymmetric divisions. Proc Natl Acad Sci 111: 14019-14026. doi: 10.1073/pnas.1416079111
![]() |
[165] |
Koren I, Timms RT, Kula T, et al. (2018) The eukaryotic proteome is shaped by E3 ubiquitin ligases targeting C-terminal Degrons. Cell 173: 1622-1635.e14. doi: 10.1016/j.cell.2018.04.028
![]() |
[166] |
Wilmington SR, Matouschek A (2016) An inducible system for rapid degradation of specific cellular proteins using proteasome adaptors. PLoS One 11: e0152679. doi: 10.1371/journal.pone.0152679
![]() |
[167] |
Mizuguchi H, Xu Z, Ishii-Watabe A, et al. (2000) IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther 1: 376-382. doi: 10.1006/mthe.2000.0050
![]() |
[168] |
Wong ET, Ngoi SM, Lee CGL (2002) Improved co-expression of multiple genes in vectors containing internal ribosome entry sites (IRESes) from human genes. Gene Ther 9: 337-344. doi: 10.1038/sj.gt.3301667
![]() |
[169] |
Licursi M, Christian SL, Pongnopparat T, et al. (2011) In vitro and in vivo comparison of viral and cellular internal ribosome entry sites for bicistronic vector expression. Gene Ther 18: 631-636. doi: 10.1038/gt.2011.11
![]() |
[170] |
Koh EYC, Ho SCL, Mariati, et al. (2013) An internal ribosome entry site (IRES) mutant library for tuning expression level of multiple genes in mammalian cells. PLoS One 8: e82100. doi: 10.1371/journal.pone.0082100
![]() |
[171] |
Chappell SA, Edelman GM, Mauro VP (2000) A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proc Natl Acad Sci 97: 1536-1541. doi: 10.1073/pnas.97.4.1536
![]() |
[172] |
Hennecke M (2001) Composition and arrangement of genes define the strength of IRES-driven translation in bicistronic mRNAs. Nucleic Acids Res 29: 3327-3334. doi: 10.1093/nar/29.16.3327
![]() |
[173] |
Al-Allaf FA, Abduljaleel Z, Athar M, et al. (2019) Modifying inter-cistronic sequence significantly enhances IRES dependent second gene expression in bicistronic vector: Construction of optimised cassette for gene therapy of familial hypercholesterolemia. Non-coding RNA Res 4: 1-14. doi: 10.1016/j.ncrna.2018.11.005
![]() |
[174] | Kim JH, Lee SR, Li LH, et al. (2011) High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6: 1-8. |
[175] |
De Felipe P, Luke GA, Brown JD, et al. (2010) Inhibition of 2A-mediated ‘cleavage’ of certain artificial polyproteins bearing N-terminal signal sequences. Biotechnol J 5: 213-223. doi: 10.1002/biot.200900134
![]() |
[176] |
Lo CA, Kays I, Emran F, et al. (2015) Quantification of protein levels in single living cells. Cell Rep 13: 2634-2644. doi: 10.1016/j.celrep.2015.11.048
![]() |
[177] |
de Felipe P (2004) Skipping the co-expression problem: The new 2A ‘CHYSEL’ technology. Genet Vaccines Ther 2: 13. doi: 10.1186/1479-0556-2-13
![]() |
[178] |
Luke GA, Ryan MD (2018) Using the 2A protein coexpression system: Multicistronic 2A vectors expressing gene(s) of interest and reporter proteins. Reporter Gene Assays New York: Humana Press, 31-48. doi: 10.1007/978-1-4939-7724-6_3
![]() |
[179] |
Kreidenweiss A, Hopkins A V., Mordmüller B (2013) 2A and the auxin-based degron system facilitate control of protein levels in Plasmodium falciparum. PLoS One 8: 2-7. doi: 10.1371/journal.pone.0078661
![]() |
[180] | Hepp S, Trauth J, Hasenjäger S, et al. (2020) An optogenetic tool for induced protein stabilization based on the Phaeodactylum tricornutum aureochrome 1a LOV domain. J Mol Biol . |
[181] |
Yu H, Kago G, Yellman CM, et al. (2016) Ubiquitin-like domains can target to the proteasome but proteolysis requires a disordered region. EMBO J 35: 1522-1536. doi: 10.15252/embj.201593147
![]() |
[182] |
Fernandes AC, Uytterhoeven V, Kuenen S, et al. (2014) Reduced synaptic vesicle protein degradation at lysosomes curbs TBC1D24/sky-induced neurodegeneration. J Cell Biol 207: 453-462. doi: 10.1083/jcb.201406026
![]() |
[183] |
Saeki Y, Kudo T, Sone T, et al. (2009) Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J 28: 359-371. doi: 10.1038/emboj.2008.305
![]() |
[184] |
Nager AR, Baker TA, Sauer RT (2011) Stepwise unfolding of a β barrel protein by the AAA+ ClpXP protease. J Mol Biol 413: 4-16. doi: 10.1016/j.jmb.2011.07.041
![]() |
[185] |
Yamaguchi N, Colak-Champollion T, Knaut H (2019) zGrad is a nanobody-based degron system that inactivates proteins in zebrafish. Elife 8: e43125. doi: 10.7554/eLife.43125
![]() |
[186] |
Botman D, de Groot DH, Schmidt P, et al. (2019) In vivo characterisation of fluorescent proteins in budding yeast. Sci Rep 9: 2234. doi: 10.1038/s41598-019-38913-z
![]() |
[187] | El Mouridi S, Lecroisey C, Tardy P, et al. (2017) Reliable CRISPR/Cas9 genome engineering in Caenorhabditis elegans using a single efficient sgRNA and an easily recognizable phenotype. G3: Genes, Genomes, Genetics 7: 1429-1437. |
[188] |
Barondeau DP, Kassmann CJ, Tainer J a, et al. (2006) Understanding GFP posttranslational chemistry: structures of designed variants that achieve backbone fragmentation, hydrolysis, and decarboxylation. J Am Chem Soc 128: 4685-4693. doi: 10.1021/ja056635l
![]() |
[189] |
Chudakov DM, Matz MV., Lukyanov S, et al. (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90: 1103-1163. doi: 10.1152/physrev.00038.2009
![]() |
[190] |
Borst JW, Visser AJWG (2010) Fluorescence lifetime imaging microscopy in life sciences. Meas Sci Technol 21: 102002. doi: 10.1088/0957-0233/21/10/102002
![]() |
[191] |
Burgstaller S, Bischof H, Gensch T, et al. (2019) PH-Lemon, a fluorescent protein-based pH reporter for acidic compartments. ACS Sensors 4: 883-891. doi: 10.1021/acssensors.8b01599
![]() |
[192] |
Fan Y, Ai HW (2016) Development of redox-sensitive red fluorescent proteins for imaging redox dynamics in cellular compartments. Anal Bioanal Chem 408: 2901-2911. doi: 10.1007/s00216-015-9280-3
![]() |
[193] |
Sugiura K, Tanaka H, Kurisu G, et al. (2019) Multicolor redox sensor proteins can visualize redox changes in various compartments of the living cell. Biochim Biophys Acta-Gen Subj 1863: 1098-1107. doi: 10.1016/j.bbagen.2019.01.016
![]() |
[194] |
Germond A, Fujita H, Ichimura T, et al. (2016) Design and development of genetically encoded fluorescent sensors to monitor intracellular chemical and physical parameters. Biophys Rev 8: 121-138. doi: 10.1007/s12551-016-0195-9
![]() |
[195] |
Li W, Houston KD, Houston JP (2017) Shifts in the fluorescence lifetime of EGFP during bacterial phagocytosis measured by phase-sensitive flow cytometry. Sci Rep 7: 1-11. doi: 10.1038/s41598-016-0028-x
![]() |
[196] |
Costantini LM, Snapp EL (2013) Fluorescent proteins in cellular organelles: Serious pitfalls and some solutions. DNA Cell Biol 32: 622-627. doi: 10.1089/dna.2013.2172
![]() |
[197] |
Jain RK, Joyce PBM, Molinete M, et al. (2001) Oligomerization of green fluorescent protein in the secretory pathway of endocrine cells. Biochem J 360: 645-649. doi: 10.1042/bj3600645
![]() |
[198] |
Ashikawa Y, Ihara M, Matsuura N, et al. (2011) GFP-based evaluation system of recombinant expression through the secretory pathway in insect cells and its application to the extracellular domains of class C GPCRs. Protein Sci 20: 1720-1734. doi: 10.1002/pro.707
![]() |
[199] |
Boevink P, Martin B, Oparka K, et al. (1999) Transport of virally expressed green fluorescent protein through the secretory pathway in tobacco leaves is inhibited by cold shock and brefeldin A. Planta 208: 392-400. doi: 10.1007/s004250050574
![]() |
[200] |
Kaberniuk AA, Morano NC, Verkhusha VV, et al. (2017) moxDendra2: an inert photoswitchable protein for oxidizing environments. Chem Commun 53: 2106-2109. doi: 10.1039/C6CC09997A
![]() |
[201] |
Costantini LM, Subach OM, Jaureguiberry-bravo M, et al. (2013) Cysteineless non-glycosylated monomeric blue fluorescent protein, secBFP2, for studies in the eukaryotic secretory pathway. Biochem Biophys Res Commun 430: 1114-1119. doi: 10.1016/j.bbrc.2012.12.028
![]() |
[202] |
Kaberniuk AA, Mohr MA, Verkhusha VV, et al. (2018) moxMaple3: a photoswitchable fluorescent protein for PALM and protein highlighting in oxidizing cellular environments. Sci Rep 8: 1-10. doi: 10.1038/s41598-018-32955-5
![]() |
[203] |
Grotzke JE, Lu Q, Cresswell P (2013) Deglycosylation-dependent fluorescent proteins provide unique tools for the study of ER-associated degradation. Proc Natl Acad Sci 110: 3393-3398. doi: 10.1073/pnas.1300328110
![]() |
[204] |
Rajan RS, Illing ME, Bence NF, et al. (2001) Specificity in intracellular protein aggregation and inclusion body formation. Proc Natl Acad Sci 98: 13060-13065. doi: 10.1073/pnas.181479798
![]() |
[205] |
Trojanowski JQ, Lee VM-Y (2000) “Fatal attractions” of proteins: A comprehensive hypothetical mechanism underlying Alzheimer's disease and other neurodegenerative disorders. Ann N Y Acad Sci 924: 62-67. doi: 10.1111/j.1749-6632.2000.tb05561.x
![]() |
[206] |
Piston DW, Kremers GJ (2007) Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem Sci 32: 407-414. doi: 10.1016/j.tibs.2007.08.003
![]() |
1. | M. Nagy, Adel Fahad Alrasheedi, Behnaz Ghoraani, Estimations of Generalized Exponential Distribution Parameters Based on Type I Generalized Progressive Hybrid Censored Data, 2022, 2022, 1748-6718, 1, 10.1155/2022/8058473 | |
2. | M. Nagy, Adel Fahad Alrasheedi, Muye Pang, Classical and Bayesian Inference Using Type-II Unified Progressive Hybrid Censored Samples for Pareto Model, 2022, 2022, 1754-2103, 1, 10.1155/2022/2073067 | |
3. | M. Nagy, M. H. Abu-Moussa, Adel Fahad Alrasheedi, A. Rabie, Expected Bayesian estimation for exponential model based on simple step stress with Type-I hybrid censored data, 2022, 19, 1551-0018, 9773, 10.3934/mbe.2022455 | |
4. | M. Nagy, Expected Bayesian estimation based on generalized progressive hybrid censored data for Burr-XII distribution with applications, 2024, 14, 2158-3226, 10.1063/5.0184910 | |
5. | Magdy Nagy, Mohamed Ahmed Mosilhy, Ahmed Hamdi Mansi, Mahmoud Hamed Abu-Moussa, An Analysis of Type-I Generalized Progressive Hybrid Censoring for the One Parameter Logistic-Geometry Lifetime Distribution with Applications, 2024, 13, 2075-1680, 692, 10.3390/axioms13100692 | |
6. | Mahmoud M. Abdelwahab, Anis Ben Ghorbal, Amal S. Hassan, Mohammed Elgarhy, Ehab M. Almetwally, Atef F. Hashem, Classical and Bayesian Inference for the Kavya–Manoharan Generalized Exponential Distribution under Generalized Progressively Hybrid Censored Data, 2023, 15, 2073-8994, 1193, 10.3390/sym15061193 |
Algorithm 1 MCMC method. |
Step 1, start with λ(0)=ˆλML and μ(0)=ˆμML |
Step 2, set i=1 |
Step 3, Generate λ(i)∼GammaDist.[D∗+a,W(μ(i−1)|x_)+b1]=π∗1(λ|μ(i−1);x_) |
Step 4, Generate a proposal μ(∗) from N(μ(i−1),V(μ)) |
Step 5, Calculate the acceptance probabilities dμ=min[1,π∗2(μ(∗)|λ(i−1))π∗1(μ(i−1)|λ(i−1))] |
Step 6, Generate u1 that follows a U(0,1) distribution. If u1≤dμ, set μ(i)=μ(∗); otherwise, set μ(i)=μ(i−1) |
Step 7, set i=i+1, repeat steps 3 to 7, N times and obtain (λ(j),μ(j)), j=1,2,...,N. |
Step 8, Remove the first B values for λ and μ, which is the burn-in period of λ(j) and μ(j), respectively, where j=1,2,...,N−B. |
IP | NIP | |||||||
Sch. | j | ρ | ˆXρ:R∗j | ET interval | HPD interval | ˆXρ:R∗j | ET interval | HPD interval |
1 | 3 | 1 | 4.824 | (1.322, 21.783) | (1.214, 17.062) | 6.410 | (1.324, 23.275) | (1.214, 18.034) |
2 | 10.634 | (2.417, 42.868) | (1.319, 34.499) | 14.202 | (2.429, 46.302) | (1.308, 36.810) | ||
3 | 22.254 | (5.271, 86.933) | (2.348, 70.530) | 29.787 | (5.289, 94.280) | (2.274, 75.524) | ||
7 | 1 | 5.914 | (5.943, 12.764) | (5.908, 11.190) | 7.639 | (5.944, 13.261) | (5.908, 11.514) | |
2 | 7.367 | (6.254, 17.586) | (5.939, 15.267) | 9.587 | (6.258, 18.558) | (5.935, 15.923) | ||
3 | 9.027 | (6.817, 22.790) | (6.182, 19.570) | 11.814 | (6.821, 24.302) | (6.071, 20.612) | ||
4 | 10.964 | (7.581, 28.762) | (6.654, 24.889) | 14.411 | (7.581, 30.909) | (6.608, 26.363) | ||
5 | 13.288 | (8.553, 35.920) | (7.294, 31.039) | 17.528 | (8.544, 38.832) | (7.213, 33.049) | ||
6 | 16.192 | (9.782, 44.951) | (8.125, 38.766) | 21.424 | (9.761, 48.820) | (8.000, 41.448) | ||
7 | 20.066 | (11.390, 57.239) | (9.351, 48.369) | 26.619 | (11.351, 62.390) | (9.026, 52.794) | ||
8 | 25.877 | (13.657, 76.426) | (10.679, 65.357) | 34.412 | (13.592, 83.499) | (10.421, 70.278) | ||
9 | 37.497 | (17.494,118.537) | (12.895, 99.972) | 49.997 | (17.400,129.445) | (12.532,107.555) | ||
2 | 3 | 1 | 4.924 | (1.330, 21.776) | (1.214, 17.251) | 6.488 | (1.332, 22.842) | (1.214, 17.983) |
2 | 10.886 | (2.506, 42.386) | (1.343, 34.584) | 14.399 | (2.526, 44.762) | (1.337, 36.266) | ||
3 | 22.809 | (5.601, 85.629) | (5.198, 69.693) | 30.221 | (5.656, 90.660) | (5.227, 73.313) | ||
6 | 1 | 8.082 | (5.365, 25.811) | (5.250, 21.286) | 10.524 | (5.367, 26.877) | (5.250, 22.019) | |
2 | 14.044 | (6.541, 46.422) | (5.379, 38.619) | 18.435 | (6.562, 48.797) | (5.372, 40.302) | ||
3 | 25.967 | (9.637, 89.664) | (9.233, 73.728) | 34.256 | (9.691, 94.695) | (9.262, 77.348) | ||
9 | 1 | 10.305 | (10.188, 22.456) | (10.120, 19.742) | 13.284 | (10.191, 23.096) | (10.120, 20.181) | |
2 | 13.285 | (10.826, 32.161) | (10.192, 28.030) | 17.239 | (10.837, 33.440) | (10.190, 28.937) | ||
3 | 17.260 | (12.126, 44.641) | (12.105, 38.397) | 22.513 | (12.152, 46.768) | (10.856, 39.936) | ||
4 | 23.220 | (14.248, 63.813) | (12.029, 55.213) | 30.425 | (14.288, 67.225) | (11.978, 57.679) | ||
5 | 35.144 | (18.060,105.916) | (14.149, 90.288) | 46.246 | (18.126,111.946) | (14.055, 94.654) | ||
3 | 3 | 1 | 5.061 | (1.335, 22.283) | (1.214, 17.716) | 6.661 | (1.337, 23.291) | (1.214, 18.425) |
2 | 11.226 | (2.572, 43.235) | (1.356, 35.439) | 14.832 | (2.597, 45.441) | (1.351, 37.039) | ||
3 | 23.556 | (5.834, 87.257) | (2.664, 72.209) | 31.172 | (5.910, 91.905) | (2.639, 75.613) | ||
6 | 1 | 8.219 | (5.370, 26.318) | (5.250, 21.752) | 10.697 | (5.372, 27.327) | (5.250, 22.460) | |
2 | 14.384 | (6.607, 47.271) | (5.391, 39.474) | 18.867 | (6.632, 49.477) | (5.386, 41.075) | ||
3 | 26.714 | (9.870, 91.293) | (6.612, 75.361) | 35.207 | (9.945, 95.940) | (6.674, 79.648) | ||
9 | 1 | 26.714 | (9.870, 91.293) | (9.142, 75.361) | 15.580 | (10.255, 32.209) | (10.133, 27.343) | |
2 | 18.205 | (11.490, 52.153) | (10.274, 44.357) | 23.750 | (11.515, 54.360) | (10.269, 45.957) | ||
3 | 30.536 | (14.752, 96.175) | (11.495, 80.244) | 40.090 | (14.828,100.823) | (11.514, 83.663) |
IP | NIP | ||||||
Sch. | s | ˆYs:N | ET interval | HPD interval | ˆYs:N | ET interval | HPD interval |
1 | 1 | 0.704 | (0.016, 2.927) | (0.000, 2.255) | 0.739 | (0.016, 3.139) | (0.000, 2.393) |
2 | 0.972 | (0.143, 4.811) | (0.013, 3.858) | 1.014 | (0.144, 5.212) | (0.012, 4.127) | |
3 | 1.314 | (0.361, 6.671) | (0.114, 5.470) | 1.381 | (0.362, 7.270) | (0.106, 5.878) | |
4 | 1.760 | (0.668, 9.119) | (0.299, 7.574) | 1.861 | (0.668, 9.976) | (0.281, 8.162) | |
5 | 2.216 | (1.036, 11.675) | (0.545, 9.782) | 2.356 | (1.032, 12.810) | (0.514, 10.566) | |
6 | 2.696 | (1.457, 14.399) | (0.842, 12.142) | 2.878 | (1.448, 15.838) | (0.794, 13.139) | |
7 | 3.481 | (2.039, 18.751) | (1.237, 15.844) | 3.724 | (2.023, 20.644) | (1.169, 17.159) | |
8 | 4.352 | (2.726, 23.618) | (1.717, 20.008) | 4.666 | (2.702, 26.033) | (1.622, 21.689) | |
9 | 5.356 | (3.544, 29.252) | (2.293, 24.833) | 5.753 | (3.509, 32.275) | (2.167, 26.942) | |
10 | 9.350 | (5.264, 50.149) | (3.233, 41.790) | 9.952 | (5.218, 54.977) | (3.068, 45.151) | |
2 | 1 | 0.722 | (0.017, 2.926) | (0.000, 2.282) | 0.750 | (0.017, 3.077) | (0.000, 2.386) |
2 | 0.978 | (0.154, 4.751) | (0.016, 3.865) | 1.060 | (0.156, 5.028) | (0.016, 4.061) | |
3 | 1.308 | (0.391, 6.536) | (0.134, 5.450) | 1.423 | (0.396, 6.943) | (0.131, 5.742) | |
4 | 1.738 | (0.727, 8.892) | (0.350, 7.520) | 1.898 | (0.734, 9.468) | (0.341, 7.938) | |
5 | 2.172 | (1.132, 11.338) | (0.638, 9.684) | 2.382 | (1.140, 12.097) | (0.622, 10.237) | |
6 | 2.627 | (1.596, 13.939) | (0.984, 11.990) | 2.890 | (1.606, 14.898) | (0.959, 12.690) | |
7 | 3.380 | (2.238, 18.128) | (1.444, 15.628) | 3.726 | (2.249, 19.387) | (1.408, 16.549) | |
8 | 4.213 | (3.000, 22.800) | (2.003, 19.709) | 4.650 | (3.011, 24.402) | (1.954, 20.885) | |
9 | 5.168 | (3.905, 28.199) | (2.675, 24.436) | 5.714 | (3.916, 30.202) | (2.608, 25.909) | |
10 | 9.146 | (5.795, 48.785) | (3.750, 41.359) | 10.042 | (5.814, 52.007) | (3.667, 43.723) | |
3 | 1 | 0.748 | (0.017, 2.998) | (0.000, 2.348) | 0.775 | (0.018, 3.142) | (0.000, 2.449) |
2 | 1.042 | (0.162, 4.847) | (0.018, 3.964) | 1.051 | (0.164, 5.104) | (0.017, 4.150) | |
3 | 1.386 | (0.412, 6.650) | (0.146, 5.579) | 1.405 | (0.419, 7.024) | (0.144, 5.854) | |
4 | 1.836 | (0.768, 9.030) | (0.380, 7.686) | 1.867 | (0.779, 9.557) | (0.374, 8.077) | |
5 | 2.288 | (1.196, 11.496) | (0.691, 9.887) | 2.335 | (1.211, 12.187) | (0.680, 10.403) | |
6 | 2.761 | (1.690, 14.117) | (1.066, 12.229) | 2.825 | (1.708, 14.987) | (1.050, 12.881) | |
7 | 3.551 | (2.371, 18.349) | (1.564, 15.931) | 3.637 | (2.394, 19.492) | (1.541, 16.788) | |
8 | 4.418 | (3.181, 23.064) | (2.170, 20.083) | 4.534 | (3.209, 24.515) | (2.137, 21.175) | |
9 | 5.414 | (4.142, 28.510) | (2.897, 24.888) | 5.563 | (4.176, 30.322) | (2.855, 26.255) | |
10 | 9.635 | (6.145, 49.504) | (4.051, 42.221) | 9.839 | (6.198, 52.438) | (4.002, 44.426) |
Bayesian | |||||||||
{ˆλBS | {ˆλBL | {ˆλBE | |||||||
Sch. | T | (n,m,k) | ˆλML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.5082 | 0.0244 | 0.5305 | 0.0239 | 0.3282 | 0.0243 | 0.3739 |
(40, 20, 15) | 0.5186 | 0.0192 | 0.5693 | 0.0187 | 0.3517 | 0.0190 | 0.4026 | ||
(60, 30, 20) | 0.4127 | 0.0173 | 0.4355 | 0.0170 | 0.2675 | 0.0171 | 0.3403 | ||
T=0.7 | (30, 20, 15) | 0.2879 | 0.0259 | 0.2666 | 0.0252 | 0.2114 | 0.0255 | 0.2243 | |
(40, 20, 15) | 0.6400 | 0.0203 | 0.6240 | 0.0199 | 0.3760 | 0.0202 | 0.4454 | ||
(60, 30, 20) | 0.2110 | 0.0172 | 0.2007 | 0.0170 | 0.1646 | 0.0172 | 0.1708 | ||
T=1.5 | (30, 20, 15) | 0.2843 | 0.0250 | 0.2671 | 0.0242 | 0.2085 | 0.0245 | 0.2198 | |
(40, 20, 15) | 0.5891 | 0.0226 | 0.5973 | 0.0222 | 0.3726 | 0.0225 | 0.4423 | ||
(60, 30, 20) | 0.2528 | 0.0175 | 0.2440 | 0.0171 | 0.1921 | 0.0172 | 0.2036 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.5166 | 0.0252 | 0.5284 | 0.0245 | 0.3486 | 0.0250 | 0.3869 |
(40, 20, 15) | 0.5489 | 0.0197 | 0.5772 | 0.0194 | 0.3644 | 0.0197 | 0.4159 | ||
(60, 30, 20) | 0.3080 | 0.0174 | 0.3002 | 0.0172 | 0.2285 | 0.0174 | 0.2459 | ||
T=0.7 | (30, 20, 15) | 0.3489 | 0.0255 | 0.3314 | 0.0247 | 0.2473 | 0.0250 | 0.2673 | |
(40, 20, 15) | 0.5221 | 0.0191 | 0.5308 | 0.0187 | 0.3333 | 0.0190 | 0.3778 | ||
(60, 30, 20) | 0.2269 | 0.0164 | 0.2135 | 0.0160 | 0.1734 | 0.0162 | 0.1794 | ||
T=1.5 | (30, 20, 15) | 0.3369 | 0.0265 | 0.3188 | 0.0256 | 0.2451 | 0.0259 | 0.2584 | |
(40, 20, 15) | 0.6190 | 0.0205 | 0.6676 | 0.0198 | 0.3925 | 0.0200 | 0.4631 | ||
(60, 30, 20) | 0.2130 | 0.0177 | 0.2087 | 0.0173 | 0.1658 | 0.0174 | 0.1737 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.5166 | 0.0252 | 0.5284 | 0.0245 | 0.3486 | 0.0250 | 0.3869 |
(40, 20, 15) | 1.4205 | 0.0173 | 2.3081 | 0.0169 | 0.7138 | 0.0171 | 1.1274 | ||
(60, 30, 20) | 0.3416 | 0.0162 | 0.3652 | 0.0159 | 0.2586 | 0.0161 | 0.2772 | ||
T=0.7 | (30, 20, 15) | 0.5049 | 0.0246 | 0.5692 | 0.0238 | 0.3290 | 0.0241 | 0.4095 | |
(40, 20, 15) | 1.2471 | 0.0183 | 1.7174 | 0.0179 | 0.6258 | 0.0181 | 0.9441 | ||
(60, 30, 20) | 0.3569 | 0.0152 | 0.3705 | 0.0149 | 0.2577 | 0.0151 | 0.2792 | ||
T=1.5 | (30, 20, 15) | 0.4781 | 0.0246 | 0.5283 | 0.0238 | 0.3279 | 0.0241 | 0.3805 | |
(40, 20, 15) | 1.4825 | 0.0182 | 2.0789 | 0.0179 | 0.6943 | 0.0181 | 1.0823 | ||
(60, 30, 20) | 0.3832 | 0.0164 | 0.4044 | 0.0161 | 0.2737 | 0.0163 | 0.3012 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.1962 | 0.0036 | 0.1983 | 0.0069 | 0.1024 | 0.0121 | 0.0855 |
(40, 20, 15) | 0.1816 | 0.0052 | 0.1950 | 0.0036 | 0.0900 | 0.0079 | 0.0715 | ||
(60, 30, 20) | 0.1219 | 0.0057 | 0.1268 | 0.0019 | 0.0649 | 0.0057 | 0.0502 | ||
T=0.7 | (30, 20, 15) | 0.1114 | 0.0075 | 0.0936 | 0.0029 | 0.0436 | 0.0080 | 0.0274 | |
(40, 20, 15) | 0.2209 | 0.0041 | 0.2048 | 0.0046 | 0.1182 | 0.0089 | 0.1086 | ||
(60, 30, 20) | 0.0984 | 0.0019 | 0.0884 | 0.0054 | 0.0519 | 0.0090 | 0.0403 | ||
T=1.5 | (30, 20, 15) | 0.1340 | 0.0092 | 0.1151 | 0.0012 | 0.0662 | 0.0063 | 0.0516 | |
(40, 20, 15) | 0.1950 | 0.0010 | 0.1840 | 0.0077 | 0.1037 | 0.0119 | 0.0935 | ||
(60, 30, 20) | 0.1235 | 0.0052 | 0.1125 | 0.0021 | 0.0748 | 0.0058 | 0.0647 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.2021 | 0.0034 | 0.2015 | 0.0070 | 0.1070 | 0.0122 | 0.0894 |
(40, 20, 15) | 0.1772 | 0.0006 | 0.1840 | 0.0079 | 0.0827 | 0.0122 | 0.0649 | ||
(60, 30, 20) | 0.1107 | 0.0002 | 0.1118 | 0.0072 | 0.0542 | 0.0109 | 0.0379 | ||
T=0.7 | (30, 20, 15) | 0.1516 | 0.0109 | 0.1333 | 0.0007 | 0.0785 | 0.0044 | 0.0645 | |
(40, 20, 15) | 0.2083 | 0.0036 | 0.2028 | 0.0049 | 0.1182 | 0.0091 | 0.1067 | ||
(60, 30, 20) | 0.1205 | 0.0051 | 0.1060 | 0.0021 | 0.0684 | 0.0057 | 0.0573 | ||
T=1.5 | (30, 20, 15) | 0.1597 | 0.0103 | 0.1411 | 0.0001 | 0.0889 | 0.0051 | 0.0757 | |
(40, 20, 15) | 0.2560 | 0.0116 | 0.2477 | 0.0030 | 0.1533 | 0.0012 | 0.1453 | ||
(60, 30, 20) | 0.1101 | 0.0089 | 0.1001 | 0.0016 | 0.0636 | 0.0020 | 0.0529 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.1928 | 0.0034 | 0.2015 | 0.0070 | 0.1070 | 0.0122 | 0.0894 |
(40, 20, 15) | 0.3861 | 0.0032 | 0.4732 | 0.0048 | 0.2402 | 0.0088 | 0.2642 | ||
(60, 30, 20) | 0.1597 | 0.0022 | 0.1710 | 0.0046 | 0.1106 | 0.0081 | 0.1002 | ||
T=0.7 | (30, 20, 15) | 0.1877 | 0.0107 | 0.1846 | 0.0008 | 0.1130 | 0.0040 | 0.1052 | |
(40, 20, 15) | 0.3373 | 0.0014 | 0.4115 | 0.0066 | 0.2144 | 0.0106 | 0.2268 | ||
(60, 30, 20) | 0.1610 | 0.0039 | 0.1703 | 0.0030 | 0.1106 | 0.0064 | 0.1009 | ||
T=1.5 | (30, 20, 15) | 0.1982 | 0.0107 | 0.1950 | 0.0007 | 0.1223 | 0.0041 | 0.1140 | |
(40, 20, 15) | 0.3659 | 0.0018 | 0.4368 | 0.0062 | 0.2275 | 0.0103 | 0.2443 | ||
(60, 30, 20) | 0.1717 | 0.0001 | 0.1788 | 0.0068 | 0.1167 | 0.0103 | 0.1076 |
Bayesian | |||||||||
ˆμBS | ˆμBL | ˆμBE | |||||||
Sch. | T | (n,m,k) | ˆμML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0410 | 0.0066 | 0.0361 | 0.0065 | 0.0337 | 0.0064 | 0.0320 |
(40, 20, 15) | 0.0307 | 0.0051 | 0.0270 | 0.0051 | 0.0257 | 0.0050 | 0.0250 | ||
(60, 30, 20) | 0.0236 | 0.0046 | 0.0214 | 0.0046 | 0.0207 | 0.0046 | 0.0203 | ||
T=0.7 | (30, 20, 15) | 0.0287 | 0.0070 | 0.0246 | 0.0068 | 0.0235 | 0.0066 | 0.0229 | |
(40, 20, 15) | 0.0304 | 0.0054 | 0.0259 | 0.0053 | 0.0248 | 0.0051 | 0.0239 | ||
(60, 30, 20) | 0.0187 | 0.0047 | 0.0163 | 0.0046 | 0.0158 | 0.0046 | 0.0155 | ||
T=1.5 | (30, 20, 15) | 0.0301 | 0.0069 | 0.0257 | 0.0067 | 0.0246 | 0.0066 | 0.0238 | |
(40, 20, 15) | 0.0299 | 0.0060 | 0.0259 | 0.0059 | 0.0248 | 0.0058 | 0.0240 | ||
(60, 30, 20) | 0.0185 | 0.0047 | 0.0161 | 0.0046 | 0.0156 | 0.0046 | 0.0152 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0459 | 0.0069 | 0.0409 | 0.0067 | 0.0382 | 0.0066 | 0.0364 |
(40, 20, 15) | 0.0310 | 0.0054 | 0.0272 | 0.0054 | 0.0259 | 0.0053 | 0.0253 | ||
(60, 30, 20) | 0.0215 | 0.0046 | 0.0190 | 0.0045 | 0.0184 | 0.0044 | 0.0180 | ||
T=0.7 | (30, 20, 15) | 0.0287 | 0.0066 | 0.0248 | 0.0066 | 0.0237 | 0.0064 | 0.0228 | |
(40, 20, 15) | 0.0256 | 0.0052 | 0.0220 | 0.0051 | 0.0210 | 0.0050 | 0.0202 | ||
(60, 30, 20) | 0.0176 | 0.0042 | 0.0153 | 0.0041 | 0.0148 | 0.0041 | 0.0144 | ||
T=1.5 | (30, 20, 15) | 0.0308 | 0.0069 | 0.0268 | 0.0067 | 0.0255 | 0.0066 | 0.0246 | |
(40, 20, 15) | 0.0279 | 0.0053 | 0.0243 | 0.0053 | 0.0231 | 0.0052 | 0.0221 | ||
(60, 30, 20) | 0.0161 | 0.0046 | 0.0140 | 0.0045 | 0.0136 | 0.0044 | 0.0133 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0459 | 0.0069 | 0.0409 | 0.0067 | 0.0382 | 0.0066 | 0.0364 |
(40, 20, 15) | 0.0462 | 0.0046 | 0.0423 | 0.0046 | 0.0393 | 0.0046 | 0.0370 | ||
(60, 30, 20) | 0.0248 | 0.0043 | 0.0226 | 0.0042 | 0.0216 | 0.0042 | 0.0207 | ||
T=0.7 | (30, 20, 15) | 0.0350 | 0.0062 | 0.0304 | 0.0062 | 0.0286 | 0.0061 | 0.0272 | |
(40, 20, 15) | 0.0428 | 0.0051 | 0.0394 | 0.0050 | 0.0369 | 0.0049 | 0.0348 | ||
(60, 30, 20) | 0.0232 | 0.0041 | 0.0208 | 0.0040 | 0.0199 | 0.0040 | 0.0192 | ||
T=1.5 | (30, 20, 15) | 0.0401 | 0.0067 | 0.0354 | 0.0066 | 0.0333 | 0.0065 | 0.0318 | |
(40, 20, 15) | 0.0469 | 0.0050 | 0.0420 | 0.0050 | 0.0392 | 0.0049 | 0.0371 | ||
(60, 30, 20) | 0.0254 | 0.0045 | 0.0224 | 0.0044 | 0.0214 | 0.0043 | 0.0205 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0556 | 0.0107 | 0.0453 | 0.0083 | 0.0378 | 0.0038 | 0.0247 |
(40, 20, 15) | 0.0338 | 0.0057 | 0.0263 | 0.0039 | 0.0204 | 0.0006 | 0.0095 | ||
(60, 30, 20) | 0.0248 | 0.0047 | 0.0194 | 0.0032 | 0.0150 | 0.0003 | 0.0069 | ||
T=0.7 | (30, 20, 15) | 0.0335 | 0.0084 | 0.0246 | 0.0061 | 0.0194 | 0.0015 | 0.0096 | |
(40, 20, 15) | 0.0446 | 0.0077 | 0.0333 | 0.0059 | 0.0285 | 0.0025 | 0.0198 | ||
(60, 30, 20) | 0.0269 | 0.0064 | 0.0210 | 0.0050 | 0.0178 | 0.0021 | 0.0118 | ||
T=1.5 | (30, 20, 15) | 0.0426 | 0.0090 | 0.0324 | 0.0067 | 0.0273 | 0.0022 | 0.0181 | |
(40, 20, 15) | 0.0439 | 0.0092 | 0.0337 | 0.0074 | 0.0291 | 0.0041 | 0.0205 | ||
(60, 30, 20) | 0.0319 | 0.0063 | 0.0260 | 0.0048 | 0.0229 | 0.0020 | 0.0171 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0592 | 0.0104 | 0.0480 | 0.0081 | 0.0403 | 0.0036 | 0.0272 |
(40, 20, 15) | 0.0350 | 0.0081 | 0.0258 | 0.0064 | 0.0200 | 0.0030 | 0.0093 | ||
(60, 30, 20) | 0.0262 | 0.0073 | 0.0200 | 0.0058 | 0.0157 | 0.0030 | 0.0077 | ||
T=0.7 | (30, 20, 15) | 0.0438 | 0.0082 | 0.0348 | 0.0059 | 0.0293 | 0.0015 | 0.0194 | |
(40, 20, 15) | 0.0426 | 0.0073 | 0.0339 | 0.0056 | 0.0291 | 0.0023 | 0.0203 | ||
(60, 30, 20) | 0.0305 | 0.0056 | 0.0224 | 0.0042 | 0.0192 | 0.0014 | 0.0133 | ||
T=1.5 | (30, 20, 15) | 0.0473 | 0.0086 | 0.0378 | 0.0062 | 0.0327 | 0.0018 | 0.0234 | |
(40, 20, 15) | 0.0494 | 0.0045 | 0.0384 | 0.0028 | 0.0335 | 0.0005 | 0.0248 | ||
(60, 30, 20) | 0.0239 | 0.0031 | 0.0184 | 0.0017 | 0.0153 | 0.0011 | 0.0095 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0592 | 0.0104 | 0.0480 | 0.0081 | 0.0403 | 0.0036 | 0.0272 |
(40, 20, 15) | 0.0701 | 0.0073 | 0.0608 | 0.0057 | 0.0534 | 0.0026 | 0.0413 | ||
(60, 30, 20) | 0.0404 | 0.0066 | 0.0353 | 0.0051 | 0.0310 | 0.0024 | 0.0233 | ||
T=0.7 | (30, 20, 15) | 0.0516 | 0.0070 | 0.0422 | 0.0048 | 0.0360 | 0.0005 | 0.0252 | |
(40, 20, 15) | 0.0656 | 0.0084 | 0.0581 | 0.0068 | 0.0510 | 0.0037 | 0.0391 | ||
(60, 30, 20) | 0.0388 | 0.0054 | 0.0332 | 0.0040 | 0.0291 | 0.0013 | 0.0215 | ||
T=1.5 | (30, 20, 15) | 0.0561 | 0.0073 | 0.0464 | 0.0050 | 0.0402 | 0.0007 | 0.0296 | |
(40, 20, 15) | 0.0685 | 0.0077 | 0.0595 | 0.0061 | 0.0524 | 0.0030 | 0.0404 | ||
(60, 30, 20) | 0.0444 | 0.0082 | 0.0375 | 0.0068 | 0.0332 | 0.0041 | 0.0256 |
Bayesian | |||||||||
^S(t)BS | ^S(t)BL | ^S(t)BE | |||||||
Sch. | T | (n,m,k) | ^S(t)ML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0005 | 3.90×10−6 | 0.0016 | 3.90×10−6 | 0.0014 | 2.60×10−6 | 0.0003 |
(40, 20, 15) | 0.0010 | 3.90×10−6 | 0.0026 | 3.90×10−6 | 0.0025 | 1.30×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0007 | 3.90×10−6 | 0.0016 | 3.90×10−6 | 0.0014 | 2.60×10−6 | 0.0004 | ||
T=0.7 | (30, 20, 15) | 0.0005 | 5.20×10−6 | 0.0012 | 5.20×10−6 | 0.0010 | 2.60×10−6 | 0.0003 | |
(40, 20, 15) | 0.0007 | 3.90×10−6 | 0.0014 | 3.90×10−6 | 0.0014 | 2.60×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0003 | 5.20×10−6 | 0.0007 | 5.20×10−6 | 0.0007 | 2.60×10−6 | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0003 | 3.90×10−6 | 0.0008 | 3.90×10−6 | 0.0008 | 2.60×10−6 | 0.0003 | |
(40, 20, 15) | 0.0005 | 5.20×10−6 | 0.0012 | 5.20×10−6 | 0.0012 | 2.60×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0003 | 5.20×10−6 | 0.0005 | 5.20×10−6 | 0.0005 | 2.60×10−6 | 0.0001 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0007 | 3.90×10−6 | 0.0018 | 3.90×10−6 | 0.0017 | 2.60×10−6 | 0.0004 |
(40, 20, 15) | 0.0012 | 3.90×10−6 | 0.0029 | 3.90×10−6 | 0.0027 | 2.60×10−6 | 0.0005 | ||
(60, 30, 20) | 0.0008 | 3.90×10−6 | 0.0017 | 3.90×10−6 | 0.0016 | 2.60×10−6 | 0.0005 | ||
T=0.7 | (30, 20, 15) | 0.0005 | 5.20×10−6 | 0.0010 | 5.20×10−6 | 0.0010 | 2.60×10−6 | 0.0004 | |
(40, 20, 15) | 0.0005 | 3.90×10−6 | 0.0012 | 3.90×10−6 | 0.0012 | 2.60×10−6 | 0.0003 | ||
(60, 30, 20) | 0.0003 | 5.20×10−6 | 0.0005 | 5.20×10−6 | 0.0005 | 2.60×10−6 | 0.0001 | ||
T=1.5 | (30, 20, 15) | 0.0004 | 5.20×10−6 | 0.0008 | 5.20×10−6 | 0.0008 | 2.60×10−6 | 0.0003 | |
(40, 20, 15) | 0.0004 | 3.90×10−6 | 0.0009 | 3.90×10−6 | 0.0009 | 2.60×10−6 | 0.0003 | ||
(60, 30, 20) | 0.0003 | 5.20×10−6 | 0.0004 | 5.20×10−6 | 0.0004 | 2.60×10−6 | 0.0001 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0007 | 3.90×10−6 | 0.0018 | 3.90×10−6 | 0.0017 | 2.60×10−6 | 0.0004 |
(40, 20, 15) | 0.0007 | 2.60×10−6 | 0.0017 | 2.60×10−6 | 0.0016 | 1.30×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0004 | 3.90×10−6 | 0.0008 | 3.90×10−6 | 0.0008 | 2.60×10−6 | 0.0003 | ||
T=0.7 | (30, 20, 15) | 0.0003 | 3.90×10−6 | 0.0007 | 3.90×10−6 | 0.0007 | 2.60×10−6 | 0.0003 | |
(40, 20, 15) | 0.0007 | 3.90×10−6 | 0.0017 | 3.90×10−6 | 0.0016 | 1.30×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0003 | 3.90×10−6 | 0.0007 | 3.90×10−6 | 0.0007 | 2.60×10−6 | 0.0001 | ||
T=1.5 | (30, 20, 15) | 0.0003 | 3.90×10−6 | 0.0007 | 3.90×10−6 | 0.0007 | 2.60×10−6 | 0.0001 | |
(40, 20, 15) | 0.0008 | 3.90×10−6 | 0.0018 | 3.90×10−6 | 0.0017 | 1.30×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0003 | 3.90×10−6 | 0.0007 | 3.90×10−6 | 0.0007 | 2.60×10−6 | 0.0001 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0070 | 0.0014 | 0.0270 | 0.0014 | 0.0260 | 0.0007 | 0.0014 |
(40, 20, 15) | 0.0120 | 0.0014 | 0.0350 | 0.0014 | 0.0340 | 0.0007 | 0.0003 | ||
(60, 30, 20) | 0.0090 | 0.0013 | 0.0250 | 0.0013 | 0.0250 | 0.0007 | 0.0004 | ||
T=0.7 | (30, 20, 15) | 0.0069 | 0.0014 | 0.0220 | 0.0013 | 0.0210 | 0.0007 | 0.0009 | |
(40, 20, 15) | 0.0073 | 0.0013 | 0.0230 | 0.0013 | 0.0230 | 0.0007 | 0.0007 | ||
(60, 30, 20) | 0.0049 | 0.0014 | 0.0150 | 0.0013 | 0.0150 | 0.0005 | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0045 | 0.0012 | 0.0170 | 0.0012 | 0.0170 | 0.0008 | 0.0004 | |
(40, 20, 15) | 0.0069 | 0.0014 | 0.0220 | 0.0014 | 0.0220 | 0.0007 | 0.0001 | ||
(60, 30, 20) | 0.0032 | 0.0012 | 0.0120 | 0.0012 | 0.0120 | 0.0007 | 0.0008 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0082 | 0.0014 | 0.0280 | 0.0014 | 0.0280 | 0.0007 | 0.0003 |
(40, 20, 15) | 0.0130 | 0.0014 | 0.0360 | 0.0014 | 0.0350 | 0.0007 | 0.0010 | ||
(60, 30, 20) | 0.0096 | 0.0014 | 0.0250 | 0.0014 | 0.0250 | 0.0007 | 0.0010 | ||
T=0.7 | (30, 20, 15) | 0.0055 | 0.0012 | 0.0190 | 0.0012 | 0.0190 | 0.0008 | 0.0010 | |
(40, 20, 15) | 0.0062 | 0.0013 | 0.0210 | 0.0013 | 0.0210 | 0.0007 | 0.0008 | ||
(60, 30, 20) | 0.0039 | 0.0013 | 0.0140 | 0.0013 | 0.0140 | 0.0007 | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0045 | 0.0013 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0003 | |
(40, 20, 15) | 0.0038 | 0.0012 | 0.0190 | 0.0012 | 0.0180 | 0.0008 | 0.0021 | ||
(60, 30, 20) | 0.0034 | 0.0013 | 0.0130 | 0.0013 | 0.0120 | 0.0007 | 0.0008 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0082 | 0.0014 | 0.0280 | 0.0014 | 0.0280 | 0.0007 | 0.0003 |
(40, 20, 15) | 0.0074 | 0.0013 | 0.0260 | 0.0013 | 0.0260 | 0.0008 | 0.0025 | ||
(60, 30, 20) | 0.0055 | 0.0013 | 0.0170 | 0.0013 | 0.0170 | 0.0007 | 0.0010 | ||
T=0.7 | (30, 20, 15) | 0.0035 | 0.0013 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0020 | |
(40, 20, 15) | 0.0070 | 0.0013 | 0.0260 | 0.0013 | 0.0260 | 0.0008 | 0.0027 | ||
(60, 30, 20) | 0.0041 | 0.0013 | 0.0150 | 0.0013 | 0.0150 | 0.0007 | 0.0018 | ||
T=1.5 | (30, 20, 15) | 0.0039 | 0.0012 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0017 | |
(40, 20, 15) | 0.0080 | 0.0014 | 0.0270 | 0.0013 | 0.0260 | 0.0007 | 0.0020 | ||
(60, 30, 20) | 0.0042 | 0.0013 | 0.0150 | 0.0013 | 0.0150 | 0.0007 | 0.0018 |
Bayesian | |||||||||
^H(t)BS | ^H(t)BL | ^H(t)BE | |||||||
Sch. | T | (n,m,k) | ^H(t)ML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0250 | 4.20×10−5 | 0.0390 | 4.20×10−5 | 0.0320 | 4.20×10−5 | 0.0200 |
(40, 20, 15) | 0.0220 | 4.20×10−5 | 0.0350 | 4.20×10−5 | 0.0300 | 4.20×10−5 | 0.0190 | ||
(60, 30, 20) | 0.0250 | 5.60×10−5 | 0.0370 | 5.60×10−5 | 0.0270 | 5.60×10−5 | 0.0240 | ||
T=0.7 | (30, 20, 15) | 0.0110 | 5.60×10−5 | 0.0130 | 5.60×10−5 | 0.0130 | 7.00×10−5 | 0.0095 | |
(40, 20, 15) | 0.0290 | 5.60×10−5 | 0.0400 | 5.60×10−5 | 0.0330 | 5.60×10−5 | 0.0220 | ||
(60, 30, 20) | 0.0084 | 8.40×10−5 | 0.0110 | 8.40×10−5 | 0.0100 | 8.40×10−5 | 0.0081 | ||
T=1.5 | (30, 20, 15) | 0.0120 | 7.00×10−5 | 0.0150 | 7.00×10−5 | 0.0140 | 7.00×10−5 | 0.0110 | |
(40, 20, 15) | 0.0240 | 5.60×10−5 | 0.0350 | 5.60×10−5 | 0.0300 | 5.60×10−5 | 0.0210 | ||
(60, 30, 20) | 0.0100 | 7.00×10−5 | 0.0130 | 8.40×10−5 | 0.0120 | 8.40×10−5 | 0.0095 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0260 | 4.20×10−5 | 0.0390 | 4.20×10−5 | 0.0340 | 5.60×10−5 | 0.0220 |
(40, 20, 15) | 0.0220 | 4.20×10−5 | 0.0340 | 4.20×10−5 | 0.0300 | 4.20×10−5 | 0.0190 | ||
(60, 30, 20) | 0.0120 | 5.60×10−5 | 0.0170 | 5.60×10−5 | 0.0150 | 5.60×10−5 | 0.0110 | ||
T=0.7 | (30, 20, 15) | 0.0130 | 5.60×10−5 | 0.0180 | 5.60×10−5 | 0.0170 | 7.00×10−5 | 0.0120 | |
(40, 20, 15) | 0.0190 | 5.60×10−5 | 0.0280 | 5.60×10−5 | 0.0250 | 5.60×10−5 | 0.0160 | ||
(60, 30, 20) | 0.0086 | 7.00×10−5 | 0.0110 | 7.00×10−5 | 0.0110 | 8.40×10−5 | 0.0081 | ||
T=1.5 | (30, 20, 15) | 0.0130 | 7.00×10−5 | 0.0170 | 7.00×10−5 | 0.0160 | 7.00×10−5 | 0.0120 | |
(40, 20, 15) | 0.0260 | 4.20×10−5 | 0.0420 | 4.20×10−5 | 0.0350 | 5.60×10−5 | 0.0230 | ||
(60, 30, 20) | 0.0076 | 7.00×10−5 | 0.0100 | 7.00×10−5 | 0.0096 | 7.00×10−5 | 0.0074 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0260 | 4.20×10−5 | 0.0390 | 4.20×10−5 | 0.0340 | 5.60×10−5 | 0.0220 |
(40, 20, 15) | 0.0750 | 4.20×10−5 | 0.2200 | 4.20×10−5 | 0.1100 | 4.20×10−5 | 0.0680 | ||
(60, 30, 20) | 0.0150 | 5.60×10−5 | 0.0230 | 5.60×10−5 | 0.0210 | 5.60×10−5 | 0.0140 | ||
T=0.7 | (30, 20, 15) | 0.0260 | 5.60×10−5 | 0.0430 | 5.60×10−5 | 0.0340 | 5.60×10−5 | 0.0240 | |
(40, 20, 15) | 0.0660 | 4.20×10−5 | 0.1500 | 4.20×10−5 | 0.0910 | 4.20×10−5 | 0.0570 | ||
(60, 30, 20) | 0.0160 | 5.60×10−5 | 0.0230 | 5.60×10−5 | 0.0210 | 5.60×10−5 | 0.0140 | ||
T=1.5 | (30, 20, 15) | 0.0250 | 5.60×10−5 | 0.0430 | 5.60×10−5 | 0.0340 | 5.60×10−5 | 0.0230 | |
(40, 20, 15) | 0.0870 | 4.20×10−5 | 0.2000 | 4.20×10−5 | 0.1000 | 4.20×10−5 | 0.0700 | ||
(60, 30, 20) | 0.0170 | 5.60×10−5 | 0.0260 | 5.60×10−5 | 0.0230 | 5.60×10−5 | 0.0150 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0600 | 1.70×10−4 | 0.0880 | 3.20×10−4 | 0.0800 | 0.0027 | 0.0320 |
(40, 20, 15) | 0.0510 | 3.60×10−4 | 0.0810 | 5.20×10−4 | 0.0730 | 0.0028 | 0.0240 | ||
(60, 30, 20) | 0.0360 | 2.80×10−5 | 0.0540 | 1.10×10−4 | 0.0490 | 0.0024 | 0.0180 | ||
T=0.7 | (30, 20, 15) | 0.0330 | 3.80×10−4 | 0.0400 | 5.20×10−4 | 0.0370 | 0.0028 | 0.0110 | |
(40, 20, 15) | 0.0610 | 9.80×10−5 | 0.0810 | 5.60×10−5 | 0.0740 | 0.0024 | 0.0370 | ||
(60, 30, 20) | 0.0290 | 1.10×10−5 | 0.0370 | 1.50×10−4 | 0.0350 | 0.0024 | 0.0160 | ||
T=1.5 | (30, 20, 15) | 0.0400 | 2.40×10−4 | 0.0480 | 9.80×10−5 | 0.0450 | 0.0021 | 0.0200 | |
(40, 20, 15) | 0.0550 | 1.50×10−4 | 0.0740 | 3.10×10−4 | 0.0680 | 0.0025 | 0.0330 | ||
(60, 30, 20) | 0.0340 | 5.90×10−4 | 0.0440 | 4.50×10−4 | 0.0420 | 0.0017 | 0.0230 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0640 | 3.40×10−4 | 0.0920 | 4.90×10−4 | 0.0840 | 0.0028 | 0.0350 |
(40, 20, 15) | 0.0510 | 3.50×10−4 | 0.0780 | 5.00×10−4 | 0.0700 | 0.0028 | 0.0230 | ||
(60, 30, 20) | 0.0330 | 1.40×10−5 | 0.0490 | 1.40×10−4 | 0.0450 | 0.0024 | 0.0140 | ||
T=0.7 | (30, 20, 15) | 0.0440 | 3.80×10−4 | 0.0550 | 2.20×10−4 | 0.0510 | 0.0021 | 0.0240 | |
(40, 20, 15) | 0.0550 | 4.20×10−5 | 0.0770 | 1.10×10−4 | 0.0720 | 0.0024 | 0.0340 | ||
(60, 30, 20) | 0.0330 | 4.90×10−4 | 0.0410 | 3.50×10−4 | 0.0390 | 0.0018 | 0.0190 | ||
T=1.5 | (30, 20, 15) | 0.0460 | 2.50×10−4 | 0.0570 | 1.10×10−4 | 0.0540 | 0.0021 | 0.0280 | |
(40, 20, 15) | 0.0670 | 4.20×10−4 | 0.0920 | 2.80×10−4 | 0.0850 | 0.0020 | 0.0450 | ||
(60, 30, 20) | 0.0280 | 1.30×10−4 | 0.0370 | 1.10×10−5 | 0.0350 | 0.0023 | 0.0160 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0640 | 3.40×10−4 | 0.0920 | 4.90×10−4 | 0.0840 | 0.0028 | 0.0350 |
(40, 20, 15) | 0.1100 | 3.40×10−4 | 0.2000 | 1.80×10−4 | 0.1600 | 0.0021 | 0.0860 | ||
(60, 30, 20) | 0.0460 | 3.90×10−4 | 0.0700 | 2.40×10−4 | 0.0650 | 0.0020 | 0.0340 | ||
T=0.7 | (30, 20, 15) | 0.0560 | 1.30×10−4 | 0.0770 | 1.10×10−5 | 0.0710 | 0.0024 | 0.0370 | |
(40, 20, 15) | 0.0970 | 2.90×10−4 | 0.1700 | 1.40×10−4 | 0.1400 | 0.0023 | 0.0740 | ||
(60, 30, 20) | 0.0460 | 3.60×10−4 | 0.0680 | 2.10×10−4 | 0.0640 | 0.0021 | 0.0330 | ||
T=1.5 | (30, 20, 15) | 0.0600 | 1.10×10−4 | 0.0830 | 4.20×10−5 | 0.0760 | 0.0024 | 0.0410 | |
(40, 20, 15) | 0.1100 | 8.40×10−5 | 0.1800 | 7.00×10−5 | 0.1500 | 0.0024 | 0.0810 | ||
(60, 30, 20) | 0.0500 | 5.70×10−4 | 0.0730 | 4.20×10−4 | 0.0680 | 0.0018 | 0.0370 |
ˆλB | |||||||||||||
ˆλML | IP | NIP | |||||||||||
90% | 95% | 90% | 95% | 90% | 95% | ||||||||
T | (n,m,k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch.I | |||||||||||||
T=0.3 | (30, 20, 15) | 2.733 | 0.918 | 3.161 | 0.950 | 0.911 | 0.940 | 1.078 | 0.965 | 2.683 | 0.863 | 3.138 | 0.928 |
(40, 20, 15) | 2.871 | 0.930 | 3.309 | 0.945 | 0.828 | 0.947 | 0.986 | 0.970 | 2.810 | 0.879 | 3.317 | 0.925 | |
(60, 30, 20) | 2.135 | 0.907 | 2.544 | 0.941 | 0.769 | 0.948 | 0.920 | 0.969 | 2.098 | 0.867 | 2.511 | 0.922 | |
T=0.7 | (30, 20, 15) | 1.665 | 0.873 | 1.935 | 0.943 | 0.741 | 0.934 | 0.877 | 0.965 | 1.614 | 0.851 | 1.864 | 0.927 |
(40, 20, 15) | 2.012 | 0.924 | 2.417 | 0.935 | 0.674 | 0.945 | 0.803 | 0.964 | 1.956 | 0.877 | 2.360 | 0.892 | |
(60, 30, 20) | 1.393 | 0.878 | 1.638 | 0.946 | 0.623 | 0.931 | 0.737 | 0.969 | 1.355 | 0.856 | 1.596 | 0.918 | |
T=1.5 | (30, 20, 15) | 1.420 | 0.901 | 1.692 | 0.942 | 0.658 | 0.945 | 0.780 | 0.965 | 1.378 | 0.871 | 1.634 | 0.927 |
(40, 20, 15) | 1.748 | 0.931 | 2.067 | 0.945 | 0.602 | 0.946 | 0.708 | 0.965 | 1.707 | 0.864 | 2.015 | 0.907 | |
(60, 30, 20) | 1.208 | 0.907 | 1.461 | 0.940 | 0.554 | 0.937 | 0.656 | 0.965 | 1.173 | 0.889 | 1.420 | 0.913 | |
Sch.II | |||||||||||||
T=0.3 | (30, 20, 15) | 2.727 | 0.908 | 3.181 | 0.940 | 0.909 | 0.930 | 1.079 | 0.965 | 2.653 | 0.858 | 3.143 | 0.912 |
(40, 20, 15) | 2.917 | 0.920 | 3.260 | 0.937 | 0.824 | 0.955 | 0.972 | 0.965 | 2.883 | 0.867 | 3.243 | 0.923 | |
(60, 30, 20) | 2.098 | 0.899 | 2.499 | 0.930 | 0.766 | 0.946 | 0.908 | 0.968 | 2.047 | 0.865 | 2.456 | 0.907 | |
T=0.7 | (30, 20, 15) | 1.648 | 0.886 | 1.984 | 0.942 | 0.738 | 0.944 | 0.876 | 0.961 | 1.592 | 0.858 | 1.930 | 0.917 |
(40, 20, 15) | 2.328 | 0.905 | 2.408 | 0.943 | 0.673 | 0.944 | 0.795 | 0.964 | 2.296 | 0.848 | 2.355 | 0.913 | |
(60, 30, 20) | 1.367 | 0.901 | 1.661 | 0.941 | 0.616 | 0.947 | 0.734 | 0.970 | 1.334 | 0.875 | 1.612 | 0.913 | |
T=1.5 | (30, 20, 15) | 1.481 | 0.879 | 1.726 | 0.935 | 0.654 | 0.934 | 0.782 | 0.959 | 1.455 | 0.858 | 1.683 | 0.907 |
(40, 20, 15) | 1.866 | 0.938 | 2.224 | 0.951 | 0.596 | 0.948 | 0.710 | 0.966 | 1.811 | 0.863 | 2.189 | 0.922 | |
(60, 30, 20) | 1.203 | 0.900 | 1.442 | 0.946 | 0.547 | 0.945 | 0.653 | 0.965 | 1.169 | 0.881 | 1.407 | 0.913 | |
Sch.III | |||||||||||||
T=0.3 | (30, 20, 15) | 2.425 | 0.915 | 3.181 | 0.940 | 0.887 | 0.927 | 1.079 | 0.965 | 2.382 | 0.879 | 3.143 | 0.912 |
(40, 20, 15) | 3.676 | 0.928 | 4.329 | 0.951 | 0.798 | 0.948 | 0.945 | 0.974 | 3.932 | 0.857 | 4.748 | 0.912 | |
(60, 30, 20) | 2.083 | 0.913 | 2.451 | 0.945 | 0.742 | 0.951 | 0.875 | 0.964 | 2.057 | 0.854 | 2.459 | 0.911 | |
T=0.7 | (30, 20, 15) | 1.771 | 0.919 | 2.142 | 0.949 | 0.721 | 0.940 | 0.855 | 0.966 | 1.727 | 0.866 | 2.120 | 0.920 |
(40, 20, 15) | 3.077 | 0.924 | 3.378 | 0.952 | 0.656 | 0.942 | 0.773 | 0.968 | 3.272 | 0.844 | 3.600 | 0.916 | |
(60, 30, 20) | 1.670 | 0.913 | 1.993 | 0.949 | 0.601 | 0.949 | 0.715 | 0.967 | 1.669 | 0.859 | 1.986 | 0.917 | |
T=1.5 | (30, 20, 15) | 1.544 | 0.924 | 1.920 | 0.951 | 0.644 | 0.925 | 0.762 | 0.970 | 1.512 | 0.886 | 1.913 | 0.907 |
(40, 20, 15) | 2.793 | 0.927 | 3.096 | 0.943 | 0.580 | 0.948 | 0.685 | 0.967 | 2.910 | 0.837 | 3.291 | 0.896 | |
(60, 30, 20) | 1.517 | 0.913 | 1.792 | 0.955 | 0.534 | 0.937 | 0.634 | 0.957 | 1.502 | 0.844 | 1.792 | 0.917 |
Bayesian | |||||||||||||
ˆμML | IP | NIP | |||||||||||
90% | 95% | 90% | 95% | 90% | 95% | ||||||||
T | (n,m,k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch.I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.933 | 0.901 | 1.101 | 0.983 | 0.456 | 0.955 | 0.541 | 0.989 | 0.910 | 0.891 | 1.055 | 0.961 |
(40, 20, 15) | 0.833 | 0.904 | 0.979 | 0.968 | 0.393 | 0.940 | 0.466 | 0.991 | 0.804 | 0.876 | 0.937 | 0.951 | |
(60, 30, 20) | 0.710 | 0.915 | 0.837 | 0.963 | 0.366 | 0.952 | 0.427 | 0.987 | 0.695 | 0.890 | 0.805 | 0.931 | |
T=0.7 | (30, 20, 15) | 0.726 | 0.917 | 0.855 | 0.962 | 0.423 | 0.963 | 0.496 | 0.984 | 0.706 | 0.898 | 0.819 | 0.942 |
(40, 20, 15) | 0.688 | 0.916 | 0.814 | 0.960 | 0.364 | 0.957 | 0.432 | 0.990 | 0.671 | 0.896 | 0.783 | 0.931 | |
(60, 30, 20) | 0.556 | 0.895 | 0.661 | 0.945 | 0.335 | 0.939 | 0.396 | 0.986 | 0.542 | 0.882 | 0.642 | 0.927 | |
T=1.5 | (30, 20, 15) | 0.645 | 0.918 | 0.766 | 0.959 | 0.387 | 0.952 | 0.457 | 0.983 | 0.632 | 0.901 | 0.739 | 0.938 |
(40, 20, 15) | 0.614 | 0.928 | 0.735 | 0.966 | 0.331 | 0.954 | 0.393 | 0.970 | 0.594 | 0.893 | 0.707 | 0.930 | |
(60, 30, 20) | 0.500 | 0.917 | 0.599 | 0.949 | 0.306 | 0.954 | 0.363 | 0.987 | 0.488 | 0.899 | 0.578 | 0.927 | |
Sch.II | |||||||||||||
T=0.3 | (30, 20, 15) | 0.931 | 0.908 | 1.106 | 0.973 | 0.455 | 0.955 | 0.537 | 0.990 | 0.900 | 0.893 | 1.061 | 0.935 |
(40, 20, 15) | 0.820 | 0.905 | 0.971 | 0.971 | 0.388 | 0.955 | 0.462 | 0.983 | 0.797 | 0.882 | 0.929 | 0.949 | |
(60, 30, 20) | 0.700 | 0.918 | 0.834 | 0.975 | 0.362 | 0.962 | 0.426 | 0.982 | 0.681 | 0.905 | 0.798 | 0.949 | |
T=0.7 | (30, 20, 15) | 0.719 | 0.912 | 0.858 | 0.972 | 0.417 | 0.958 | 0.494 | 0.991 | 0.703 | 0.888 | 0.834 | 0.952 |
(40, 20, 15) | 0.757 | 0.918 | 0.816 | 0.970 | 0.358 | 0.957 | 0.423 | 0.985 | 0.735 | 0.899 | 0.785 | 0.956 | |
(60, 30, 20) | 0.555 | 0.907 | 0.662 | 0.969 | 0.334 | 0.960 | 0.391 | 0.983 | 0.545 | 0.879 | 0.637 | 0.947 | |
T=1.5 | (30, 20, 15) | 0.654 | 0.909 | 0.768 | 0.966 | 0.384 | 0.952 | 0.456 | 0.984 | 0.640 | 0.874 | 0.744 | 0.933 |
(40, 20, 15) | 0.633 | 0.907 | 0.751 | 0.971 | 0.331 | 0.960 | 0.388 | 0.980 | 0.615 | 0.874 | 0.721 | 0.954 | |
(60, 30, 20) | 0.506 | 0.890 | 0.593 | 0.971 | 0.307 | 0.939 | 0.357 | 0.988 | 0.490 | 0.872 | 0.578 | 0.953 | |
Sch.III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.915 | 0.926 | 1.106 | 0.973 | 0.447 | 0.941 | 0.537 | 0.990 | 0.891 | 0.891 | 1.061 | 0.935 |
(40, 20, 15) | 0.918 | 0.906 | 1.080 | 0.970 | 0.377 | 0.942 | 0.445 | 0.987 | 0.884 | 0.862 | 1.031 | 0.937 | |
(60, 30, 20) | 0.693 | 0.925 | 0.832 | 0.972 | 0.351 | 0.960 | 0.417 | 0.990 | 0.675 | 0.900 | 0.801 | 0.934 | |
T=0.7 | (30, 20, 15) | 0.772 | 0.922 | 0.914 | 0.980 | 0.415 | 0.955 | 0.485 | 0.997 | 0.750 | 0.902 | 0.884 | 0.964 |
(40, 20, 15) | 0.834 | 0.925 | 0.990 | 0.974 | 0.345 | 0.950 | 0.411 | 0.987 | 0.806 | 0.876 | 0.941 | 0.935 | |
(60, 30, 20) | 0.641 | 0.919 | 0.760 | 0.968 | 0.326 | 0.955 | 0.383 | 0.992 | 0.623 | 0.890 | 0.729 | 0.947 | |
T=1.5 | (30, 20, 15) | 0.704 | 0.921 | 0.842 | 0.971 | 0.382 | 0.942 | 0.446 | 0.992 | 0.686 | 0.896 | 0.808 | 0.947 |
(40, 20, 15) | 0.773 | 0.914 | 0.911 | 0.963 | 0.318 | 0.956 | 0.377 | 0.979 | 0.739 | 0.878 | 0.860 | 0.923 | |
(60, 30, 20) | 0.589 | 0.928 | 0.702 | 0.970 | 0.297 | 0.949 | 0.354 | 0.987 | 0.573 | 0.904 | 0.677 | 0.940 |
^S(t)B | |||||||||||||
^S(t)ML | IP | NIP | |||||||||||
90% | 95% | 90% | 95% | 90% | 95% | ||||||||
T | (n,m,k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch.I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.088 | 0.736 | 0.110 | 0.797 | 0.021 | 0.980 | 0.026 | 0.985 | 0.138 | 0.922 | 0.185 | 0.949 |
(40, 20, 15) | 0.113 | 0.771 | 0.140 | 0.813 | 0.022 | 0.987 | 0.026 | 0.993 | 0.164 | 0.919 | 0.215 | 0.948 | |
(60, 30, 20) | 0.091 | 0.803 | 0.110 | 0.849 | 0.021 | 0.976 | 0.026 | 0.978 | 0.123 | 0.907 | 0.158 | 0.945 | |
T=0.7 | (30, 20, 15) | 0.068 | 0.789 | 0.088 | 0.856 | 0.020 | 0.965 | 0.024 | 0.963 | 0.099 | 0.903 | 0.133 | 0.946 |
(40, 20, 15) | 0.069 | 0.727 | 0.092 | 0.799 | 0.020 | 0.954 | 0.024 | 0.948 | 0.105 | 0.926 | 0.144 | 0.919 | |
(60, 30, 20) | 0.057 | 0.812 | 0.069 | 0.875 | 0.019 | 0.980 | 0.023 | 0.985 | 0.075 | 0.914 | 0.097 | 0.929 | |
T=1.5 | (30, 20, 15) | 0.058 | 0.790 | 0.069 | 0.838 | 0.018 | 0.965 | 0.022 | 0.918 | 0.084 | 0.918 | 0.108 | 0.939 |
(40, 20, 15) | 0.066 | 0.758 | 0.083 | 0.809 | 0.018 | 0.954 | 0.022 | 0.985 | 0.098 | 0.909 | 0.132 | 0.934 | |
(60, 30, 20) | 0.049 | 0.833 | 0.058 | 0.856 | 0.018 | 0.980 | 0.021 | 0.903 | 0.066 | 0.948 | 0.083 | 0.929 | |
Sch.II | |||||||||||||
T=0.3 | (30, 20, 15) | 0.089 | 0.743 | 0.113 | 0.769 | 0.021 | 0.980 | 0.026 | 0.985 | 0.140 | 0.921 | 0.188 | 0.943 |
(40, 20, 15) | 0.111 | 0.754 | 0.143 | 0.802 | 0.021 | 0.965 | 0.026 | 0.963 | 0.159 | 0.904 | 0.215 | 0.954 | |
(60, 30, 20) | 0.092 | 0.814 | 0.110 | 0.859 | 0.021 | 0.954 | 0.026 | 0.948 | 0.125 | 0.921 | 0.156 | 0.934 | |
T=0.7 | (30, 20, 15) | 0.068 | 0.794 | 0.080 | 0.802 | 0.020 | 0.943 | 0.024 | 0.933 | 0.098 | 0.910 | 0.124 | 0.944 |
(40, 20, 15) | 0.105 | 0.730 | 0.088 | 0.802 | 0.020 | 0.932 | 0.024 | 0.918 | 0.150 | 0.912 | 0.139 | 0.940 | |
(60, 30, 20) | 0.055 | 0.821 | 0.066 | 0.836 | 0.019 | 0.980 | 0.023 | 0.985 | 0.074 | 0.913 | 0.094 | 0.930 | |
T=1.5 | (30, 20, 15) | 0.054 | 0.765 | 0.067 | 0.793 | 0.018 | 0.943 | 0.022 | 0.888 | 0.078 | 0.905 | 0.104 | 0.928 |
(40, 20, 15) | 0.063 | 0.735 | 0.073 | 0.781 | 0.018 | 0.932 | 0.022 | 0.985 | 0.096 | 0.895 | 0.123 | 0.950 | |
(60, 30, 20) | 0.048 | 0.827 | 0.059 | 0.884 | 0.018 | 0.980 | 0.021 | 0.873 | 0.064 | 0.913 | 0.085 | 0.934 | |
Sch.III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.101 | 0.782 | 0.113 | 0.769 | 0.021 | 0.979 | 0.026 | 0.985 | 0.144 | 0.919 | 0.188 | 0.943 |
(40, 20, 15) | 0.089 | 0.668 | 0.114 | 0.730 | 0.021 | 0.943 | 0.026 | 0.933 | 0.132 | 0.888 | 0.180 | 0.926 | |
(60, 30, 20) | 0.070 | 0.778 | 0.085 | 0.808 | 0.021 | 0.932 | 0.025 | 0.918 | 0.093 | 0.901 | 0.120 | 0.936 | |
T=0.7 | (30, 20, 15) | 0.065 | 0.766 | 0.074 | 0.815 | 0.020 | 0.921 | 0.024 | 0.903 | 0.093 | 0.908 | 0.119 | 0.951 |
(40, 20, 15) | 0.088 | 0.684 | 0.105 | 0.758 | 0.020 | 0.910 | 0.024 | 0.888 | 0.129 | 0.891 | 0.170 | 0.933 | |
(60, 30, 20) | 0.063 | 0.803 | 0.074 | 0.830 | 0.019 | 0.980 | 0.023 | 0.985 | 0.083 | 0.906 | 0.107 | 0.937 | |
T=1.5 | (30, 20, 15) | 0.058 | 0.788 | 0.069 | 0.797 | 0.018 | 0.921 | 0.022 | 0.858 | 0.084 | 0.947 | 0.109 | 0.941 |
(40, 20, 15) | 0.078 | 0.684 | 0.099 | 0.747 | 0.018 | 0.910 | 0.023 | 0.985 | 0.116 | 0.883 | 0.158 | 0.927 | |
(60, 30, 20) | 0.057 | 0.787 | 0.069 | 0.803 | 0.018 | 0.980 | 0.022 | 0.903 | 0.077 | 0.899 | 0.098 | 0.939 |
^H(t)B | |||||||||||||
^H(t)ML | IP | NIP | |||||||||||
90% | 95% | 90% | 95% | 90% | 95% | ||||||||
T | (n,m,k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch.I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.472 | 0.716 | 0.537 | 0.769 | 0.078 | 0.961 | 0.093 | 0.966 | 0.475 | 0.943 | 0.556 | 0.963 |
(40, 20, 15) | 0.473 | 0.750 | 0.533 | 0.784 | 0.078 | 0.980 | 0.092 | 1.000 | 0.474 | 0.933 | 0.559 | 0.956 | |
(60, 30, 20) | 0.344 | 0.781 | 0.408 | 0.819 | 0.078 | 1.000 | 0.091 | 1.000 | 0.345 | 0.922 | 0.416 | 0.959 | |
T=0.7 | (30, 20, 15) | 0.310 | 0.767 | 0.354 | 0.825 | 0.074 | 1.031 | 0.087 | 1.000 | 0.300 | 0.924 | 0.343 | 0.953 |
(40, 20, 15) | 0.344 | 0.707 | 0.417 | 0.770 | 0.067 | 0.963 | 0.080 | 0.955 | 0.339 | 0.946 | 0.417 | 0.925 | |
(60, 30, 20) | 0.256 | 0.790 | 0.301 | 0.843 | 0.072 | 1.000 | 0.086 | 1.000 | 0.249 | 0.926 | 0.294 | 0.937 | |
T=1.5 | (30, 20, 15) | 0.288 | 0.768 | 0.343 | 0.808 | 0.072 | 1.000 | 0.085 | 1.000 | 0.280 | 0.931 | 0.332 | 0.938 |
(40, 20, 15) | 0.332 | 0.737 | 0.397 | 0.780 | 0.067 | 0.975 | 0.079 | 0.995 | 0.330 | 0.930 | 0.395 | 0.942 | |
(60, 30, 20) | 0.243 | 0.810 | 0.296 | 0.825 | 0.071 | 1.000 | 0.084 | 1.000 | 0.235 | 0.959 | 0.290 | 0.931 | |
Sch.II | |||||||||||||
T=0.3 | (30, 20, 15) | 0.470 | 0.722 | 0.546 | 0.742 | 0.078 | 0.927 | 0.093 | 0.975 | 0.466 | 0.936 | 0.562 | 0.949 |
(40, 20, 15) | 0.485 | 0.733 | 0.527 | 0.773 | 0.078 | 0.967 | 0.092 | 0.989 | 0.494 | 0.924 | 0.547 | 0.955 | |
(60, 30, 20) | 0.333 | 0.792 | 0.398 | 0.828 | 0.077 | 1.035 | 0.091 | 1.000 | 0.329 | 0.937 | 0.401 | 0.945 | |
T=0.7 | (30, 20, 15) | 0.310 | 0.773 | 0.375 | 0.773 | 0.074 | 0.967 | 0.088 | 1.000 | 0.299 | 0.925 | 0.369 | 0.955 |
(40, 20, 15) | 0.429 | 0.710 | 0.438 | 0.773 | 0.074 | 0.967 | 0.087 | 0.959 | 0.434 | 0.935 | 0.440 | 0.949 | |
(60, 30, 20) | 0.253 | 0.798 | 0.308 | 0.806 | 0.073 | 1.007 | 0.086 | 1.000 | 0.247 | 0.926 | 0.300 | 0.940 | |
T=1.5 | (30, 20, 15) | 0.315 | 0.744 | 0.357 | 0.765 | 0.072 | 0.956 | 0.085 | 1.000 | 0.314 | 0.925 | 0.350 | 0.935 |
(40, 20, 15) | 0.387 | 0.715 | 0.455 | 0.753 | 0.073 | 0.941 | 0.086 | 0.965 | 0.380 | 0.926 | 0.461 | 0.961 | |
(60, 30, 20) | 0.248 | 0.805 | 0.290 | 0.852 | 0.071 | 1.000 | 0.084 | 1.000 | 0.239 | 0.925 | 0.285 | 0.941 | |
Sch.III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.417 | 0.761 | 0.546 | 0.742 | 0.078 | 0.927 | 0.093 | 1.000 | 0.420 | 0.935 | 0.562 | 0.949 |
(40, 20, 15) | 0.663 | 0.649 | 0.779 | 0.704 | 0.078 | 0.880 | 0.093 | 0.877 | 0.771 | 0.906 | 0.944 | 0.933 | |
(60, 30, 20) | 0.348 | 0.756 | 0.412 | 0.779 | 0.077 | 0.973 | 0.091 | 1.000 | 0.349 | 0.917 | 0.427 | 0.948 | |
T=0.7 | (30, 20, 15) | 0.362 | 0.745 | 0.429 | 0.786 | 0.074 | 0.983 | 0.088 | 1.000 | 0.358 | 0.930 | 0.437 | 0.962 |
(40, 20, 15) | 0.607 | 0.666 | 0.665 | 0.731 | 0.075 | 0.914 | 0.089 | 0.898 | 0.695 | 0.912 | 0.758 | 0.946 | |
(60, 30, 20) | 0.332 | 0.781 | 0.394 | 0.800 | 0.074 | 1.000 | 0.087 | 1.000 | 0.338 | 0.923 | 0.405 | 0.952 | |
T=1.5 | (30, 20, 15) | 0.338 | 0.766 | 0.429 | 0.769 | 0.073 | 0.961 | 0.086 | 1.000 | 0.335 | 0.962 | 0.443 | 0.953 |
(40, 20, 15) | 0.621 | 0.666 | 0.689 | 0.720 | 0.073 | 0.900 | 0.087 | 0.898 | 0.686 | 0.903 | 0.796 | 0.936 | |
(60, 30, 20) | 0.331 | 0.765 | 0.394 | 0.774 | 0.072 | 0.968 | 0.086 | 1.000 | 0.333 | 0.923 | 0.408 | 0.950 |
Algorithm 1 MCMC method. |
Step 1, start with λ(0)=ˆλML and μ(0)=ˆμML |
Step 2, set i=1 |
Step 3, Generate λ(i)∼GammaDist.[D∗+a,W(μ(i−1)|x_)+b1]=π∗1(λ|μ(i−1);x_) |
Step 4, Generate a proposal μ(∗) from N(μ(i−1),V(μ)) |
Step 5, Calculate the acceptance probabilities dμ=min[1,π∗2(μ(∗)|λ(i−1))π∗1(μ(i−1)|λ(i−1))] |
Step 6, Generate u1 that follows a U(0,1) distribution. If u1≤dμ, set μ(i)=μ(∗); otherwise, set μ(i)=μ(i−1) |
Step 7, set i=i+1, repeat steps 3 to 7, N times and obtain (λ(j),μ(j)), j=1,2,...,N. |
Step 8, Remove the first B values for λ and μ, which is the burn-in period of λ(j) and μ(j), respectively, where j=1,2,...,N−B. |
IP | NIP | |||||||
Sch. | j | ρ | ˆXρ:R∗j | ET interval | HPD interval | ˆXρ:R∗j | ET interval | HPD interval |
1 | 3 | 1 | 4.824 | (1.322, 21.783) | (1.214, 17.062) | 6.410 | (1.324, 23.275) | (1.214, 18.034) |
2 | 10.634 | (2.417, 42.868) | (1.319, 34.499) | 14.202 | (2.429, 46.302) | (1.308, 36.810) | ||
3 | 22.254 | (5.271, 86.933) | (2.348, 70.530) | 29.787 | (5.289, 94.280) | (2.274, 75.524) | ||
7 | 1 | 5.914 | (5.943, 12.764) | (5.908, 11.190) | 7.639 | (5.944, 13.261) | (5.908, 11.514) | |
2 | 7.367 | (6.254, 17.586) | (5.939, 15.267) | 9.587 | (6.258, 18.558) | (5.935, 15.923) | ||
3 | 9.027 | (6.817, 22.790) | (6.182, 19.570) | 11.814 | (6.821, 24.302) | (6.071, 20.612) | ||
4 | 10.964 | (7.581, 28.762) | (6.654, 24.889) | 14.411 | (7.581, 30.909) | (6.608, 26.363) | ||
5 | 13.288 | (8.553, 35.920) | (7.294, 31.039) | 17.528 | (8.544, 38.832) | (7.213, 33.049) | ||
6 | 16.192 | (9.782, 44.951) | (8.125, 38.766) | 21.424 | (9.761, 48.820) | (8.000, 41.448) | ||
7 | 20.066 | (11.390, 57.239) | (9.351, 48.369) | 26.619 | (11.351, 62.390) | (9.026, 52.794) | ||
8 | 25.877 | (13.657, 76.426) | (10.679, 65.357) | 34.412 | (13.592, 83.499) | (10.421, 70.278) | ||
9 | 37.497 | (17.494,118.537) | (12.895, 99.972) | 49.997 | (17.400,129.445) | (12.532,107.555) | ||
2 | 3 | 1 | 4.924 | (1.330, 21.776) | (1.214, 17.251) | 6.488 | (1.332, 22.842) | (1.214, 17.983) |
2 | 10.886 | (2.506, 42.386) | (1.343, 34.584) | 14.399 | (2.526, 44.762) | (1.337, 36.266) | ||
3 | 22.809 | (5.601, 85.629) | (5.198, 69.693) | 30.221 | (5.656, 90.660) | (5.227, 73.313) | ||
6 | 1 | 8.082 | (5.365, 25.811) | (5.250, 21.286) | 10.524 | (5.367, 26.877) | (5.250, 22.019) | |
2 | 14.044 | (6.541, 46.422) | (5.379, 38.619) | 18.435 | (6.562, 48.797) | (5.372, 40.302) | ||
3 | 25.967 | (9.637, 89.664) | (9.233, 73.728) | 34.256 | (9.691, 94.695) | (9.262, 77.348) | ||
9 | 1 | 10.305 | (10.188, 22.456) | (10.120, 19.742) | 13.284 | (10.191, 23.096) | (10.120, 20.181) | |
2 | 13.285 | (10.826, 32.161) | (10.192, 28.030) | 17.239 | (10.837, 33.440) | (10.190, 28.937) | ||
3 | 17.260 | (12.126, 44.641) | (12.105, 38.397) | 22.513 | (12.152, 46.768) | (10.856, 39.936) | ||
4 | 23.220 | (14.248, 63.813) | (12.029, 55.213) | 30.425 | (14.288, 67.225) | (11.978, 57.679) | ||
5 | 35.144 | (18.060,105.916) | (14.149, 90.288) | 46.246 | (18.126,111.946) | (14.055, 94.654) | ||
3 | 3 | 1 | 5.061 | (1.335, 22.283) | (1.214, 17.716) | 6.661 | (1.337, 23.291) | (1.214, 18.425) |
2 | 11.226 | (2.572, 43.235) | (1.356, 35.439) | 14.832 | (2.597, 45.441) | (1.351, 37.039) | ||
3 | 23.556 | (5.834, 87.257) | (2.664, 72.209) | 31.172 | (5.910, 91.905) | (2.639, 75.613) | ||
6 | 1 | 8.219 | (5.370, 26.318) | (5.250, 21.752) | 10.697 | (5.372, 27.327) | (5.250, 22.460) | |
2 | 14.384 | (6.607, 47.271) | (5.391, 39.474) | 18.867 | (6.632, 49.477) | (5.386, 41.075) | ||
3 | 26.714 | (9.870, 91.293) | (6.612, 75.361) | 35.207 | (9.945, 95.940) | (6.674, 79.648) | ||
9 | 1 | 26.714 | (9.870, 91.293) | (9.142, 75.361) | 15.580 | (10.255, 32.209) | (10.133, 27.343) | |
2 | 18.205 | (11.490, 52.153) | (10.274, 44.357) | 23.750 | (11.515, 54.360) | (10.269, 45.957) | ||
3 | 30.536 | (14.752, 96.175) | (11.495, 80.244) | 40.090 | (14.828,100.823) | (11.514, 83.663) |
IP | NIP | ||||||
Sch. | s | ˆYs:N | ET interval | HPD interval | ˆYs:N | ET interval | HPD interval |
1 | 1 | 0.704 | (0.016, 2.927) | (0.000, 2.255) | 0.739 | (0.016, 3.139) | (0.000, 2.393) |
2 | 0.972 | (0.143, 4.811) | (0.013, 3.858) | 1.014 | (0.144, 5.212) | (0.012, 4.127) | |
3 | 1.314 | (0.361, 6.671) | (0.114, 5.470) | 1.381 | (0.362, 7.270) | (0.106, 5.878) | |
4 | 1.760 | (0.668, 9.119) | (0.299, 7.574) | 1.861 | (0.668, 9.976) | (0.281, 8.162) | |
5 | 2.216 | (1.036, 11.675) | (0.545, 9.782) | 2.356 | (1.032, 12.810) | (0.514, 10.566) | |
6 | 2.696 | (1.457, 14.399) | (0.842, 12.142) | 2.878 | (1.448, 15.838) | (0.794, 13.139) | |
7 | 3.481 | (2.039, 18.751) | (1.237, 15.844) | 3.724 | (2.023, 20.644) | (1.169, 17.159) | |
8 | 4.352 | (2.726, 23.618) | (1.717, 20.008) | 4.666 | (2.702, 26.033) | (1.622, 21.689) | |
9 | 5.356 | (3.544, 29.252) | (2.293, 24.833) | 5.753 | (3.509, 32.275) | (2.167, 26.942) | |
10 | 9.350 | (5.264, 50.149) | (3.233, 41.790) | 9.952 | (5.218, 54.977) | (3.068, 45.151) | |
2 | 1 | 0.722 | (0.017, 2.926) | (0.000, 2.282) | 0.750 | (0.017, 3.077) | (0.000, 2.386) |
2 | 0.978 | (0.154, 4.751) | (0.016, 3.865) | 1.060 | (0.156, 5.028) | (0.016, 4.061) | |
3 | 1.308 | (0.391, 6.536) | (0.134, 5.450) | 1.423 | (0.396, 6.943) | (0.131, 5.742) | |
4 | 1.738 | (0.727, 8.892) | (0.350, 7.520) | 1.898 | (0.734, 9.468) | (0.341, 7.938) | |
5 | 2.172 | (1.132, 11.338) | (0.638, 9.684) | 2.382 | (1.140, 12.097) | (0.622, 10.237) | |
6 | 2.627 | (1.596, 13.939) | (0.984, 11.990) | 2.890 | (1.606, 14.898) | (0.959, 12.690) | |
7 | 3.380 | (2.238, 18.128) | (1.444, 15.628) | 3.726 | (2.249, 19.387) | (1.408, 16.549) | |
8 | 4.213 | (3.000, 22.800) | (2.003, 19.709) | 4.650 | (3.011, 24.402) | (1.954, 20.885) | |
9 | 5.168 | (3.905, 28.199) | (2.675, 24.436) | 5.714 | (3.916, 30.202) | (2.608, 25.909) | |
10 | 9.146 | (5.795, 48.785) | (3.750, 41.359) | 10.042 | (5.814, 52.007) | (3.667, 43.723) | |
3 | 1 | 0.748 | (0.017, 2.998) | (0.000, 2.348) | 0.775 | (0.018, 3.142) | (0.000, 2.449) |
2 | 1.042 | (0.162, 4.847) | (0.018, 3.964) | 1.051 | (0.164, 5.104) | (0.017, 4.150) | |
3 | 1.386 | (0.412, 6.650) | (0.146, 5.579) | 1.405 | (0.419, 7.024) | (0.144, 5.854) | |
4 | 1.836 | (0.768, 9.030) | (0.380, 7.686) | 1.867 | (0.779, 9.557) | (0.374, 8.077) | |
5 | 2.288 | (1.196, 11.496) | (0.691, 9.887) | 2.335 | (1.211, 12.187) | (0.680, 10.403) | |
6 | 2.761 | (1.690, 14.117) | (1.066, 12.229) | 2.825 | (1.708, 14.987) | (1.050, 12.881) | |
7 | 3.551 | (2.371, 18.349) | (1.564, 15.931) | 3.637 | (2.394, 19.492) | (1.541, 16.788) | |
8 | 4.418 | (3.181, 23.064) | (2.170, 20.083) | 4.534 | (3.209, 24.515) | (2.137, 21.175) | |
9 | 5.414 | (4.142, 28.510) | (2.897, 24.888) | 5.563 | (4.176, 30.322) | (2.855, 26.255) | |
10 | 9.635 | (6.145, 49.504) | (4.051, 42.221) | 9.839 | (6.198, 52.438) | (4.002, 44.426) |
Bayesian | |||||||||
{ˆλBS | {ˆλBL | {ˆλBE | |||||||
Sch. | T | (n,m,k) | ˆλML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.5082 | 0.0244 | 0.5305 | 0.0239 | 0.3282 | 0.0243 | 0.3739 |
(40, 20, 15) | 0.5186 | 0.0192 | 0.5693 | 0.0187 | 0.3517 | 0.0190 | 0.4026 | ||
(60, 30, 20) | 0.4127 | 0.0173 | 0.4355 | 0.0170 | 0.2675 | 0.0171 | 0.3403 | ||
T=0.7 | (30, 20, 15) | 0.2879 | 0.0259 | 0.2666 | 0.0252 | 0.2114 | 0.0255 | 0.2243 | |
(40, 20, 15) | 0.6400 | 0.0203 | 0.6240 | 0.0199 | 0.3760 | 0.0202 | 0.4454 | ||
(60, 30, 20) | 0.2110 | 0.0172 | 0.2007 | 0.0170 | 0.1646 | 0.0172 | 0.1708 | ||
T=1.5 | (30, 20, 15) | 0.2843 | 0.0250 | 0.2671 | 0.0242 | 0.2085 | 0.0245 | 0.2198 | |
(40, 20, 15) | 0.5891 | 0.0226 | 0.5973 | 0.0222 | 0.3726 | 0.0225 | 0.4423 | ||
(60, 30, 20) | 0.2528 | 0.0175 | 0.2440 | 0.0171 | 0.1921 | 0.0172 | 0.2036 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.5166 | 0.0252 | 0.5284 | 0.0245 | 0.3486 | 0.0250 | 0.3869 |
(40, 20, 15) | 0.5489 | 0.0197 | 0.5772 | 0.0194 | 0.3644 | 0.0197 | 0.4159 | ||
(60, 30, 20) | 0.3080 | 0.0174 | 0.3002 | 0.0172 | 0.2285 | 0.0174 | 0.2459 | ||
T=0.7 | (30, 20, 15) | 0.3489 | 0.0255 | 0.3314 | 0.0247 | 0.2473 | 0.0250 | 0.2673 | |
(40, 20, 15) | 0.5221 | 0.0191 | 0.5308 | 0.0187 | 0.3333 | 0.0190 | 0.3778 | ||
(60, 30, 20) | 0.2269 | 0.0164 | 0.2135 | 0.0160 | 0.1734 | 0.0162 | 0.1794 | ||
T=1.5 | (30, 20, 15) | 0.3369 | 0.0265 | 0.3188 | 0.0256 | 0.2451 | 0.0259 | 0.2584 | |
(40, 20, 15) | 0.6190 | 0.0205 | 0.6676 | 0.0198 | 0.3925 | 0.0200 | 0.4631 | ||
(60, 30, 20) | 0.2130 | 0.0177 | 0.2087 | 0.0173 | 0.1658 | 0.0174 | 0.1737 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.5166 | 0.0252 | 0.5284 | 0.0245 | 0.3486 | 0.0250 | 0.3869 |
(40, 20, 15) | 1.4205 | 0.0173 | 2.3081 | 0.0169 | 0.7138 | 0.0171 | 1.1274 | ||
(60, 30, 20) | 0.3416 | 0.0162 | 0.3652 | 0.0159 | 0.2586 | 0.0161 | 0.2772 | ||
T=0.7 | (30, 20, 15) | 0.5049 | 0.0246 | 0.5692 | 0.0238 | 0.3290 | 0.0241 | 0.4095 | |
(40, 20, 15) | 1.2471 | 0.0183 | 1.7174 | 0.0179 | 0.6258 | 0.0181 | 0.9441 | ||
(60, 30, 20) | 0.3569 | 0.0152 | 0.3705 | 0.0149 | 0.2577 | 0.0151 | 0.2792 | ||
T=1.5 | (30, 20, 15) | 0.4781 | 0.0246 | 0.5283 | 0.0238 | 0.3279 | 0.0241 | 0.3805 | |
(40, 20, 15) | 1.4825 | 0.0182 | 2.0789 | 0.0179 | 0.6943 | 0.0181 | 1.0823 | ||
(60, 30, 20) | 0.3832 | 0.0164 | 0.4044 | 0.0161 | 0.2737 | 0.0163 | 0.3012 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.1962 | 0.0036 | 0.1983 | 0.0069 | 0.1024 | 0.0121 | 0.0855 |
(40, 20, 15) | 0.1816 | 0.0052 | 0.1950 | 0.0036 | 0.0900 | 0.0079 | 0.0715 | ||
(60, 30, 20) | 0.1219 | 0.0057 | 0.1268 | 0.0019 | 0.0649 | 0.0057 | 0.0502 | ||
T=0.7 | (30, 20, 15) | 0.1114 | 0.0075 | 0.0936 | 0.0029 | 0.0436 | 0.0080 | 0.0274 | |
(40, 20, 15) | 0.2209 | 0.0041 | 0.2048 | 0.0046 | 0.1182 | 0.0089 | 0.1086 | ||
(60, 30, 20) | 0.0984 | 0.0019 | 0.0884 | 0.0054 | 0.0519 | 0.0090 | 0.0403 | ||
T=1.5 | (30, 20, 15) | 0.1340 | 0.0092 | 0.1151 | 0.0012 | 0.0662 | 0.0063 | 0.0516 | |
(40, 20, 15) | 0.1950 | 0.0010 | 0.1840 | 0.0077 | 0.1037 | 0.0119 | 0.0935 | ||
(60, 30, 20) | 0.1235 | 0.0052 | 0.1125 | 0.0021 | 0.0748 | 0.0058 | 0.0647 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.2021 | 0.0034 | 0.2015 | 0.0070 | 0.1070 | 0.0122 | 0.0894 |
(40, 20, 15) | 0.1772 | 0.0006 | 0.1840 | 0.0079 | 0.0827 | 0.0122 | 0.0649 | ||
(60, 30, 20) | 0.1107 | 0.0002 | 0.1118 | 0.0072 | 0.0542 | 0.0109 | 0.0379 | ||
T=0.7 | (30, 20, 15) | 0.1516 | 0.0109 | 0.1333 | 0.0007 | 0.0785 | 0.0044 | 0.0645 | |
(40, 20, 15) | 0.2083 | 0.0036 | 0.2028 | 0.0049 | 0.1182 | 0.0091 | 0.1067 | ||
(60, 30, 20) | 0.1205 | 0.0051 | 0.1060 | 0.0021 | 0.0684 | 0.0057 | 0.0573 | ||
T=1.5 | (30, 20, 15) | 0.1597 | 0.0103 | 0.1411 | 0.0001 | 0.0889 | 0.0051 | 0.0757 | |
(40, 20, 15) | 0.2560 | 0.0116 | 0.2477 | 0.0030 | 0.1533 | 0.0012 | 0.1453 | ||
(60, 30, 20) | 0.1101 | 0.0089 | 0.1001 | 0.0016 | 0.0636 | 0.0020 | 0.0529 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.1928 | 0.0034 | 0.2015 | 0.0070 | 0.1070 | 0.0122 | 0.0894 |
(40, 20, 15) | 0.3861 | 0.0032 | 0.4732 | 0.0048 | 0.2402 | 0.0088 | 0.2642 | ||
(60, 30, 20) | 0.1597 | 0.0022 | 0.1710 | 0.0046 | 0.1106 | 0.0081 | 0.1002 | ||
T=0.7 | (30, 20, 15) | 0.1877 | 0.0107 | 0.1846 | 0.0008 | 0.1130 | 0.0040 | 0.1052 | |
(40, 20, 15) | 0.3373 | 0.0014 | 0.4115 | 0.0066 | 0.2144 | 0.0106 | 0.2268 | ||
(60, 30, 20) | 0.1610 | 0.0039 | 0.1703 | 0.0030 | 0.1106 | 0.0064 | 0.1009 | ||
T=1.5 | (30, 20, 15) | 0.1982 | 0.0107 | 0.1950 | 0.0007 | 0.1223 | 0.0041 | 0.1140 | |
(40, 20, 15) | 0.3659 | 0.0018 | 0.4368 | 0.0062 | 0.2275 | 0.0103 | 0.2443 | ||
(60, 30, 20) | 0.1717 | 0.0001 | 0.1788 | 0.0068 | 0.1167 | 0.0103 | 0.1076 |
Bayesian | |||||||||
ˆμBS | ˆμBL | ˆμBE | |||||||
Sch. | T | (n,m,k) | ˆμML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0410 | 0.0066 | 0.0361 | 0.0065 | 0.0337 | 0.0064 | 0.0320 |
(40, 20, 15) | 0.0307 | 0.0051 | 0.0270 | 0.0051 | 0.0257 | 0.0050 | 0.0250 | ||
(60, 30, 20) | 0.0236 | 0.0046 | 0.0214 | 0.0046 | 0.0207 | 0.0046 | 0.0203 | ||
T=0.7 | (30, 20, 15) | 0.0287 | 0.0070 | 0.0246 | 0.0068 | 0.0235 | 0.0066 | 0.0229 | |
(40, 20, 15) | 0.0304 | 0.0054 | 0.0259 | 0.0053 | 0.0248 | 0.0051 | 0.0239 | ||
(60, 30, 20) | 0.0187 | 0.0047 | 0.0163 | 0.0046 | 0.0158 | 0.0046 | 0.0155 | ||
T=1.5 | (30, 20, 15) | 0.0301 | 0.0069 | 0.0257 | 0.0067 | 0.0246 | 0.0066 | 0.0238 | |
(40, 20, 15) | 0.0299 | 0.0060 | 0.0259 | 0.0059 | 0.0248 | 0.0058 | 0.0240 | ||
(60, 30, 20) | 0.0185 | 0.0047 | 0.0161 | 0.0046 | 0.0156 | 0.0046 | 0.0152 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0459 | 0.0069 | 0.0409 | 0.0067 | 0.0382 | 0.0066 | 0.0364 |
(40, 20, 15) | 0.0310 | 0.0054 | 0.0272 | 0.0054 | 0.0259 | 0.0053 | 0.0253 | ||
(60, 30, 20) | 0.0215 | 0.0046 | 0.0190 | 0.0045 | 0.0184 | 0.0044 | 0.0180 | ||
T=0.7 | (30, 20, 15) | 0.0287 | 0.0066 | 0.0248 | 0.0066 | 0.0237 | 0.0064 | 0.0228 | |
(40, 20, 15) | 0.0256 | 0.0052 | 0.0220 | 0.0051 | 0.0210 | 0.0050 | 0.0202 | ||
(60, 30, 20) | 0.0176 | 0.0042 | 0.0153 | 0.0041 | 0.0148 | 0.0041 | 0.0144 | ||
T=1.5 | (30, 20, 15) | 0.0308 | 0.0069 | 0.0268 | 0.0067 | 0.0255 | 0.0066 | 0.0246 | |
(40, 20, 15) | 0.0279 | 0.0053 | 0.0243 | 0.0053 | 0.0231 | 0.0052 | 0.0221 | ||
(60, 30, 20) | 0.0161 | 0.0046 | 0.0140 | 0.0045 | 0.0136 | 0.0044 | 0.0133 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0459 | 0.0069 | 0.0409 | 0.0067 | 0.0382 | 0.0066 | 0.0364 |
(40, 20, 15) | 0.0462 | 0.0046 | 0.0423 | 0.0046 | 0.0393 | 0.0046 | 0.0370 | ||
(60, 30, 20) | 0.0248 | 0.0043 | 0.0226 | 0.0042 | 0.0216 | 0.0042 | 0.0207 | ||
T=0.7 | (30, 20, 15) | 0.0350 | 0.0062 | 0.0304 | 0.0062 | 0.0286 | 0.0061 | 0.0272 | |
(40, 20, 15) | 0.0428 | 0.0051 | 0.0394 | 0.0050 | 0.0369 | 0.0049 | 0.0348 | ||
(60, 30, 20) | 0.0232 | 0.0041 | 0.0208 | 0.0040 | 0.0199 | 0.0040 | 0.0192 | ||
T=1.5 | (30, 20, 15) | 0.0401 | 0.0067 | 0.0354 | 0.0066 | 0.0333 | 0.0065 | 0.0318 | |
(40, 20, 15) | 0.0469 | 0.0050 | 0.0420 | 0.0050 | 0.0392 | 0.0049 | 0.0371 | ||
(60, 30, 20) | 0.0254 | 0.0045 | 0.0224 | 0.0044 | 0.0214 | 0.0043 | 0.0205 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0556 | 0.0107 | 0.0453 | 0.0083 | 0.0378 | 0.0038 | 0.0247 |
(40, 20, 15) | 0.0338 | 0.0057 | 0.0263 | 0.0039 | 0.0204 | 0.0006 | 0.0095 | ||
(60, 30, 20) | 0.0248 | 0.0047 | 0.0194 | 0.0032 | 0.0150 | 0.0003 | 0.0069 | ||
T=0.7 | (30, 20, 15) | 0.0335 | 0.0084 | 0.0246 | 0.0061 | 0.0194 | 0.0015 | 0.0096 | |
(40, 20, 15) | 0.0446 | 0.0077 | 0.0333 | 0.0059 | 0.0285 | 0.0025 | 0.0198 | ||
(60, 30, 20) | 0.0269 | 0.0064 | 0.0210 | 0.0050 | 0.0178 | 0.0021 | 0.0118 | ||
T=1.5 | (30, 20, 15) | 0.0426 | 0.0090 | 0.0324 | 0.0067 | 0.0273 | 0.0022 | 0.0181 | |
(40, 20, 15) | 0.0439 | 0.0092 | 0.0337 | 0.0074 | 0.0291 | 0.0041 | 0.0205 | ||
(60, 30, 20) | 0.0319 | 0.0063 | 0.0260 | 0.0048 | 0.0229 | 0.0020 | 0.0171 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0592 | 0.0104 | 0.0480 | 0.0081 | 0.0403 | 0.0036 | 0.0272 |
(40, 20, 15) | 0.0350 | 0.0081 | 0.0258 | 0.0064 | 0.0200 | 0.0030 | 0.0093 | ||
(60, 30, 20) | 0.0262 | 0.0073 | 0.0200 | 0.0058 | 0.0157 | 0.0030 | 0.0077 | ||
T=0.7 | (30, 20, 15) | 0.0438 | 0.0082 | 0.0348 | 0.0059 | 0.0293 | 0.0015 | 0.0194 | |
(40, 20, 15) | 0.0426 | 0.0073 | 0.0339 | 0.0056 | 0.0291 | 0.0023 | 0.0203 | ||
(60, 30, 20) | 0.0305 | 0.0056 | 0.0224 | 0.0042 | 0.0192 | 0.0014 | 0.0133 | ||
T=1.5 | (30, 20, 15) | 0.0473 | 0.0086 | 0.0378 | 0.0062 | 0.0327 | 0.0018 | 0.0234 | |
(40, 20, 15) | 0.0494 | 0.0045 | 0.0384 | 0.0028 | 0.0335 | 0.0005 | 0.0248 | ||
(60, 30, 20) | 0.0239 | 0.0031 | 0.0184 | 0.0017 | 0.0153 | 0.0011 | 0.0095 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0592 | 0.0104 | 0.0480 | 0.0081 | 0.0403 | 0.0036 | 0.0272 |
(40, 20, 15) | 0.0701 | 0.0073 | 0.0608 | 0.0057 | 0.0534 | 0.0026 | 0.0413 | ||
(60, 30, 20) | 0.0404 | 0.0066 | 0.0353 | 0.0051 | 0.0310 | 0.0024 | 0.0233 | ||
T=0.7 | (30, 20, 15) | 0.0516 | 0.0070 | 0.0422 | 0.0048 | 0.0360 | 0.0005 | 0.0252 | |
(40, 20, 15) | 0.0656 | 0.0084 | 0.0581 | 0.0068 | 0.0510 | 0.0037 | 0.0391 | ||
(60, 30, 20) | 0.0388 | 0.0054 | 0.0332 | 0.0040 | 0.0291 | 0.0013 | 0.0215 | ||
T=1.5 | (30, 20, 15) | 0.0561 | 0.0073 | 0.0464 | 0.0050 | 0.0402 | 0.0007 | 0.0296 | |
(40, 20, 15) | 0.0685 | 0.0077 | 0.0595 | 0.0061 | 0.0524 | 0.0030 | 0.0404 | ||
(60, 30, 20) | 0.0444 | 0.0082 | 0.0375 | 0.0068 | 0.0332 | 0.0041 | 0.0256 |
Bayesian | |||||||||
^S(t)BS | ^S(t)BL | ^S(t)BE | |||||||
Sch. | T | (n,m,k) | ^S(t)ML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0005 | 3.90×10−6 | 0.0016 | 3.90×10−6 | 0.0014 | 2.60×10−6 | 0.0003 |
(40, 20, 15) | 0.0010 | 3.90×10−6 | 0.0026 | 3.90×10−6 | 0.0025 | 1.30×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0007 | 3.90×10−6 | 0.0016 | 3.90×10−6 | 0.0014 | 2.60×10−6 | 0.0004 | ||
T=0.7 | (30, 20, 15) | 0.0005 | 5.20×10−6 | 0.0012 | 5.20×10−6 | 0.0010 | 2.60×10−6 | 0.0003 | |
(40, 20, 15) | 0.0007 | 3.90×10−6 | 0.0014 | 3.90×10−6 | 0.0014 | 2.60×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0003 | 5.20×10−6 | 0.0007 | 5.20×10−6 | 0.0007 | 2.60×10−6 | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0003 | 3.90×10−6 | 0.0008 | 3.90×10−6 | 0.0008 | 2.60×10−6 | 0.0003 | |
(40, 20, 15) | 0.0005 | 5.20×10−6 | 0.0012 | 5.20×10−6 | 0.0012 | 2.60×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0003 | 5.20×10−6 | 0.0005 | 5.20×10−6 | 0.0005 | 2.60×10−6 | 0.0001 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0007 | 3.90×10−6 | 0.0018 | 3.90×10−6 | 0.0017 | 2.60×10−6 | 0.0004 |
(40, 20, 15) | 0.0012 | 3.90×10−6 | 0.0029 | 3.90×10−6 | 0.0027 | 2.60×10−6 | 0.0005 | ||
(60, 30, 20) | 0.0008 | 3.90×10−6 | 0.0017 | 3.90×10−6 | 0.0016 | 2.60×10−6 | 0.0005 | ||
T=0.7 | (30, 20, 15) | 0.0005 | 5.20×10−6 | 0.0010 | 5.20×10−6 | 0.0010 | 2.60×10−6 | 0.0004 | |
(40, 20, 15) | 0.0005 | 3.90×10−6 | 0.0012 | 3.90×10−6 | 0.0012 | 2.60×10−6 | 0.0003 | ||
(60, 30, 20) | 0.0003 | 5.20×10−6 | 0.0005 | 5.20×10−6 | 0.0005 | 2.60×10−6 | 0.0001 | ||
T=1.5 | (30, 20, 15) | 0.0004 | 5.20×10−6 | 0.0008 | 5.20×10−6 | 0.0008 | 2.60×10−6 | 0.0003 | |
(40, 20, 15) | 0.0004 | 3.90×10−6 | 0.0009 | 3.90×10−6 | 0.0009 | 2.60×10−6 | 0.0003 | ||
(60, 30, 20) | 0.0003 | 5.20×10−6 | 0.0004 | 5.20×10−6 | 0.0004 | 2.60×10−6 | 0.0001 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0007 | 3.90×10−6 | 0.0018 | 3.90×10−6 | 0.0017 | 2.60×10−6 | 0.0004 |
(40, 20, 15) | 0.0007 | 2.60×10−6 | 0.0017 | 2.60×10−6 | 0.0016 | 1.30×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0004 | 3.90×10−6 | 0.0008 | 3.90×10−6 | 0.0008 | 2.60×10−6 | 0.0003 | ||
T=0.7 | (30, 20, 15) | 0.0003 | 3.90×10−6 | 0.0007 | 3.90×10−6 | 0.0007 | 2.60×10−6 | 0.0003 | |
(40, 20, 15) | 0.0007 | 3.90×10−6 | 0.0017 | 3.90×10−6 | 0.0016 | 1.30×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0003 | 3.90×10−6 | 0.0007 | 3.90×10−6 | 0.0007 | 2.60×10−6 | 0.0001 | ||
T=1.5 | (30, 20, 15) | 0.0003 | 3.90×10−6 | 0.0007 | 3.90×10−6 | 0.0007 | 2.60×10−6 | 0.0001 | |
(40, 20, 15) | 0.0008 | 3.90×10−6 | 0.0018 | 3.90×10−6 | 0.0017 | 1.30×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0003 | 3.90×10−6 | 0.0007 | 3.90×10−6 | 0.0007 | 2.60×10−6 | 0.0001 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0070 | 0.0014 | 0.0270 | 0.0014 | 0.0260 | 0.0007 | 0.0014 |
(40, 20, 15) | 0.0120 | 0.0014 | 0.0350 | 0.0014 | 0.0340 | 0.0007 | 0.0003 | ||
(60, 30, 20) | 0.0090 | 0.0013 | 0.0250 | 0.0013 | 0.0250 | 0.0007 | 0.0004 | ||
T=0.7 | (30, 20, 15) | 0.0069 | 0.0014 | 0.0220 | 0.0013 | 0.0210 | 0.0007 | 0.0009 | |
(40, 20, 15) | 0.0073 | 0.0013 | 0.0230 | 0.0013 | 0.0230 | 0.0007 | 0.0007 | ||
(60, 30, 20) | 0.0049 | 0.0014 | 0.0150 | 0.0013 | 0.0150 | 0.0005 | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0045 | 0.0012 | 0.0170 | 0.0012 | 0.0170 | 0.0008 | 0.0004 | |
(40, 20, 15) | 0.0069 | 0.0014 | 0.0220 | 0.0014 | 0.0220 | 0.0007 | 0.0001 | ||
(60, 30, 20) | 0.0032 | 0.0012 | 0.0120 | 0.0012 | 0.0120 | 0.0007 | 0.0008 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0082 | 0.0014 | 0.0280 | 0.0014 | 0.0280 | 0.0007 | 0.0003 |
(40, 20, 15) | 0.0130 | 0.0014 | 0.0360 | 0.0014 | 0.0350 | 0.0007 | 0.0010 | ||
(60, 30, 20) | 0.0096 | 0.0014 | 0.0250 | 0.0014 | 0.0250 | 0.0007 | 0.0010 | ||
T=0.7 | (30, 20, 15) | 0.0055 | 0.0012 | 0.0190 | 0.0012 | 0.0190 | 0.0008 | 0.0010 | |
(40, 20, 15) | 0.0062 | 0.0013 | 0.0210 | 0.0013 | 0.0210 | 0.0007 | 0.0008 | ||
(60, 30, 20) | 0.0039 | 0.0013 | 0.0140 | 0.0013 | 0.0140 | 0.0007 | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0045 | 0.0013 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0003 | |
(40, 20, 15) | 0.0038 | 0.0012 | 0.0190 | 0.0012 | 0.0180 | 0.0008 | 0.0021 | ||
(60, 30, 20) | 0.0034 | 0.0013 | 0.0130 | 0.0013 | 0.0120 | 0.0007 | 0.0008 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0082 | 0.0014 | 0.0280 | 0.0014 | 0.0280 | 0.0007 | 0.0003 |
(40, 20, 15) | 0.0074 | 0.0013 | 0.0260 | 0.0013 | 0.0260 | 0.0008 | 0.0025 | ||
(60, 30, 20) | 0.0055 | 0.0013 | 0.0170 | 0.0013 | 0.0170 | 0.0007 | 0.0010 | ||
T=0.7 | (30, 20, 15) | 0.0035 | 0.0013 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0020 | |
(40, 20, 15) | 0.0070 | 0.0013 | 0.0260 | 0.0013 | 0.0260 | 0.0008 | 0.0027 | ||
(60, 30, 20) | 0.0041 | 0.0013 | 0.0150 | 0.0013 | 0.0150 | 0.0007 | 0.0018 | ||
T=1.5 | (30, 20, 15) | 0.0039 | 0.0012 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0017 | |
(40, 20, 15) | 0.0080 | 0.0014 | 0.0270 | 0.0013 | 0.0260 | 0.0007 | 0.0020 | ||
(60, 30, 20) | 0.0042 | 0.0013 | 0.0150 | 0.0013 | 0.0150 | 0.0007 | 0.0018 |
Bayesian | |||||||||
^H(t)BS | ^H(t)BL | ^H(t)BE | |||||||
Sch. | T | (n,m,k) | ^H(t)ML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0250 | 4.20×10−5 | 0.0390 | 4.20×10−5 | 0.0320 | 4.20×10−5 | 0.0200 |
(40, 20, 15) | 0.0220 | 4.20×10−5 | 0.0350 | 4.20×10−5 | 0.0300 | 4.20×10−5 | 0.0190 | ||
(60, 30, 20) | 0.0250 | 5.60×10−5 | 0.0370 | 5.60×10−5 | 0.0270 | 5.60×10−5 | 0.0240 | ||
T=0.7 | (30, 20, 15) | 0.0110 | 5.60×10−5 | 0.0130 | 5.60×10−5 | 0.0130 | 7.00×10−5 | 0.0095 | |
(40, 20, 15) | 0.0290 | 5.60×10−5 | 0.0400 | 5.60×10−5 | 0.0330 | 5.60×10−5 | 0.0220 | ||
(60, 30, 20) | 0.0084 | 8.40×10−5 | 0.0110 | 8.40×10−5 | 0.0100 | 8.40×10−5 | 0.0081 | ||
T=1.5 | (30, 20, 15) | 0.0120 | 7.00×10−5 | 0.0150 | 7.00×10−5 | 0.0140 | 7.00×10−5 | 0.0110 | |
(40, 20, 15) | 0.0240 | 5.60×10−5 | 0.0350 | 5.60×10−5 | 0.0300 | 5.60×10−5 | 0.0210 | ||
(60, 30, 20) | 0.0100 | 7.00×10−5 | 0.0130 | 8.40×10−5 | 0.0120 | 8.40×10−5 | 0.0095 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0260 | 4.20×10−5 | 0.0390 | 4.20×10−5 | 0.0340 | 5.60×10−5 | 0.0220 |
(40, 20, 15) | 0.0220 | 4.20×10−5 | 0.0340 | 4.20×10−5 | 0.0300 | 4.20×10−5 | 0.0190 | ||
(60, 30, 20) | 0.0120 | 5.60×10−5 | 0.0170 | 5.60×10−5 | 0.0150 | 5.60×10−5 | 0.0110 | ||
T=0.7 | (30, 20, 15) | 0.0130 | 5.60×10−5 | 0.0180 | 5.60×10−5 | 0.0170 | 7.00×10−5 | 0.0120 | |
(40, 20, 15) | 0.0190 | 5.60×10−5 | 0.0280 | 5.60×10−5 | 0.0250 | 5.60×10−5 | 0.0160 | ||
(60, 30, 20) | 0.0086 | 7.00×10−5 | 0.0110 | 7.00×10−5 | 0.0110 | 8.40×10−5 | 0.0081 | ||
T=1.5 | (30, 20, 15) | 0.0130 | 7.00×10−5 | 0.0170 | 7.00×10−5 | 0.0160 | 7.00×10−5 | 0.0120 | |
(40, 20, 15) | 0.0260 | 4.20×10−5 | 0.0420 | 4.20×10−5 | 0.0350 | 5.60×10−5 | 0.0230 | ||
(60, 30, 20) | 0.0076 | 7.00×10−5 | 0.0100 | 7.00×10−5 | 0.0096 | 7.00×10−5 | 0.0074 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0260 | 4.20×10−5 | 0.0390 | 4.20×10−5 | 0.0340 | 5.60×10−5 | 0.0220 |
(40, 20, 15) | 0.0750 | 4.20×10−5 | 0.2200 | 4.20×10−5 | 0.1100 | 4.20×10−5 | 0.0680 | ||
(60, 30, 20) | 0.0150 | 5.60×10−5 | 0.0230 | 5.60×10−5 | 0.0210 | 5.60×10−5 | 0.0140 | ||
T=0.7 | (30, 20, 15) | 0.0260 | 5.60×10−5 | 0.0430 | 5.60×10−5 | 0.0340 | 5.60×10−5 | 0.0240 | |
(40, 20, 15) | 0.0660 | 4.20×10−5 | 0.1500 | 4.20×10−5 | 0.0910 | 4.20×10−5 | 0.0570 | ||
(60, 30, 20) | 0.0160 | 5.60×10−5 | 0.0230 | 5.60×10−5 | 0.0210 | 5.60×10−5 | 0.0140 | ||
T=1.5 | (30, 20, 15) | 0.0250 | 5.60×10−5 | 0.0430 | 5.60×10−5 | 0.0340 | 5.60×10−5 | 0.0230 | |
(40, 20, 15) | 0.0870 | 4.20×10−5 | 0.2000 | 4.20×10−5 | 0.1000 | 4.20×10−5 | 0.0700 | ||
(60, 30, 20) | 0.0170 | 5.60×10−5 | 0.0260 | 5.60×10−5 | 0.0230 | 5.60×10−5 | 0.0150 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0600 | 1.70×10−4 | 0.0880 | 3.20×10−4 | 0.0800 | 0.0027 | 0.0320 |
(40, 20, 15) | 0.0510 | 3.60×10−4 | 0.0810 | 5.20×10−4 | 0.0730 | 0.0028 | 0.0240 | ||
(60, 30, 20) | 0.0360 | 2.80×10−5 | 0.0540 | 1.10×10−4 | 0.0490 | 0.0024 | 0.0180 | ||
T=0.7 | (30, 20, 15) | 0.0330 | 3.80×10−4 | 0.0400 | 5.20×10−4 | 0.0370 | 0.0028 | 0.0110 | |
(40, 20, 15) | 0.0610 | 9.80×10−5 | 0.0810 | 5.60×10−5 | 0.0740 | 0.0024 | 0.0370 | ||
(60, 30, 20) | 0.0290 | 1.10×10−5 | 0.0370 | 1.50×10−4 | 0.0350 | 0.0024 | 0.0160 | ||
T=1.5 | (30, 20, 15) | 0.0400 | 2.40×10−4 | 0.0480 | 9.80×10−5 | 0.0450 | 0.0021 | 0.0200 | |
(40, 20, 15) | 0.0550 | 1.50×10−4 | 0.0740 | 3.10×10−4 | 0.0680 | 0.0025 | 0.0330 | ||
(60, 30, 20) | 0.0340 | 5.90×10−4 | 0.0440 | 4.50×10−4 | 0.0420 | 0.0017 | 0.0230 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0640 | 3.40×10−4 | 0.0920 | 4.90×10−4 | 0.0840 | 0.0028 | 0.0350 |
(40, 20, 15) | 0.0510 | 3.50×10−4 | 0.0780 | 5.00×10−4 | 0.0700 | 0.0028 | 0.0230 | ||
(60, 30, 20) | 0.0330 | 1.40×10−5 | 0.0490 | 1.40×10−4 | 0.0450 | 0.0024 | 0.0140 | ||
T=0.7 | (30, 20, 15) | 0.0440 | 3.80×10−4 | 0.0550 | 2.20×10−4 | 0.0510 | 0.0021 | 0.0240 | |
(40, 20, 15) | 0.0550 | 4.20×10−5 | 0.0770 | 1.10×10−4 | 0.0720 | 0.0024 | 0.0340 | ||
(60, 30, 20) | 0.0330 | 4.90×10−4 | 0.0410 | 3.50×10−4 | 0.0390 | 0.0018 | 0.0190 | ||
T=1.5 | (30, 20, 15) | 0.0460 | 2.50×10−4 | 0.0570 | 1.10×10−4 | 0.0540 | 0.0021 | 0.0280 | |
(40, 20, 15) | 0.0670 | 4.20×10−4 | 0.0920 | 2.80×10−4 | 0.0850 | 0.0020 | 0.0450 | ||
(60, 30, 20) | 0.0280 | 1.30×10−4 | 0.0370 | 1.10×10−5 | 0.0350 | 0.0023 | 0.0160 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0640 | 3.40×10−4 | 0.0920 | 4.90×10−4 | 0.0840 | 0.0028 | 0.0350 |
(40, 20, 15) | 0.1100 | 3.40×10−4 | 0.2000 | 1.80×10−4 | 0.1600 | 0.0021 | 0.0860 | ||
(60, 30, 20) | 0.0460 | 3.90×10−4 | 0.0700 | 2.40×10−4 | 0.0650 | 0.0020 | 0.0340 | ||
T=0.7 | (30, 20, 15) | 0.0560 | 1.30×10−4 | 0.0770 | 1.10×10−5 | 0.0710 | 0.0024 | 0.0370 | |
(40, 20, 15) | 0.0970 | 2.90×10−4 | 0.1700 | 1.40×10−4 | 0.1400 | 0.0023 | 0.0740 | ||
(60, 30, 20) | 0.0460 | 3.60×10−4 | 0.0680 | 2.10×10−4 | 0.0640 | 0.0021 | 0.0330 | ||
T=1.5 | (30, 20, 15) | 0.0600 | 1.10×10−4 | 0.0830 | 4.20×10−5 | 0.0760 | 0.0024 | 0.0410 | |
(40, 20, 15) | 0.1100 | 8.40×10−5 | 0.1800 | 7.00×10−5 | 0.1500 | 0.0024 | 0.0810 | ||
(60, 30, 20) | 0.0500 | 5.70×10−4 | 0.0730 | 4.20×10−4 | 0.0680 | 0.0018 | 0.0370 |
ˆλB | |||||||||||||
ˆλML | IP | NIP | |||||||||||
90% | 95% | 90% | 95% | 90% | 95% | ||||||||
T | (n,m,k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch.I | |||||||||||||
T=0.3 | (30, 20, 15) | 2.733 | 0.918 | 3.161 | 0.950 | 0.911 | 0.940 | 1.078 | 0.965 | 2.683 | 0.863 | 3.138 | 0.928 |
(40, 20, 15) | 2.871 | 0.930 | 3.309 | 0.945 | 0.828 | 0.947 | 0.986 | 0.970 | 2.810 | 0.879 | 3.317 | 0.925 | |
(60, 30, 20) | 2.135 | 0.907 | 2.544 | 0.941 | 0.769 | 0.948 | 0.920 | 0.969 | 2.098 | 0.867 | 2.511 | 0.922 | |
T=0.7 | (30, 20, 15) | 1.665 | 0.873 | 1.935 | 0.943 | 0.741 | 0.934 | 0.877 | 0.965 | 1.614 | 0.851 | 1.864 | 0.927 |
(40, 20, 15) | 2.012 | 0.924 | 2.417 | 0.935 | 0.674 | 0.945 | 0.803 | 0.964 | 1.956 | 0.877 | 2.360 | 0.892 | |
(60, 30, 20) | 1.393 | 0.878 | 1.638 | 0.946 | 0.623 | 0.931 | 0.737 | 0.969 | 1.355 | 0.856 | 1.596 | 0.918 | |
T=1.5 | (30, 20, 15) | 1.420 | 0.901 | 1.692 | 0.942 | 0.658 | 0.945 | 0.780 | 0.965 | 1.378 | 0.871 | 1.634 | 0.927 |
(40, 20, 15) | 1.748 | 0.931 | 2.067 | 0.945 | 0.602 | 0.946 | 0.708 | 0.965 | 1.707 | 0.864 | 2.015 | 0.907 | |
(60, 30, 20) | 1.208 | 0.907 | 1.461 | 0.940 | 0.554 | 0.937 | 0.656 | 0.965 | 1.173 | 0.889 | 1.420 | 0.913 | |
Sch.II | |||||||||||||
T=0.3 | (30, 20, 15) | 2.727 | 0.908 | 3.181 | 0.940 | 0.909 | 0.930 | 1.079 | 0.965 | 2.653 | 0.858 | 3.143 | 0.912 |
(40, 20, 15) | 2.917 | 0.920 | 3.260 | 0.937 | 0.824 | 0.955 | 0.972 | 0.965 | 2.883 | 0.867 | 3.243 | 0.923 | |
(60, 30, 20) | 2.098 | 0.899 | 2.499 | 0.930 | 0.766 | 0.946 | 0.908 | 0.968 | 2.047 | 0.865 | 2.456 | 0.907 | |
T=0.7 | (30, 20, 15) | 1.648 | 0.886 | 1.984 | 0.942 | 0.738 | 0.944 | 0.876 | 0.961 | 1.592 | 0.858 | 1.930 | 0.917 |
(40, 20, 15) | 2.328 | 0.905 | 2.408 | 0.943 | 0.673 | 0.944 | 0.795 | 0.964 | 2.296 | 0.848 | 2.355 | 0.913 | |
(60, 30, 20) | 1.367 | 0.901 | 1.661 | 0.941 | 0.616 | 0.947 | 0.734 | 0.970 | 1.334 | 0.875 | 1.612 | 0.913 | |
T=1.5 | (30, 20, 15) | 1.481 | 0.879 | 1.726 | 0.935 | 0.654 | 0.934 | 0.782 | 0.959 | 1.455 | 0.858 | 1.683 | 0.907 |
(40, 20, 15) | 1.866 | 0.938 | 2.224 | 0.951 | 0.596 | 0.948 | 0.710 | 0.966 | 1.811 | 0.863 | 2.189 | 0.922 | |
(60, 30, 20) | 1.203 | 0.900 | 1.442 | 0.946 | 0.547 | 0.945 | 0.653 | 0.965 | 1.169 | 0.881 | 1.407 | 0.913 | |
Sch.III | |||||||||||||
T=0.3 | (30, 20, 15) | 2.425 | 0.915 | 3.181 | 0.940 | 0.887 | 0.927 | 1.079 | 0.965 | 2.382 | 0.879 | 3.143 | 0.912 |
(40, 20, 15) | 3.676 | 0.928 | 4.329 | 0.951 | 0.798 | 0.948 | 0.945 | 0.974 | 3.932 | 0.857 | 4.748 | 0.912 | |
(60, 30, 20) | 2.083 | 0.913 | 2.451 | 0.945 | 0.742 | 0.951 | 0.875 | 0.964 | 2.057 | 0.854 | 2.459 | 0.911 | |
T=0.7 | (30, 20, 15) | 1.771 | 0.919 | 2.142 | 0.949 | 0.721 | 0.940 | 0.855 | 0.966 | 1.727 | 0.866 | 2.120 | 0.920 |
(40, 20, 15) | 3.077 | 0.924 | 3.378 | 0.952 | 0.656 | 0.942 | 0.773 | 0.968 | 3.272 | 0.844 | 3.600 | 0.916 | |
(60, 30, 20) | 1.670 | 0.913 | 1.993 | 0.949 | 0.601 | 0.949 | 0.715 | 0.967 | 1.669 | 0.859 | 1.986 | 0.917 | |
T=1.5 | (30, 20, 15) | 1.544 | 0.924 | 1.920 | 0.951 | 0.644 | 0.925 | 0.762 | 0.970 | 1.512 | 0.886 | 1.913 | 0.907 |
(40, 20, 15) | 2.793 | 0.927 | 3.096 | 0.943 | 0.580 | 0.948 | 0.685 | 0.967 | 2.910 | 0.837 | 3.291 | 0.896 | |
(60, 30, 20) | 1.517 | 0.913 | 1.792 | 0.955 | 0.534 | 0.937 | 0.634 | 0.957 | 1.502 | 0.844 | 1.792 | 0.917 |
Bayesian | |||||||||||||
ˆμML | IP | NIP | |||||||||||
90% | 95% | 90% | 95% | 90% | 95% | ||||||||
T | (n,m,k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch.I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.933 | 0.901 | 1.101 | 0.983 | 0.456 | 0.955 | 0.541 | 0.989 | 0.910 | 0.891 | 1.055 | 0.961 |
(40, 20, 15) | 0.833 | 0.904 | 0.979 | 0.968 | 0.393 | 0.940 | 0.466 | 0.991 | 0.804 | 0.876 | 0.937 | 0.951 | |
(60, 30, 20) | 0.710 | 0.915 | 0.837 | 0.963 | 0.366 | 0.952 | 0.427 | 0.987 | 0.695 | 0.890 | 0.805 | 0.931 | |
T=0.7 | (30, 20, 15) | 0.726 | 0.917 | 0.855 | 0.962 | 0.423 | 0.963 | 0.496 | 0.984 | 0.706 | 0.898 | 0.819 | 0.942 |
(40, 20, 15) | 0.688 | 0.916 | 0.814 | 0.960 | 0.364 | 0.957 | 0.432 | 0.990 | 0.671 | 0.896 | 0.783 | 0.931 | |
(60, 30, 20) | 0.556 | 0.895 | 0.661 | 0.945 | 0.335 | 0.939 | 0.396 | 0.986 | 0.542 | 0.882 | 0.642 | 0.927 | |
T=1.5 | (30, 20, 15) | 0.645 | 0.918 | 0.766 | 0.959 | 0.387 | 0.952 | 0.457 | 0.983 | 0.632 | 0.901 | 0.739 | 0.938 |
(40, 20, 15) | 0.614 | 0.928 | 0.735 | 0.966 | 0.331 | 0.954 | 0.393 | 0.970 | 0.594 | 0.893 | 0.707 | 0.930 | |
(60, 30, 20) | 0.500 | 0.917 | 0.599 | 0.949 | 0.306 | 0.954 | 0.363 | 0.987 | 0.488 | 0.899 | 0.578 | 0.927 | |
Sch.II | |||||||||||||
T=0.3 | (30, 20, 15) | 0.931 | 0.908 | 1.106 | 0.973 | 0.455 | 0.955 | 0.537 | 0.990 | 0.900 | 0.893 | 1.061 | 0.935 |
(40, 20, 15) | 0.820 | 0.905 | 0.971 | 0.971 | 0.388 | 0.955 | 0.462 | 0.983 | 0.797 | 0.882 | 0.929 | 0.949 | |
(60, 30, 20) | 0.700 | 0.918 | 0.834 | 0.975 | 0.362 | 0.962 | 0.426 | 0.982 | 0.681 | 0.905 | 0.798 | 0.949 | |
T=0.7 | (30, 20, 15) | 0.719 | 0.912 | 0.858 | 0.972 | 0.417 | 0.958 | 0.494 | 0.991 | 0.703 | 0.888 | 0.834 | 0.952 |
(40, 20, 15) | 0.757 | 0.918 | 0.816 | 0.970 | 0.358 | 0.957 | 0.423 | 0.985 | 0.735 | 0.899 | 0.785 | 0.956 | |
(60, 30, 20) | 0.555 | 0.907 | 0.662 | 0.969 | 0.334 | 0.960 | 0.391 | 0.983 | 0.545 | 0.879 | 0.637 | 0.947 | |
T=1.5 | (30, 20, 15) | 0.654 | 0.909 | 0.768 | 0.966 | 0.384 | 0.952 | 0.456 | 0.984 | 0.640 | 0.874 | 0.744 | 0.933 |
(40, 20, 15) | 0.633 | 0.907 | 0.751 | 0.971 | 0.331 | 0.960 | 0.388 | 0.980 | 0.615 | 0.874 | 0.721 | 0.954 | |
(60, 30, 20) | 0.506 | 0.890 | 0.593 | 0.971 | 0.307 | 0.939 | 0.357 | 0.988 | 0.490 | 0.872 | 0.578 | 0.953 | |
Sch.III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.915 | 0.926 | 1.106 | 0.973 | 0.447 | 0.941 | 0.537 | 0.990 | 0.891 | 0.891 | 1.061 | 0.935 |
(40, 20, 15) | 0.918 | 0.906 | 1.080 | 0.970 | 0.377 | 0.942 | 0.445 | 0.987 | 0.884 | 0.862 | 1.031 | 0.937 | |
(60, 30, 20) | 0.693 | 0.925 | 0.832 | 0.972 | 0.351 | 0.960 | 0.417 | 0.990 | 0.675 | 0.900 | 0.801 | 0.934 | |
T=0.7 | (30, 20, 15) | 0.772 | 0.922 | 0.914 | 0.980 | 0.415 | 0.955 | 0.485 | 0.997 | 0.750 | 0.902 | 0.884 | 0.964 |
(40, 20, 15) | 0.834 | 0.925 | 0.990 | 0.974 | 0.345 | 0.950 | 0.411 | 0.987 | 0.806 | 0.876 | 0.941 | 0.935 | |
(60, 30, 20) | 0.641 | 0.919 | 0.760 | 0.968 | 0.326 | 0.955 | 0.383 | 0.992 | 0.623 | 0.890 | 0.729 | 0.947 | |
T=1.5 | (30, 20, 15) | 0.704 | 0.921 | 0.842 | 0.971 | 0.382 | 0.942 | 0.446 | 0.992 | 0.686 | 0.896 | 0.808 | 0.947 |
(40, 20, 15) | 0.773 | 0.914 | 0.911 | 0.963 | 0.318 | 0.956 | 0.377 | 0.979 | 0.739 | 0.878 | 0.860 | 0.923 | |
(60, 30, 20) | 0.589 | 0.928 | 0.702 | 0.970 | 0.297 | 0.949 | 0.354 | 0.987 | 0.573 | 0.904 | 0.677 | 0.940 |
^S(t)B | |||||||||||||
^S(t)ML | IP | NIP | |||||||||||
90% | 95% | 90% | 95% | 90% | 95% | ||||||||
T | (n,m,k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch.I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.088 | 0.736 | 0.110 | 0.797 | 0.021 | 0.980 | 0.026 | 0.985 | 0.138 | 0.922 | 0.185 | 0.949 |
(40, 20, 15) | 0.113 | 0.771 | 0.140 | 0.813 | 0.022 | 0.987 | 0.026 | 0.993 | 0.164 | 0.919 | 0.215 | 0.948 | |
(60, 30, 20) | 0.091 | 0.803 | 0.110 | 0.849 | 0.021 | 0.976 | 0.026 | 0.978 | 0.123 | 0.907 | 0.158 | 0.945 | |
T=0.7 | (30, 20, 15) | 0.068 | 0.789 | 0.088 | 0.856 | 0.020 | 0.965 | 0.024 | 0.963 | 0.099 | 0.903 | 0.133 | 0.946 |
(40, 20, 15) | 0.069 | 0.727 | 0.092 | 0.799 | 0.020 | 0.954 | 0.024 | 0.948 | 0.105 | 0.926 | 0.144 | 0.919 | |
(60, 30, 20) | 0.057 | 0.812 | 0.069 | 0.875 | 0.019 | 0.980 | 0.023 | 0.985 | 0.075 | 0.914 | 0.097 | 0.929 | |
T=1.5 | (30, 20, 15) | 0.058 | 0.790 | 0.069 | 0.838 | 0.018 | 0.965 | 0.022 | 0.918 | 0.084 | 0.918 | 0.108 | 0.939 |
(40, 20, 15) | 0.066 | 0.758 | 0.083 | 0.809 | 0.018 | 0.954 | 0.022 | 0.985 | 0.098 | 0.909 | 0.132 | 0.934 | |
(60, 30, 20) | 0.049 | 0.833 | 0.058 | 0.856 | 0.018 | 0.980 | 0.021 | 0.903 | 0.066 | 0.948 | 0.083 | 0.929 | |
Sch.II | |||||||||||||
T=0.3 | (30, 20, 15) | 0.089 | 0.743 | 0.113 | 0.769 | 0.021 | 0.980 | 0.026 | 0.985 | 0.140 | 0.921 | 0.188 | 0.943 |
(40, 20, 15) | 0.111 | 0.754 | 0.143 | 0.802 | 0.021 | 0.965 | 0.026 | 0.963 | 0.159 | 0.904 | 0.215 | 0.954 | |
(60, 30, 20) | 0.092 | 0.814 | 0.110 | 0.859 | 0.021 | 0.954 | 0.026 | 0.948 | 0.125 | 0.921 | 0.156 | 0.934 | |
T=0.7 | (30, 20, 15) | 0.068 | 0.794 | 0.080 | 0.802 | 0.020 | 0.943 | 0.024 | 0.933 | 0.098 | 0.910 | 0.124 | 0.944 |
(40, 20, 15) | 0.105 | 0.730 | 0.088 | 0.802 | 0.020 | 0.932 | 0.024 | 0.918 | 0.150 | 0.912 | 0.139 | 0.940 | |
(60, 30, 20) | 0.055 | 0.821 | 0.066 | 0.836 | 0.019 | 0.980 | 0.023 | 0.985 | 0.074 | 0.913 | 0.094 | 0.930 | |
T=1.5 | (30, 20, 15) | 0.054 | 0.765 | 0.067 | 0.793 | 0.018 | 0.943 | 0.022 | 0.888 | 0.078 | 0.905 | 0.104 | 0.928 |
(40, 20, 15) | 0.063 | 0.735 | 0.073 | 0.781 | 0.018 | 0.932 | 0.022 | 0.985 | 0.096 | 0.895 | 0.123 | 0.950 | |
(60, 30, 20) | 0.048 | 0.827 | 0.059 | 0.884 | 0.018 | 0.980 | 0.021 | 0.873 | 0.064 | 0.913 | 0.085 | 0.934 | |
Sch.III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.101 | 0.782 | 0.113 | 0.769 | 0.021 | 0.979 | 0.026 | 0.985 | 0.144 | 0.919 | 0.188 | 0.943 |
(40, 20, 15) | 0.089 | 0.668 | 0.114 | 0.730 | 0.021 | 0.943 | 0.026 | 0.933 | 0.132 | 0.888 | 0.180 | 0.926 | |
(60, 30, 20) | 0.070 | 0.778 | 0.085 | 0.808 | 0.021 | 0.932 | 0.025 | 0.918 | 0.093 | 0.901 | 0.120 | 0.936 | |
T=0.7 | (30, 20, 15) | 0.065 | 0.766 | 0.074 | 0.815 | 0.020 | 0.921 | 0.024 | 0.903 | 0.093 | 0.908 | 0.119 | 0.951 |
(40, 20, 15) | 0.088 | 0.684 | 0.105 | 0.758 | 0.020 | 0.910 | 0.024 | 0.888 | 0.129 | 0.891 | 0.170 | 0.933 | |
(60, 30, 20) | 0.063 | 0.803 | 0.074 | 0.830 | 0.019 | 0.980 | 0.023 | 0.985 | 0.083 | 0.906 | 0.107 | 0.937 | |
T=1.5 | (30, 20, 15) | 0.058 | 0.788 | 0.069 | 0.797 | 0.018 | 0.921 | 0.022 | 0.858 | 0.084 | 0.947 | 0.109 | 0.941 |
(40, 20, 15) | 0.078 | 0.684 | 0.099 | 0.747 | 0.018 | 0.910 | 0.023 | 0.985 | 0.116 | 0.883 | 0.158 | 0.927 | |
(60, 30, 20) | 0.057 | 0.787 | 0.069 | 0.803 | 0.018 | 0.980 | 0.022 | 0.903 | 0.077 | 0.899 | 0.098 | 0.939 |
^H(t)B | |||||||||||||
^H(t)ML | IP | NIP | |||||||||||
90% | 95% | 90% | 95% | 90% | 95% | ||||||||
T | (n,m,k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch.I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.472 | 0.716 | 0.537 | 0.769 | 0.078 | 0.961 | 0.093 | 0.966 | 0.475 | 0.943 | 0.556 | 0.963 |
(40, 20, 15) | 0.473 | 0.750 | 0.533 | 0.784 | 0.078 | 0.980 | 0.092 | 1.000 | 0.474 | 0.933 | 0.559 | 0.956 | |
(60, 30, 20) | 0.344 | 0.781 | 0.408 | 0.819 | 0.078 | 1.000 | 0.091 | 1.000 | 0.345 | 0.922 | 0.416 | 0.959 | |
T=0.7 | (30, 20, 15) | 0.310 | 0.767 | 0.354 | 0.825 | 0.074 | 1.031 | 0.087 | 1.000 | 0.300 | 0.924 | 0.343 | 0.953 |
(40, 20, 15) | 0.344 | 0.707 | 0.417 | 0.770 | 0.067 | 0.963 | 0.080 | 0.955 | 0.339 | 0.946 | 0.417 | 0.925 | |
(60, 30, 20) | 0.256 | 0.790 | 0.301 | 0.843 | 0.072 | 1.000 | 0.086 | 1.000 | 0.249 | 0.926 | 0.294 | 0.937 | |
T=1.5 | (30, 20, 15) | 0.288 | 0.768 | 0.343 | 0.808 | 0.072 | 1.000 | 0.085 | 1.000 | 0.280 | 0.931 | 0.332 | 0.938 |
(40, 20, 15) | 0.332 | 0.737 | 0.397 | 0.780 | 0.067 | 0.975 | 0.079 | 0.995 | 0.330 | 0.930 | 0.395 | 0.942 | |
(60, 30, 20) | 0.243 | 0.810 | 0.296 | 0.825 | 0.071 | 1.000 | 0.084 | 1.000 | 0.235 | 0.959 | 0.290 | 0.931 | |
Sch.II | |||||||||||||
T=0.3 | (30, 20, 15) | 0.470 | 0.722 | 0.546 | 0.742 | 0.078 | 0.927 | 0.093 | 0.975 | 0.466 | 0.936 | 0.562 | 0.949 |
(40, 20, 15) | 0.485 | 0.733 | 0.527 | 0.773 | 0.078 | 0.967 | 0.092 | 0.989 | 0.494 | 0.924 | 0.547 | 0.955 | |
(60, 30, 20) | 0.333 | 0.792 | 0.398 | 0.828 | 0.077 | 1.035 | 0.091 | 1.000 | 0.329 | 0.937 | 0.401 | 0.945 | |
T=0.7 | (30, 20, 15) | 0.310 | 0.773 | 0.375 | 0.773 | 0.074 | 0.967 | 0.088 | 1.000 | 0.299 | 0.925 | 0.369 | 0.955 |
(40, 20, 15) | 0.429 | 0.710 | 0.438 | 0.773 | 0.074 | 0.967 | 0.087 | 0.959 | 0.434 | 0.935 | 0.440 | 0.949 | |
(60, 30, 20) | 0.253 | 0.798 | 0.308 | 0.806 | 0.073 | 1.007 | 0.086 | 1.000 | 0.247 | 0.926 | 0.300 | 0.940 | |
T=1.5 | (30, 20, 15) | 0.315 | 0.744 | 0.357 | 0.765 | 0.072 | 0.956 | 0.085 | 1.000 | 0.314 | 0.925 | 0.350 | 0.935 |
(40, 20, 15) | 0.387 | 0.715 | 0.455 | 0.753 | 0.073 | 0.941 | 0.086 | 0.965 | 0.380 | 0.926 | 0.461 | 0.961 | |
(60, 30, 20) | 0.248 | 0.805 | 0.290 | 0.852 | 0.071 | 1.000 | 0.084 | 1.000 | 0.239 | 0.925 | 0.285 | 0.941 | |
Sch.III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.417 | 0.761 | 0.546 | 0.742 | 0.078 | 0.927 | 0.093 | 1.000 | 0.420 | 0.935 | 0.562 | 0.949 |
(40, 20, 15) | 0.663 | 0.649 | 0.779 | 0.704 | 0.078 | 0.880 | 0.093 | 0.877 | 0.771 | 0.906 | 0.944 | 0.933 | |
(60, 30, 20) | 0.348 | 0.756 | 0.412 | 0.779 | 0.077 | 0.973 | 0.091 | 1.000 | 0.349 | 0.917 | 0.427 | 0.948 | |
T=0.7 | (30, 20, 15) | 0.362 | 0.745 | 0.429 | 0.786 | 0.074 | 0.983 | 0.088 | 1.000 | 0.358 | 0.930 | 0.437 | 0.962 |
(40, 20, 15) | 0.607 | 0.666 | 0.665 | 0.731 | 0.075 | 0.914 | 0.089 | 0.898 | 0.695 | 0.912 | 0.758 | 0.946 | |
(60, 30, 20) | 0.332 | 0.781 | 0.394 | 0.800 | 0.074 | 1.000 | 0.087 | 1.000 | 0.338 | 0.923 | 0.405 | 0.952 | |
T=1.5 | (30, 20, 15) | 0.338 | 0.766 | 0.429 | 0.769 | 0.073 | 0.961 | 0.086 | 1.000 | 0.335 | 0.962 | 0.443 | 0.953 |
(40, 20, 15) | 0.621 | 0.666 | 0.689 | 0.720 | 0.073 | 0.900 | 0.087 | 0.898 | 0.686 | 0.903 | 0.796 | 0.936 | |
(60, 30, 20) | 0.331 | 0.765 | 0.394 | 0.774 | 0.072 | 0.968 | 0.086 | 1.000 | 0.333 | 0.923 | 0.408 | 0.950 |