This study carried out the screening of wastes from Amazon plants to produce hydrolysates with a high monosaccharides content for ethanol production. Initially, we hydrolyzed (diluted acid) Amazon wastes (peel from the fruit of Astrocaryum aculeatum Meyer, peel from the fruit of Bactris gasipaes Kunth, straw obtained from endocarp of the fruit of Euterpe oleracea Mart., peel from the fruit of Theobroma grandiflorum Schumann and peel from the root of Manihot esculenta Crant) to obtain hydrolysates with the high content of fermentable sugars. Then, we investigated by 23 factorial design the influence of the factors: a) hydrolysis time (min); b) H2SO4-to-waste ratio (g/g) and c) solid-to-liquid ratio (g/mL) in the variables reducing sugars and furans. The hydrolysis of the peel of the fruit of Bactris gasipaes resulted in the highest concentration of reducing sugars (23.7 g/L). After detoxification and concentration process, the Bactris gasipaes hydrolysate results in 96.7 g/L of reducing sugars largely fermentable (90%) by Saccharomyces cerevisiae PE-2. The experimental design demonstrated that the factors H2SO4-to-waste ratio (g/g) and solid-to-liquid ratio (g/mL) were the most significant affecting the final content of reducing sugars and furans in the hydrolysate of the peel of Bactris gasipaes. Hydrolysis time of 4.4 min, H2SO4-to-waste ratio of 0.63 g/g, and the solid-to-liquid ratio of 0.17 g/mL resulted in the concentration of reducing sugars of 49 g/L. This study shows the potential of peels from the fruit of Bactris gasipaes to produce ethanol.
Citation: Flávia Fernandes, Amanda Farias, Livia Carneiro, Ralyvan Santos, Daiana Torres, João Silva, João Souza, Érica Souza. Dilute acid hydrolysis of wastes of fruits from Amazon for ethanol production[J]. AIMS Bioengineering, 2021, 8(3): 221-234. doi: 10.3934/bioeng.2021019
This study carried out the screening of wastes from Amazon plants to produce hydrolysates with a high monosaccharides content for ethanol production. Initially, we hydrolyzed (diluted acid) Amazon wastes (peel from the fruit of Astrocaryum aculeatum Meyer, peel from the fruit of Bactris gasipaes Kunth, straw obtained from endocarp of the fruit of Euterpe oleracea Mart., peel from the fruit of Theobroma grandiflorum Schumann and peel from the root of Manihot esculenta Crant) to obtain hydrolysates with the high content of fermentable sugars. Then, we investigated by 23 factorial design the influence of the factors: a) hydrolysis time (min); b) H2SO4-to-waste ratio (g/g) and c) solid-to-liquid ratio (g/mL) in the variables reducing sugars and furans. The hydrolysis of the peel of the fruit of Bactris gasipaes resulted in the highest concentration of reducing sugars (23.7 g/L). After detoxification and concentration process, the Bactris gasipaes hydrolysate results in 96.7 g/L of reducing sugars largely fermentable (90%) by Saccharomyces cerevisiae PE-2. The experimental design demonstrated that the factors H2SO4-to-waste ratio (g/g) and solid-to-liquid ratio (g/mL) were the most significant affecting the final content of reducing sugars and furans in the hydrolysate of the peel of Bactris gasipaes. Hydrolysis time of 4.4 min, H2SO4-to-waste ratio of 0.63 g/g, and the solid-to-liquid ratio of 0.17 g/mL resulted in the concentration of reducing sugars of 49 g/L. This study shows the potential of peels from the fruit of Bactris gasipaes to produce ethanol.
[1] | Junginger M, van Dam J, Zarrilli S, et al. (2011) Opportunities and barriers for international bioenergy trade. Energy Policy 39: 2028-2042. doi: 10.1016/j.enpol.2011.01.040 |
[2] | Khatib H (2012) IEA world energy outlook 2011—a comment. Energy Policy 48: 737-743. doi: 10.1016/j.enpol.2012.06.007 |
[3] | Renewable Fuel Association (RFA), Annual World Fuel Ethanol Production, 2020 Available from: https://ethanolrfa.org/wp-content/uploads/2019/02/RFA2019Outlook.pdf. |
[4] | CONAB (2019) Acompanhamento da safra Brasileira de Cana-de-açúcar - Safra 2019/2020. Monit Agrícola - Cana-de-açúcar 6: 58Available from: https://www.conab.gov.br/info-agro/safras/cana/boletim-da-safra-de-cana-de-acucar/item/download/31590_6cfbbc41aa04783c69113c50fa499cba. |
[5] | Kovalski G, Herrmann HW, Gallina A, et al. (2014) Ethanol production from fermentation of industrial waste. Rev Tecnológica 2014: 13-21. |
[6] | Khawla BJ, Sameh M, Imen G, et al. (2014) Potato peel as feedstock for bioethanol production: A comparison of acidic and enzymatic hydrolysis. Ind Crops Prod 52: 144-149. doi: 10.1016/j.indcrop.2013.10.025 |
[7] | Castro YA, Ellis JT, Miller CD, et al. (2015) Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation. Appl Energy 140: 14-19. doi: 10.1016/j.apenergy.2014.11.045 |
[8] | Lenihan P, Orozco A, O'Neill E, et al. (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156: 395-403. doi: 10.1016/j.cej.2009.10.061 |
[9] | Arapoglou D, Varzakas T, Vlyssides A, et al. (2010) Ethanol production from potato peel waste (PPW). Waste Manag 30: 1898-1902. doi: 10.1016/j.wasman.2010.04.017 |
[10] | Cheung SW, Anderson BC (1996) Ethanol production from wastewater solids. Water Environ Technol 8: 263142. |
[11] | Taherzadeh MJ, Niklasson C, Lidén G (1997) Acetic acid—friend or foe in anaerobic batch conversion of glucose to ethanol by Saccharomyces cerevisiae? Chem Eng Sci 52: 2653-2659. doi: 10.1016/S0009-2509(97)00080-8 |
[12] | Iranmahboob J, Nadim F, Monemi S (2002) Optimizing acid-hydrolysis: A critical step for production of ethanol from mixed wood chips. Biomass Bioenergy 22: 401-404. doi: 10.1016/S0961-9534(02)00016-8 |
[13] | Karimi K, Kheradmandinia S, Taherzadeh MJ (2006) Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass Bioenergy 30: 247-253. doi: 10.1016/j.biombioe.2005.11.015 |
[14] | Hu R, Lin L, Liu T, et al. (2010) Dilute sulfuric acid hydrolysis of sugar maple wood extract at atmospheric pressure. Bioresour Technol 101: 3586-3594. doi: 10.1016/j.biortech.2010.01.005 |
[15] | Canettieri EV, Rocha GJ de M, de Carvalho JA, et al. (2007) Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology. Bioresour Technol 98: 422-428. doi: 10.1016/j.biortech.2005.12.012 |
[16] | Aguilar R, Ramírez JA, Garrote G, et al. (2002) Kinetic study of the acid hydrolysis of sugar cane bagasse. J Food Eng 55: 309-318. doi: 10.1016/S0260-8774(02)00106-1 |
[17] | Sanchez G, Pilcher L, Roslander C, et al. (2004) Dilute-acid hydrolysis for fermentation of the Bolivian straw material Paja Brava. Bioresour Technol 93: 249-256. doi: 10.1016/j.biortech.2003.11.003 |
[18] | Hsu TC, Guo GL, Chen WH, et al. (2010) Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour Technol 101: 4907-4913. doi: 10.1016/j.biortech.2009.10.009 |
[19] | Kabir F, Gulfraz M, Raja GK, et al. (2019) Comparative study on the usability of lignocellulosic and algal biomass for production of alcoholic fuels. BioResources 14: 8135-8154. |
[20] | Souza O, Schulz MA, Fischer GAA, et al. (2012) Alternative biomass energy: bioethanol from banana peel and pulp. Braz J Agric Env Eng 16: 915-921. |
[21] | Oberoi HS, Vadlani P V, Saida L, et al. (2011) Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process. Waste Manag 31: 1576-1584. doi: 10.1016/j.wasman.2011.02.007 |
[22] | Marton JM, Felipe MGA, Almeida e Silva JB, et al. (2006) Evaluation of the activated charcoals and adsorption conditions used in the treatment of sugarcane bagasse hydrolysate for xylitol production. Brazilian J Chem Eng 23: 9-21. doi: 10.1590/S0104-66322006000100002 |
[23] | Wood IP, Elliston A, Ryden P, et al. (2012) Rapid quantification of reducing sugars in biomass hydrolysates: Improving the speed and precision of the dinitrosalicylic acid assay. Biomass Bioenergy 44: 117-121. doi: 10.1016/j.biombioe.2012.05.003 |
[24] | Martinez A, Rodriguez ME, York SW, et al. (2000) Use of UV absorbance to monitor furans in dilute acid hydrolysates of biomass. Biotechnol Prog 16: 637-641. doi: 10.1021/bp0000508 |
[25] | Zimmermann HW (1963) Studies on the dichromate method of alcohol determination. Am J Enol Vitic 14: 205-213. |
[26] | Nuwamanya E, Chiwona-Karltun L, Kawuki RS, et al. (2012) Bio-ethanol production from non-food parts of cassava (Manihot esculenta Crantz). Ambio 41: 262-270. doi: 10.1007/s13280-011-0183-z |
[27] | Sanches MA, dos Santos RA, Cortez ACA, et al. (2018) Biosurfactant production by Fusarium oxysporum LM 5634 using peels from the fruit of Bactris gasipaes (Kunth) as substrate. Biotechnol J Int 21: 1-9. doi: 10.9734/BJI/2018/39405 |
[28] | Moraes E de JC, Silva DDV, Dussán KJ, et al. (2020) Xylitol-sweetener production from barley straw: optimization of acid hydrolysis condition with the energy consumption simulation. Waste Biomass Valori 11: 1837-1849. doi: 10.1007/s12649-018-0501-9 |
[29] | Jr AP, de Mancilha IM, Sato S (1997) Evaluation of sugar cane hemicellulose hydrolyzate for cultivation of yeasts and filamentous fungi. J Ind Microbiol Biotechnol 18: 360-363. doi: 10.1038/sj.jim.2900403 |
[30] | Bujang N, Rodhi MNM, Musa M, et al. (2013) Effect of dilute sulfuric acid hydrolysis of coconut dregs on chemical and thermal properties. Procedia Eng 68: 372-378. doi: 10.1016/j.proeng.2013.12.194 |
[31] | Oberoi HS, Vadlani PV, Madl RL, et al. (2010) Ethanol production from orange peels: two-stage hydrolysis and fermentation studies using optimized parameters through experimental design. J Agric Food Chem 58: 3422-3429. doi: 10.1021/jf903163t |
[32] | Chandel AK, Kapoor RK, Singh A, et al. (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98: 1947-1950. doi: 10.1016/j.biortech.2006.07.047 |
[33] | Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199: 103-112. doi: 10.1016/j.biortech.2015.10.009 |
[34] | Ask M, Bettiga M, Mapelli V, et al. (2013) The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae. Biotechnol Biofuels 6: 22. doi: 10.1186/1754-6834-6-22 |
[35] | Arruda PV, Chaud LCS, Felipe M das GA, et al. (2008) Effect of the cane bagasse hydrolysate detoxification on the phenols removal, sugars loss and xylose-to-xylitol bioconversion. Nucleus 5: 1-17. doi: 10.3738/192-227869 |
[36] | Sarawan C, Suinyuy TN, Sewsynker-Sukai Y, et al. (2019) Optimized activated charcoal detoxification of acid-pretreated lignocellulosic substrate and assessment for bioethanol production. Bioresour Technol 286: 121403. doi: 10.1016/j.biortech.2019.121403 |
[37] | Manikandan K, Saravanan V, Viruthagiri T (2008) Kinetics studies on ethanol production from banana peel waste using mutant strain of Saccharomyces cerevisiae. Indian J Biotechnol 7: 83-88. |
[38] | Morais APDS, Broetto F (2012) Pre-acid hydrolysis of sugarcane bagasse and its physicochemical characteristics. Energ Na Agric 27: 01. doi: 10.17224/EnergAgric.2012v27n4p01-12 |
[39] | Carvalheiro F, Duarte LC, Lopes S, et al. (2005) Evaluation of the detoxification of brewery's spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941. Process Biochem 40: 1215-1223. doi: 10.1016/j.procbio.2004.04.015 |
[40] | Mussatto SI, Carneiro LM, Silva JPA, et al. (2011) A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydr Polym 83: 368-374. doi: 10.1016/j.carbpol.2010.07.063 |
[41] | Didonet AA, Ferraz IDK (2014) Fruit trade of tucuma (Astrocaryum aculeatum G. Mey-Arecaceae) at local market-places in Manaus (Amazonas, Brazil). Rev Bras Frutic 36: 353-362. doi: 10.1590/0100-2945-108/13 |