Citation: Mohammad Z. Ansari, Anil K. Nirala. Assessment of Fevicol (adhesive) Drying Process through Dynamic Speckle Techniques[J]. AIMS Bioengineering, 2015, 2(2): 49-59. doi: 10.3934/bioeng.2015.2.49
[1] | Nattapong Kamsrisuk, Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Quantum calculus with respect to another function. AIMS Mathematics, 2024, 9(4): 10446-10461. doi: 10.3934/math.2024510 |
[2] | Xue-Xiao You, Muhammad Aamir Ali, Ghulam Murtaza, Saowaluck Chasreechai, Sotiris K. Ntouyas, Thanin Sitthiwirattham . Post-quantum Simpson's type inequalities for coordinated convex functions. AIMS Mathematics, 2022, 7(2): 3097-3132. doi: 10.3934/math.2022172 |
[3] | Saowaluck Chasreechai, Muhammad Aamir Ali, Surapol Naowarat, Thanin Sitthiwirattham, Kamsing Nonlaopon . On some Simpson's and Newton's type of inequalities in multiplicative calculus with applications. AIMS Mathematics, 2023, 8(2): 3885-3896. doi: 10.3934/math.2023193 |
[4] | Saad Ihsan Butt, Muhammad Nasim Aftab, Hossam A. Nabwey, Sina Etemad . Some Hermite-Hadamard and midpoint type inequalities in symmetric quantum calculus. AIMS Mathematics, 2024, 9(3): 5523-5549. doi: 10.3934/math.2024268 |
[5] | Xuexiao You, Fatih Hezenci, Hüseyin Budak, Hasan Kara . New Simpson type inequalities for twice differentiable functions via generalized fractional integrals. AIMS Mathematics, 2022, 7(3): 3959-3971. doi: 10.3934/math.2022218 |
[6] | Humaira Kalsoom, Muhammad Amer Latif, Muhammad Idrees, Muhammad Arif, Zabidin Salleh . Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions. AIMS Mathematics, 2021, 6(12): 13291-13310. doi: 10.3934/math.2021769 |
[7] | Muhammad Uzair Awan, Muhammad Aslam Noor, Tingsong Du, Khalida Inayat Noor . On $\mathscr{M}$-convex functions. AIMS Mathematics, 2020, 5(3): 2376-2387. doi: 10.3934/math.2020157 |
[8] | Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814 |
[9] | Andrea Aglić Aljinović, Domagoj Kovačević, Mehmet Kunt, Mate Puljiz . Correction: Quantum Montgomery identity and quantum estimates of Ostrowski type inequalities. AIMS Mathematics, 2021, 6(2): 1880-1888. doi: 10.3934/math.2021114 |
[10] | Suphawat Asawasamrit, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Jessada Tariboon . Quantum Hermite-Hadamard and quantum Ostrowski type inequalities for $ s $-convex functions in the second sense with applications. AIMS Mathematics, 2021, 6(12): 13327-13346. doi: 10.3934/math.2021771 |
Simpson's rules are well-known methods for numerical integration and numerical estimation of definite integral. Thomas Simpson is credited with inventing this process (1710–1761). However, about 100 years earlier, Johannes Kepler used the same approximation, so this form is also known as Kepler's law. The three-point Newton-Cotes quadrature rule is included in Simpson's rule, so estimation based on three steps quadratic kernel is often referred to as Newton type results.
1) Simpson's quadrature formula (Simpson's 1/3 rule)
$ ∫π2π1Π(x)dx≈π2−π16[Π(π1)+4Π(π1+π22)+Π(π2)]. $ |
2) Simpson's second formula or Newton-Cotes quadrature formula (Simpson's 3/8 rule).
$ ∫π2π1Π(x)dx≈π2−π18[Π(π1)+3Π(2π1+π23)+3Π(π1+2π23)+Π(π2)]. $ |
In the literature, there are several estimations linked to these quadrature laws, one of which is known as Simpson's inequality:
Theorem 1.1. Suppose that $ \Pi :\left[\pi _{1}, \pi _{2}\right] \rightarrow \mathbb{R} $ is a four times continuously differentiable mapping on $ \left(\pi _{1}, \pi _{2}\right), $ and let $ \left \Vert \Pi ^{\left(4\right) }\right \Vert _{\infty } = \underset{x\in \left(\pi _{1}, \pi _{2}\right) }{ \sup }\left \vert \Pi ^{\left(4\right) }(x)\right \vert < \infty. $ Then, one has the inequality
$ |13[Π(π1)+Π(π2)2+2Π(π1+π22)]−1π2−π1∫π2π1Π(x)dx|≤12880‖Π(4)‖∞(π2−π1)4. $ |
Many authors have concentrated on Simpson's type inequalities for different classes of functions in recent years. Since convexity theory is an effective and efficient method for solving a large number of problems that exist within various branches of pure and applied mathematics, some mathematicians have worked on Simpson's and Newton's type results for convex mappings. Dragomir et al. [1], presented new Simpson's type inequalities and their applications to numerical integration quadrature formulas. Furthermore, Alomari et al. in [2] derive some Simpson's type inequalities for $ s $-convex functions. Following that, in [3], Sarikaya et al. discovered variants of Simpson's type inequalities dependent on convexity. The authors given some Newton's type inequalities for harmonic and $ p $-harmonic convex functions in [4,5]. Iftikhar et al. also have new Newton's type inequalities for functions whose local fractional derivatives are generalized convex in [6].
On the other hand, in the domain of $ q $ analysis, many works are being carried out as initiated by Euler in order to attain adeptness in mathematics that constructs quantum computing $ q $ calculus considered as a relationship between physics and mathematics. In different areas of mathematics, it has numerous applications such as combinatorics, number theory, basic hypergeometric functions, orthogonal polynomials, and other sciences, as well as mechanics, the theory of relativity, and quantum theory [7,8]. Quantum calculus also has many applications in quantum information theory, which is an interdisciplinary area that encompasses computer science, information theory, philosophy, and cryptography, among other areas [9,10]. Apparently, Euler invented this important branch of mathematics. He used the $ q $ parameter in Newton's work on infinite series. Later, in a methodical manner, the $ q $-calculus, calculus without limits, was firstly given by Jackson [11,12]. In 1966, Al-Salam [13] introduced a $ q $-analogue of the $ q $-fractional integral and $ q $ -Riemann–Liouville fractional. Since then, related research has gradually increased. In particular, in 2013, Tariboon [14] introduced the $ _{\pi _{1}}D_{q} $-difference operator and $ q_{\pi _{1}} $-integral. In 2020, Bermudo et al. [15] introduced the notion of $ ^{\pi _{2}}D_{q} $ derivative and $ q^{\pi _{2}} $-integral. Sadjang [16] generalized to quantum calculus and introduced the notions of post-quantum calculus, or briefly $ \left(p, q\right) $-calculus. Soontharanon et al. [17] introduced the fractional $ \left(p, q\right) $-calculus later on. In [18], Tunç and Göv gave the post-quantum variant of $ _{\pi _{1}}D_{q} $-difference operator and $ q_{\pi _{1}} $-integral. Recently, in 2021, Chu et al. [19] introduced the notions of $ ^{\pi _{2}}D_{p, q} $ derivative and $ \left(p, q\right) ^{\pi _{2}} $-integral.
Many integral inequalities have been studied using quantum and post-quantum integrals for various types of functions. For example, in [15,20,21,22,23,24,25,26,27], the authors used $ _{\pi _{1}}D_{q}, ^{\pi _{2}}D_{q} $-derivatives and $ q_{\pi _{1}}, q^{\pi _{2}} $-integrals to prove Hermite–Hadamard integral inequalities and their left–right estimates for convex and coordinated convex functions. In [28], Noor et al. presented a generalized version of quantum integral inequalities. For generalized quasi-convex functions, Nwaeze et al. proved certain parameterized quantum integral inequalities in [29]. Khan et al. proved quantum Hermite–Hadamard inequality using the green function in [30]. Budak et al. [31], Ali et al. [32,33], and Vivas-Cortez et al. [34] developed new quantum Simpson's and quantum Newton's type inequalities for convex and coordinated convex functions. For quantum Ostrowski's inequalities for convex and co-ordinated convex functions, one can consult [35,36,37,38]. Kunt et al. [39] generalized the results of [22] and proved Hermite–Hadamard-type inequalities and their left estimates using $ _{\pi _{1}}D_{p, q} $ difference operator and $ \left(p, q\right) _{\pi _{1}} $ integral. Recently, Latif et al. [40] found the right estimates of Hermite–Hadamard type inequalities proved by Kunt et al. [39]. To prove Ostrowski's inequalities, Chu et al. [19] used the concepts of $ ^{\pi _{2}}D_{p, q} $ difference operator and $ \left(p, q\right) ^{\pi _{2}} $ integral.
Inspired by this ongoing studies, we offer some new quantum parameterized Simpson's and Newton's type inequalities for convex functions using the notions of quantum derivatives and integrals.
The structure of this paper is as follows: Section 2 provides a quick review of the ideas of $ q $-calculus, as well as some related works. In Section 3, we present two integral identities that aid in the proof of the key conclusions. We prove quantum Simpson's and quantum Newton's inequalities in sections 4 and 5, respectively. Section 6 finishes with a few suggestions for future research.
In this section, we first present some known definitions and related inequalities in $ q $-calculus. Set the following notation(see, [8]):
$ [n]q=1−qn1−q=n−1∑k=0qk, q∈(0,1). $ |
Jackson [11] defined the $ q $-integral of a given function $ \Pi $ from $ 0 $ to $ \pi _{2} $ as follows:
$ π2∫0Π(x)dqx=(1−q)π2∞∑n=0qnΠ(π2qn), where 0<q<1 $ | (2.1) |
provided that the sum converges absolutely. Moreover, he defined the $ q $ -integral of a given function over the interval $ [\pi _{1}, \pi _{2}] $ as follows:
$ π2∫π1Π(x)dqx=π2∫0Π(x)dqx−π1∫0Π(x)dqx. $ |
Definition 2.1. [14] We consider the mapping $ \Pi :\left[\pi _{1}, \pi _{2}\right] \rightarrow \mathbb{R} . $ Then, the $ q_{\pi _{1}} $-derivative of $ \Pi $ at $ x\in \left[\pi _{1}, \pi _{2}\right] $ is defined by the the following expression
$ π1DqΠ(x)=Π(x)−Π(qx+(1−q)π1)(1−q)(x−π1),x≠π1. $ | (2.2) |
If $ x = \pi _{1} $, we define $ _{\pi _{1}}D_{q}\Pi \left(\pi _{1}\right) = \lim_{x\rightarrow \pi _{1}} π1DqΠ(x) $ if it exists and it is finite.
Definition 2.2. [15] We consider the mapping $ \Pi :\left[\pi _{1}, \pi _{2} \right] \rightarrow \mathbb{R} . $ Then, the $ q^{\pi _{2}} $-derivative of $ \Pi $ at $ x\in \left[\pi _{1}, \pi _{2}\right] $ is defined by
$ π2DqΠ(x)=Π(qx+(1−q)π2)−Π(x)(1−q)(π2−x),x≠π2. $ | (2.3) |
If $ x = \pi _{2} $, we define $ ^{\pi _{2}}D_{q}\Pi \left(\pi _{2}\right) = \lim_{x\rightarrow \pi _{2}} π2DqΠ(x) $ if it exists and it is finite.
Definition 2.3. [14] We consider the mapping $ \Pi :\left[\pi _{1}, \pi _{2} \right] \rightarrow \mathbb{R} $. Then, the $ q_{\pi _{1}} $-definite integral on $ \left[\pi _{1}, \pi _{2} \right] $ is defined by
$ π2∫π1Π(x)π1dqx=(1−q)(π2−π1)∞∑n=0qnΠ(qnπ2+(1−qn)π1)=(π2−π1)1∫0Π((1−τ)π1+τπ2)dqτ. $ | (2.4) |
Remark 2.1. If we set $ \pi _{1} = 0 $ in Definition 2.3, then we obtain $ q $-Jackson integral, which is given in expression (2.1).
In [22,27], the authors proved quantum Hermite-Hadamard type inequalities and their estimations by using the notions of $ q_{\pi _{1}} $ -derivative and $ q_{\pi _{1}} $-integral.
On the other hand, in [15], Bermudo et al. gave the following definition and obtained the related Hermite-Hadamard type inequalities:
Definition 2.4. [15] We consider the mapping $ \Pi :\left[\pi _{1}, \pi _{2} \right] \rightarrow \mathbb{R} $. Then, the $ q^{\pi _{2}} $-definite integral on $ \left[\pi _{1}, \pi _{2} \right] $ is defined by
$ π2∫π1Π(x)π2dqx=(1−q)(π2−π1)∞∑n=0qnΠ(qnπ1+(1−qn)π2)=(π2−π1)1∫0Π(τπ1+(1−τ)π2)dqτ. $ |
Theorem 2.1. [15] Let $ \Pi :\left[\pi _{1}, \pi _{2}\right] \rightarrow \mathbb{R} $ be a convex function on $ \left[\pi _{1}, \pi _{2}\right] $ and $ 0 < q < 1 $. Then, $ q^{\pi _{2}} $-Hermite-Hadamard inequalities are given as follows:
$ Π(π1+qπ2[2]q)≤1π2−π1π2∫π1Π(x)π2dqx≤Π(π1)+qΠ(π2)[2]q. $ | (2.5) |
In [24], Budak proved the left and right bounds of the inequality (2.5).
To obtain the key results of this paper, we prove three separate identities in this section.
Let's begin with the following crucial Lemma.
Lemma 3.1. If $ \Pi :\left[\pi _{1}, \pi _{2}\right] \subset \mathbb{R} \rightarrow \mathbb{R} $ is a $ q_{\pi _{1}} $-differentiable function on $ \left(\pi _{1}, \pi _{2}\right) $ such that $ _{\pi _{1}}D_{q}\Pi $ is continuous and integrable on $ \left[\pi _{1}, \pi _{2}\right] $, then we have the following identity:
$ qλΠ(π1)+(1−μq)Π(π2)+q(μ−λ)Π(π1q+π2[2]q)−1π2−π1∫π2π1Π(x)π1dqx=q(π2−π1)×[∫1[2]q0(t−λ)π1DqΠ(tπ2+(1−t)π1)dqt+∫11[2]q(t−μ)π1DqΠ(tπ2+(1−t)π1)dqt] $ | (3.1) |
where $ q\in \left(0, 1\right). $
Proof. From Definition 2.1, we have
$ π1DqΠ(tπ2+(1−t)π1)=Π(tπ2+(1−t)π1)−Π(qtπ2+(1−qt)π1)(1−q)(π2−π1)t. $ | (3.2) |
By utilizing the properties of quantum integrals, we obtain
$ ∫1[2]q0(t−λ)π1DqΠ(tπ2+(1−t)π1)dqt+∫11[2]q(t−μ)π1DqΠ(tπ2+(1−t)π1)dqt=∫1[2]q0(μ−λ)π1DqΠ(tπ2+(1−t)π1)dqt+∫10(t−μ)π1DqΠ(tπ2+(1−t)π1)dqt=(μ−λ)∫1[2]q0Π(tπ2+(1−t)π1)−Π(qtπ2+(1−qt)π1)(1−q)(π2−π1)tdqt+∫10Π(tπ2+(1−t)π1)−Π(qtπ2+(1−qt)π1)(1−q)(π2−π1)dqt−μ∫10Π(tπ2+(1−t)π1)−Π(qtπ2+(1−qt)π1)(1−q)(π2−π1)tdqt. $ | (3.3) |
By Definition 2.3, we have the following equalities
$ ∫1[2]q0Π(tπ2+(1−t)π1)−Π(qtπ2+(1−qt)π1)(1−q)(π2−π1)tdqt=1π2−π1[∞∑n=0Π(qn[2]qπ2+(1−qn[2]q)π1)−∞∑n=0Π(qn+1[2]qπ2+(1−qn+1[2]q)π1)]=1π2−π1[Π(π1q+π2[2]q)−Π(π1)], $ | (3.4) |
$ ∫10Π(tπ2+(1−t)π1)−Π(qtπ2+(1−qt)π1)(1−q)(π2−π1)tdqt=1π2−π1[Π(π2)−Π(π1)] $ | (3.5) |
and
$ ∫10Π(tπ2+(1−t)π1)−Π(qtπ2+(1−qt)π1)(1−q)(π2−π1)dqt=1π2−π1[∞∑n=0qnΠ(qnπ2+(1−qn)π1)−∞∑n=0qnΠ(qn+1π2+(1−qn+1)π1)]=1π2−π1[∞∑n=0qnΠ(qnπ2+(1−qn)π1)−1q∞∑n=1qnΠ(qnπ2+(1−qn)π1)]=1π2−π1[∞∑n=0qnΠ(qnπ2+(1−qn)π1)−1q∞∑n=0qnΠ(qnπ2+(1−qn)π1)+1qΠ(π2)]=1π2−π1[1qΠ(π2)−1q(π2−π1)∫π2π1Π(x)π1dqx]. $ | (3.6) |
If we substitute the computed integrals (3.4)–(3.6) in (3.3), we establish the required identity (3.1).
Remark 3.1. In Lemma 3.1, if we choose $ \lambda = \frac{1}{\left[6\right] _{q}} $ and $ \mu = \frac{\left[5\right] _{q}}{\left[6\right] _{q}} $, then we have the following identity:
$ 1[6]q[qΠ(α)+q2[4]qΠ(qπ1+π2[2]q)+Π(π2)]−1π2−π1π2∫π1Π(s)π1dqs=q(π2−π1)×[∫1[2]q0(t−1[6]q)π1DqΠ(tπ2+(1−t)π1)dqt+∫11[2]q(t−[5]q[6]q)π1DqΠ(tπ2+(1−t)π1)dqt] $ |
which is proved by Iftikhar et al. in [41].
Remark 3.2. In Lemma 3.1, if we choose $ \lambda = \mu = \frac{1}{\left[2\right] _{q}} $, then we obtain [42,Lemma 3.1].
Remark 3.3. In Lemma 3.1, if we choose $ \lambda = 0 $ and $ \mu = \frac{1}{q} $, then Lemma 3.1 reduces to [22,Lemma 11].
Remark 3.4. In Lemma 3.1, if we take the limit $ q\rightarrow 1^{-}, $ then we have [43,Lemma 2.1 for $ m = 1 $].
Lemma 3.2. If $ \Pi :\left[\pi _{1}, \pi _{2}\right] \subset \mathbb{R} \rightarrow \mathbb{R} $ is a $ q_{\pi _{1}} $-differentiable function on $ \left(\pi _{1}, \pi _{2}\right) $ such that $ _{\pi _{1}}D_{q}\Pi $ is continuous and integrable on $ \left[\pi _{1}, \pi _{2}\right] $, then we have the following identity:
$ qλΠ(π1)+q(μ−λ)Π(π1q[2]q+π2[3]q)+q(ν−μ)Π(π1q2+π2[2]q[3]q)+(1−νq)Π(π2)−1π2−π1∫π2π1Π(x)π1dqx=(π2−π1)q[∫1[3]q0(t−λ)π1DqΠ(tπ2+(1−t)π1)dqt+∫[2]q[3]q1[3]q(t−μ)π1DqΠ(tπ2+(1−t)π1)dqt+∫1[2]q[3]q(t−ν)π1DqΠ(tπ2+(1−t)π1)dqt] $ | (3.7) |
where $ q\in \left(0, 1\right). $
Proof. By the fundamental properties of quantum integrals, we have
$ ∫1[3]q0(t−λ)π1DqΠ(tπ2+(1−t)π1)dqt+∫[2]q[3]q1[3]q(t−μ)π1DqΠ(tπ2+(1−t)π1)dqt+∫1[2]q[3]q(t−ν)π1DqΠ(tπ2+(1−t)π1)dqt=∫1[3]q0(μ−λ)π1DqΠ(tπ2+(1−t)π1)dqt+∫[2]q[3]q0(ν−μ)π1DqΠ(tπ2+(1−t)π1)dqt+∫10(t−ν)π1DqΠ(tπ2+(1−t)π1)dqt. $ |
By applying the same steps in the proof of Lemma 3.1 for rest of this proof, one can obtain the desired identity (3.7).
Remark 3.5. If we take $ \lambda = \frac{1}{\left[8\right] _{q}} $, $ \mu = \frac{1}{\left[2 \right] _{q}} $, and $ \nu = \frac{\left[7\right] _{q}}{\left[8\right] _{q}} $ in Lemma 3.2, then we obtain the following identity
$ 1[8]q[qΠ(π1)+q3[6]q[2]qΠ(π1q[2]q+π2[3]q)+q2[6]q[2]qΠ(π1q2+π2[2]q[3]q)+Π(π2)]−1π2−π1∫π2π1Π(x)π1dqx=q(π2−π1)[∫1[3]q0(t−1[8]q)π1DqΠ(tπ2+(1−t)π1)dqt+∫[2]q[3]q1[3]q(t−1[2]q)π1DqΠ(tπ2+(1−t)π1)dqt+∫1[2]q[3]q(t−[7]q[8]q)π1DqΠ(tπ2+(1−t)π1)dqt] $ |
which is proved by Erden et al. in [44].
Remark 3.6. If we take $ \lambda = \mu = \nu = \frac{1}{\left[2\right] _{q}} $, in Lemma 3.2, then we obtain [42,Lemma 3.1].
Corollary 3.1. If we take the limit $ q\rightarrow 1^{-} $ in Lemma 3.2, then we obtain the following new identity
$ λΠ(π1)+(μ−λ)Π(2π1+π23)+(ν−μ)Π(π1+2π23)+(1−ν)Π(π2)−1π2−π1∫π2π1Π(x)dx=(π2−π1)[∫130(t−λ)Π′(tπ2+(1−t)π1)dt+∫2313(t−μ)Π′(tπ2+(1−t)π1)dt+∫123(t−ν)Π′(tπ2+(1−t)π1)dt] $ |
For brevity, let us prove another lemma that will be used frequently in the main results.
Lemma 3.3. The following quantum integrals holds for $ \lambda, \mu, \nu \geq 0 $:
$ Ω11=∫1[2]q0|t−λ|dqt=2λ2q[2]q+1([2]q)3−λ[2]q $ | (3.8) |
$ Ω12=∫11[2]q|t−μ|dqt=2μ2q[2]q+([2]q)2+1([2]q)3−μ([2]q+1)[2]q $ | (3.9) |
$ Ω13=∫1[3]q0|t−λ|dqt=2λ2q[2]q+1[2]q([3]q)2−λ[3]q $ | (3.10) |
$ Ω14=∫[2]q[3]q1[3]q|t−μ|dqt=2μ2q[2]q−μ([2]q+1)[3]q+([2]q)2+1[2]q([3]q)2 $ | (3.11) |
$ Ω15=∫1[2]q[3]q|t−ν|dqt=2ν2q[2]q−ν([2]q+[3]q)[3]q+[2]q([3]q)2+1[2]q $ | (3.12) |
$ Ω1=∫1[2]q0t|t−λ|dqt=2λ3q2[2]q[3]q+1([2]q)3[3]q−λ([2]q)3 $ | (3.13) |
$ Ω2=∫1[2]q0(1−t)|t−λ|dqt=Ω11−Ω1=2λ2q[2]q−2λ3q2[2]q[3]q−λ(([2]q)2−1)([2]q)3+[3]q−1([2]q)3[3]q $ | (3.14) |
$ Ω3=∫11[2]qt|t−μ|dqt=2μ3q2[2]q[3]q+1+([2]q)3([2]q)3[3]q−μ(([2]q)2+1)([2]q)3 $ | (3.15) |
$ Ω4=∫11[2]q(1−t)|t−μ|dqt==Ω12−Ω3=2μ2q[2]q−2μ3q2[2]q[3]q−μ(([2]q)3−1)([2]q)3+[3]q(1+([2]q)2)−([2]q)3−1([2]q)3[3]q $ | (3.16) |
$ Ω5=∫1[3]q0t|t−λ|dqt=2λ3q2[2]q[3]q+1([3]q)4−λ([3]q)2[2]q $ | (3.17) |
$ Ω6=∫1[3]q0(1−t)|t−λ|dqt==Ω13−Ω5=2λ2q[2]q−2λ3q2[2]q[3]q+λ(1−[2]q[3]q)([3]q)2[2]q+([3]q)2−[2]q([3]q)4[2]q $ | (3.18) |
$ Ω7=∫[2]q[3]q1[3]qt|t−μ|dqt=2μ3q2[2]q[3]q+1+([2]q)3([3]q)4−μ(([2]q)2+1)([3]q)2[2]q $ | (3.19) |
$ Ω8=∫[2]q[3]q1[3]q(1−t)|t−μ|dqt=Ω14−Ω7=2μ2q[2]q−2μ3q2[2]q[3]q−μ(([2]q)2([3]q−1)+[2]q[3]q)([3]q)2[2]q+(([2]q)2+1)([3]q)3−[2]q−([2]q)4([3]q)4[2]q $ | (3.20) |
$ Ω9=∫1[2]q[3]qt|t−ν|dqt=2ν3q2[2]q[3]q−ν(([2]q)2+([3]q)2)[2]q([3]q)2+([2]q)3+([3]q)3([3]q)4 $ | (3.21) |
$ Ω10=∫1[2]q[3]q(1−t)|t−ν|dqt $ | (3.22) |
$ =Ω15−Ω9=2υ2q[2]q−2υ3q2[2]q[3]q−υ(([3]q)2([2]q−1)+([2]q)2([3]q−1))([3]q)2[2]q $ | (3.23) |
$ +([3]q)2([2]q−[3]q)−([2]q)3([3]q)4 $ | (3.24) |
Proof. By the definition of $ q $-integral, we have
$ Ω1=∫1[2]q0t|t−λ|dqt=∫λ0t(λ−t)dqt+∫1[2]qλt(t−λ)dqt=2∫λ0t(λ−t)dqt+∫1[2]q0t(t−λ)dqt=2λ3q2[2]q[3]q+1([2]q)3[3]q−λ([2]q)3 $ |
and so
$ Ω1=2λ3q2[2]q[3]q+1([2]q)3[3]q−λ([2]q)3. $ |
This gives the proof of the equality (3.13). The others can be calculated in similar way.
In this section, we prove a new generalization of quantum Simpson's, Midpoint and Trapezoid type inequalities for quantum differentiable convex functions.
Theorem 4.1. We assume that the given conditions of Lemma 3.1 hold. If the mapping $ \left \vert _{\pi _{1}}D_{q}\Pi \right \vert $ is convex on $ \left[\pi _{1}, \pi _{2}\right] $, then the following inequality holds:
$ |qλΠ(π1)+(1−μq)Π(π2)+q(μ−λ)Π(π1q+π2[2]q)−1π2−π1∫π2π1Π(x)π1dqx|≤q(π2−π1)[(Ω1+Ω3)|π1DqΠ(π2)|+(Ω2+Ω4)|π1DqΠ(π1)|] $ | (4.1) |
where $ \Omega _{1} $-$ \Omega _{4} $ are given in (3.13)-(3.16), respectively.
Proof. By taking the modulus in Lemma 3.1 and using the convexity of $ \left \vert _{\pi _{1}}D_{q}\Pi \right \vert $, we obtain
$ qλΠ(π1)+(1−μq)Π(π2)+q(μ−λ)Π(π1q+π2[2]q)−1π2−π1∫π2π1Π(x)π1dqx≤q(π2−π1)×[∫1[2]q0|t−λ||π1DqΠ(tπ2+(1−t)π1)|dqt+∫11[2]q|t−μ||π1DqΠ(tπ2+(1−t)π1)|dqt]≤(π2−π1)q[|π1DqΠ(π2)|{∫1[2]q0t|t−λ|dqt+∫11[2]qt|t−μ|dqt}+|π1DqΠ(π1)|{∫1[2]q0(1−t)|t−λ|dqt+∫11[2]q(1−t)|t−μ|dqt}]=(π2−π1)q[(Ω1+Ω3)|π1DqΠ(π2)|+(Ω2+Ω4)|π1DqΠ(π1)|] $ |
which is the desired inequality.
Remark 4.1. If we take the limit $ q\rightarrow 1^{-} $ in Theorem 4.1, then we have [43,Theorem 2.1 for $ s = m = 1 $].
Remark 4.2. If we assume $ \lambda = \mu = \frac{1}{\left[2\right] _{q}} $ in Theorem 4.1, then we obtain [42,Theorem 4.1].
Remark 4.3. In Theorem 4.1, if we choose $ \lambda = 0 $ and $ \mu = \frac{1}{q} $, then Theorem 4.1 reduces to [22,Theorem 13].
Remark 4.4. If we assume $ \lambda = \frac{1}{\left[6\right] _{q}} $ and $ \mu = \frac{\left[5\right] _{q}}{\left[6\right] _{q}} $ in Theorem 4.1, then we obtain the following inequality
$ |1[6]q[qΠ(α)+q2[4]qΠ(qπ1+π2[2]q)+Π(π2)]−1π2−π1π2∫π1Π(s)π1dqs|≤q(π2−π1){|π1DqΠ(π2)|[A1(q)+A2(q)]+|π1DqΠ(π1)|[B1(q)+B2(q)]}, $ |
where
$ A1(q)=2q2[2]2q+[6]2q([6]q−[3]q)[2]3q[3]q[6]3q,B1(q)=2q[3]q[6]q−q2[2]q[3]q[6]3q+1[2]3q(q+q2[3]q−q2+2q[6]q),A2(q)=2q2[5]3q[2]q[3]q[6]3q+[6]q(1+[2]3q)−[3]q[5]q(1+[2]2q)[2]3q[3]q[6]q,B2(q)=2q[5]2q[6]q[3]q−q2[5]3q[2]q[3]q[6]3q+q2[2]q[3]q−q[5]q[2]q[6]q−1[2]3q[[5]q(2q+q2)[6]q−q+q2[3]q] $ |
which is proved by Ifitikhar et al. [41].
Theorem 4.2. We assume that the given conditions of Lemma 3.1 hold. If the mapping $ \left \vert _{\pi _{1}}D_{q}\Pi \right \vert ^{p_{1}} $, $ p_{1}\geq 1 $ is convex on $ \left[\pi _{1}, \pi _{2}\right] $, then the following inequality holds:
$ |λqΠ(π1)+(1−μq)Π(π2)+q(μ−λ)Π(π1q+π2[2]q)−1π2−π1∫π2π1Π(x)π1dqx|≤(π2−π1)q[Ω1−1p111(Ω1|π1DqΠ(π2)|p1+Ω2|π1DqΠ(π1)|p1)1p1+Ω1−1p112(Ω3|π1DqΠ(π2)|p1+Ω4|π1DqΠ(π1)|p1)1p1] $ | (4.2) |
where $ \Omega _{11}, $ $ \Omega _{12} $ and $ \Omega _{1} $-$ \Omega _{4} $ are given in (3.8), (3.9), and (3.13)–(3.16), respectively.
Proof. By taking the modulus in Lemma 3.1 and using the power mean inequality, we have
$ |λqΠ(π1)+(1−μq)Π(π2)+q(μ−λ)Π(π1q+π2[2]q)−1π2−π1∫π2π1Π(x)π1dqx|≤(π2−π1)q[(∫1[2]q0|t−λ|dqt)1−1p1(∫1[2]q0|t−λ||π1DqΠ(tπ2+(1−t)π1)|p1dqt)1p1+(∫11[2]q|t−μ|dqt)1−1p1(∫11[2]q|t−μ||π1DqΠ(tπ2+(1−t)π1)|p1dqt)1p1]. $ |
By using the convexity of $ \left \vert _{\pi _{1}}D_{q}\Pi \right \vert ^{p_{1}} $, we have
$ |λqΠ(π1)+(1−μq)Π(π2)+q(μ−λ)Π(π1q+π2[2]q)−1π2−π1∫π2π1Π(x)π1dqx|≤(π2−π1)q[(∫1[2]q0|t−λ|dqt)1−1p1×(|π1DqΠ(π2)|p1∫1[2]q0t|t−λ|dqt+|π1DqΠ(π1)|p1∫1[2]q0(1−t)|t−λ|dqt)1p1+(∫11[2]q|t−μ|dqt)1−1p1×(|π1DqΠ(π2)|p1∫11[2]qt|t−μ|dqt+|π1DqΠ(π1)|p1∫11[2]q(1−t)|t−μ|dqt)1p1]=(π2−π1)q[Ω1−1p111(Ω1|π1DqΠ(π2)|p1+Ω2|π1DqΠ(π1)|p1)1p1+Ω1−1p112(Ω3|π1DqΠ(π2)|p1+Ω4|π1DqΠ(π1)|p1)1p1] $ |
and the proof is completed.
Remark 4.5. If we take the limit $ q\rightarrow 1^{-} $ in Theorem 4.2, then we have [43,Theorem 2.3 for $ s = m = 1 $].
Remark 4.6. If we assume $ \lambda = \mu = \frac{1}{\left[2\right] _{q}} $ in Theorem 4.2, then we obtain [42,Theorem 4.2].
Remark 4.7. If we assume $ \lambda = \frac{1}{\left[6\right] _{q}} $ and $ \mu = \frac{\left[5\right] _{q}}{\left[6\right] _{q}} $ in Theorem 4.2, then we obtain the following inequality
$ |1[6]q[qΠ(α)+q2[4]qΠ(qπ1+π2[2]q)+Π(π2)]−1π2−π1π2∫π1Π(s)π1dqs|≤q(π2−π1)[(2q[2]q[6]2q+q3[3]q−q[6]q[2]3q)1−1p1×(A1(q)|π1DqΠ(π2)|p1+B1(q)|π1DqΠ(π1)|p1)1p1+(2q[5]2q[2]q[6]2q+1[2]q−[5]q[6]q−[5]q[2]2q−[6]q[6]q[2]3q)1−1p1×(A2(q)|π1DqΠ(π2)|p1+B2(q)|π1DqΠ(π1)|p1)1p1 $ |
where $ A_{1}\left(q\right), \; A_{2}\left(q\right), \; B_{1}\left(q\right) \, \ $and $ B_{2}\left(q\right) $ are defined in Remark 4.4. The above inequality is proved by Ifitikhar et al. [41].
Remark 4.8. In Theorem 4.2, if we choose $ \lambda = 0 $ and $ \mu = \frac{1}{q} $, then Theorem 4.2 reduces to [22,Theorem 16].
Theorem 4.3. We assume that the given conditions of Lemma 3.1 hold. If the mapping $ \left \vert _{\pi _{1}}D_{q}\Pi \right \vert ^{p_{1}} $, $ p_{1} > 1 $ is convex on $ \left[\pi _{1}, \pi _{2}\right] $, then the following inequality holds:
$ |λqΠ(π1)+(1−μq)Π(π2)+q(μ−λ)Π(π1q+π2[2]q)−1π2−π1∫π2π1Π(x)π1dqx|≤(π2−π1)q[Ω1r116(|π1DqΠ(π2)|p1([2]q)3+(([2]q)2−1)|π1DqΠ(π1)|p1([2]q)3)1p1+Ω1r117((([2]q)2−1)|π1DqΠ(π2)|p1([2]q)3+(([2]q)3−2([2]q)2+1)|π1DqΠ(π1)|p1([2]q)3)1p1] $ | (4.3) |
where $ p_{1}^{-1}+r_{1}^{-1} = 1 $ and
$ Ω16=∫1[2]q0|t−λ|r1dqt,Ω17=∫11[2]q|t−μ|r1dqt $ |
Proof. By taking the modulus in Lemma 3.1 and using the Hölder inequality, we have
$ |λqΠ(π1)+(1−μq)Π(π2)+q(μ−λ)Π(π1q+π2[2]q)−1π2−π1∫π2π1Π(x)π1dqx|≤(π2−π1)q[(∫1[2]q0|t−λ|r1dqt)1r1(∫1[2]q0|π1DqΠ(tπ2+(1−t)π1)|p1dqt)1p1+(∫11[2]q|t−μ|r1dqt)1r1(∫11[2]q|π1DqΠ(tπ2+(1−t)π1)|p1dqt)1p1]. $ |
Since $ \left \vert _{\pi _{1}}D_{q}\Pi \right \vert ^{p_{1}} $ is convex on $ \left[\pi _{1}, \pi _{2}\right] $, we have
$ |λqΠ(π1)+(1−μq)Π(π2)+q(μ−λ)Π(π1q+π2[2]q)−1π2−π1∫π2π1Π(x)π1dqx|≤q(π2−π1)×[(∫1[2]q0|t−λ|r1dqt)1r1(|π1DqΠ(π2)|p1∫1[2]q0tdqt+|π1DqΠ(π1)|p1∫1[2]q0(1−t)dqt)1p1+(∫11[2]q|t−μ|r1dqt)1r1(|π1DqΠ(π2)|p1∫11[2]qtdqt+|π1DqΠ(π1)|p1∫11[2]q(1−t)dqt)1p1]=(π2−π1)q[Ω1r116(|π1DqΠ(π2)|p1([2]q)3+(([2]q)2−1)|π1DqΠ(π1)|p1([2]q)3)1p1+Ω1r117((([2]q)2−1)|π1DqΠ(π2)|p1([2]q)3+(([2]q)3−2([2]q)2+1)|π1DqΠ(π1)|p1([2]q)3)1p1]. $ |
This completes the proof.
Remark 4.9. If we take the limit $ q\rightarrow 1^{-} $ in Theorem 4.3, then Theorem 4.3 becomes [43,Theorem 2.2 for $ s = m = 1 $].
Remark 4.10. If we assume $ \lambda = \mu = \frac{1}{\left[2\right] _{q}} $ in Theorem 4.3, then we obtain [27,Theorem 3.3].
Remark 4.11. If we assume $ \lambda = \frac{1}{\left[6\right] _{q}} $ and $ \mu = \frac{\left[5\right] _{q}}{\left[6\right] _{q}} $ in Theorem 4.3, then we obtain the following inequality
$ |1[6]q[qΠ(α)+q2[4]qΠ(qπ1+π2[2]q)+Π(π2)]−1π2−π1π2∫π1Π(s)π1dqs|≤q(π2−π1)[(q2r1[4]r1q[2]r1+1q[6]r1q)1r1+([2]r1+1q[5]r1q−qr1[4]r1q[2]r1+1q[6]r1q)1r1×(q2+2q[2]3q|π1DqΠ(π2)|p1+q3+q2−q[2]3q|π1DqΠ(π1)|p1)1p1] $ |
which is established by Iftikhar et al. in [41].
Remark 4.12. In Theorem 4.2, if we choose $ \lambda = 0 $ and $ \mu = \frac{1}{q} $, then Theorem 4.3 reduces to [22,Theorem 18].
Some new generalized versions of quantum Newton's and Trapezoid type inequalities for quantum differentiable convex functions are offered in this section.
Theorem 5.1. We assume that the given conditions of Lemma 3.2 hold. If the mapping $ \left \vert _{\pi _{1}}D_{q}\Pi \right \vert $ is convex on $ \left[\pi _{1}, \pi _{2}\right] $, then the following inequality holds:
$ |qλΠ(π1)+q(μ−λ)Π(π1q[2]q+π2[3]q)+q(ν−μ)Π(π1q2+π2[2]q[3]q)+(1−νq)Π(π2)−1π2−π1∫π2π1Π(x)π1dqx|≤(π2−π1)q[(Ω5+Ω7+Ω9)|π1DqΠ(π2)|+(Ω6+Ω8+Ω10)|π1DqΠ(π1)|] $ | (5.1) |
where $ \Omega _{5} $-$ \Omega _{10} $ are given in (3.17)-(3.22), respectively.
Proof. By considering Lemma 3.2 and applying the same method that used in the proof of Theorem 4.1, then we can obtain the desired inequality (5.1).
Remark 5.1. If we assume $ \lambda = \mu = \nu = \frac{1}{\left[2\right] _{q}} $ in Theorem 5.1, then we obtain [42,Theorem 4.1].
Corollary 5.1. If we take the limit $ q\rightarrow 1^{-} $ in Theorem 5.1, then we obtain the following inequality
$ |λΠ(π1)+(μ−λ)Π(2π1+π23)+(ν−μ)Π(π1+2π23)+(1−ν)Π(π2)−1π2−π1∫π2π1Π(x)dx|≤(π2−π1)q[(Ω∗5+Ω∗7+Ω∗9)|π1DqΠ(π2)|+(Ω∗6+Ω∗8+Ω∗10)|π1DqΠ(π1)|] $ |
where
$ Ω∗5=∫130t|t−λ|dt=λ33+181−λ18, $ |
$ Ω∗6=∫130(1−t)|t−λ|dt=18λ2−5λ+118−181−λ33, $ |
$ Ω∗7=∫2313t|t−μ|dt=μ33−5μ18+19 $ |
$ Ω∗8=∫2313(1−t)|t−μ|dt=18μ2+5+5μ18−μ−19−μ33 $ |
$ Ω∗9=∫123t|t−ν|dt=ν33−13ν18+3581, $ |
$ Ω∗10=∫123(1−t)|t−ν|dt=18ν2+13+13ν18−5ν3−3581−ν33 $ |
Remark 5.2. If we take $ \lambda = \frac{1}{\left[8\right] _{q}} $, $ \mu = \frac{ 1}{\left[2\right] _{q}} $, and $ \nu = \frac{\left[7\right] _{q}}{\left[8 \right] _{q}} $ in Theorem 5.1, then we obtain the following inequality
$ |1[8]q[qΠ(π1)+q3[6]q[2]qΠ(π1q[2]q+π2[3]q)+q2[6]q[2]qΠ(π1q2+π2[2]q[3]q)+Π(π2)]−1π2−π1∫π2π1Π(x)π1dqx|≤q(π2−π1)[|π1DqΠ(π2)|[A3(q)+A4(q)+A5(q)]+|π1DqΠ(π1)|[B3(q)+B4(q)+B5(q)]] $ |
where
$ A3(q)=2q2[3]3q+[8]2q([8]q[2]q−[3]2q)[8]3q[3]4q[2]q,B3(q)=2q[8]q[3]q−q2[8]3q[2]q[3]q+[3]2q−[2]q[3]4q[2]q+1−[3]q[2]q[8]q[3]2q[2]q,A4(q)=2q2[2]4q[3]q+[2]2q(1+[2]3q)−[3]2q(1+[2]2q)[3]4q[2]2q,B4(q)=2q[2]3q−q[3]2q−q2[3]2q−A4(q),A5(q)=2q2[7]3q[8]3q[2]q[3]q+[2]q[8]q([2]3q+[3]3q)−[7]q[3]2q([2]2q+[3]2q)[3]4q[8]q[2]q, $ |
and
$ B5(q)=2q[7]2q[8]q[3]q−q2[7]3q[8]3q[2]q[3]q+q2[2]q[3]q−q[7]q[2]q[8]q+[2]q([3]2q−[2]2q)[3]4q−(q+q2)[7]q[2]q[3]2q[8]q. $ |
Theorem 5.2. We assume that the given conditions of Lemma 3.2 hold. If the mapping $ \left \vert _{\pi _{1}}D_{q}\Pi \right \vert ^{p_{1}} $, $ p_{1}\geq 1 $ is convex on $ \left[\pi _{1}, \pi _{2}\right] $, then the following inequality holds:
$ |qλΠ(π1)+q(μ−λ)Π(π1q[2]q+π2[3]q)+q(ν−μ)Π(π1q2+π2[2]q[3]q)+(1−νq)Π(π2)−1π2−π1∫π2π1Π(x)π1dqx|≤(π2−π1)q[Ω1−1p113(Ω5|π1DqΠ(π2)|p1+Ω6|π1DqΠ(π1)|p1)1p1+Ω1−1p114((Ω7|π1DqΠ(π2)|p1+Ω8|π1DqΠ(π1)|p1)1p1)+Ω1−1p115(Ω9|π1DqΠ(π2)|p1+Ω10|π1DqΠ(π1)|p1)1p1] $ | (5.2) |
where $ \Omega _{5} $-$ \Omega _{10} $ and $ \Omega _{13} $-$ \Omega _{15} $ are given in (3.17)–(3.22) and (3.10)–(3.12), respectively. The above inequality established by Erden et al. in [44].
Proof. By applying the steps used in the proof of Theorem 4.2 and taking into account Lemma 3.2, we can obtain the required inequality (5.2).
Corollary 5.2. If we take the limit $ q\rightarrow 1^{-} $ in Theorem 5.2, then we obtain the following inequality
$ |λΠ(π1)+(μ−λ)Π(2π1+π23)+(ν−μ)Π(π1+2π23)+(1−ν)Π(π2)−1π2−π1∫π2π1Π(x)dx|≤(π2−π1)q[Θ1−1p111(Ω∗5|π1DqΠ(π2)|p1+Ω∗6|π1DqΠ(π1)|p1)1p1+Θ1−1p112((Ω∗7|π1DqΠ(π2)|p1+Ω∗8|π1DqΠ(π1)|p1)1p1)+Θ1−1p113(Ω∗9|π1DqΠ(π2)|p1+Ω∗10|π1DqΠ(π1)|p1)1p1] $ |
where $ \Omega _{5}^{\ast } $-$ \Omega _{10}^{\ast } $ are defined in Corollary 5.1 and
$ Θ11=∫130|t−λ|dt=λ2+19[2]q−λ3, $ |
$ Θ12=∫2313|t−μ|dt=18μ2+518−μ, $ |
$ Θ13=∫123|t−ν|dt=18ν2+1318−5ν3. $ |
Remark 5.3. If we take $ \lambda = \frac{1}{\left[8\right] _{q}} $, $ \mu = \frac{1}{\left[2 \right] _{q}} $, and $ \nu = \frac{\left[7\right] _{q}}{\left[8\right] _{q}} $ in Theorem 5.2, then we obtain the following inequality
$ |1[8]q[qΠ(π1)+q3[6]q[2]qΠ(π1q[2]q+π2[3]q)+q2[6]q[2]qΠ(π1q2+π2[2]q[3]q)+Π(π2)]−1π2−π1∫π2π1Π(x)π1dqx|≤q(π2−π1)[(2q[8]2q[2]q+[8]q−[3]q[2]q[3]2q[2]q[8]q)1−1p1×(A3(q)|π1DqΠ(π2)|p1+B3(q)|π1DqΠ(π1)|p1)1p1+(2q[2]3q+q[3]2q[2]q+1−[3]q[2]q[3]2q[2]q)1−1p1×(A4(q)|π1DqΠ(π2)|p1+B4(q)|π1DqΠ(π1)|p1)1p1+(2q[7]2q[8]2q[2]q+[3]2q+[2]2q[2]q[3]2q−[7]q([3]q+[2]q)[8]q[3]q)1−1p1×(A5(q)|π1DqΠ(π2)|p1+B5(q)|π1DqΠ(π1)|p1)1p1 $ |
where $ A_{3}\left(q\right) -A_{5}\left(q\right) $ and $ B_{3}\left(q\right) -B_{5}\left(q\right) $ are given in Remark 5.2. The above inequality established by Erden et al. in [44].
Remark 5.4. If we assume $ \lambda = \mu = \nu = \frac{1}{\left[2\right] _{q}} $ in Theorem 5.2, then we obtain [42,Theorem 4.2].
Theorem 5.3. We assume that the given conditions of Lemma 3.2 hold. If the mapping $ \left \vert _{\pi _{1}}D_{q}\Pi \right \vert ^{p_{1}} $, $ p_{1} > 1 $ is convex on $ \left[\pi _{1}, \pi _{2}\right] $, then the following inequality holds:
$ |qλΠ(π1)+q(μ−λ)Π(π1q[2]q+π2[3]q)+q(ν−μ)Π(π1q2+π2[2]q[3]q)+(1−νq)Π(π2)−1π2−π1∫π2π1Π(x)π1dqx|≤(π2−π1)q[Ω1r118(|π1DqΠ(π2)|p1([3]q)2[2]q+([2]q[3]q−1)|π1DqΠ(π1)|p1([3]q)2[2]q)1p1+Ω1r119((([2]q)2−1)|π1DqΠ(π2)|p1([3]q)2[2]q+(([2]q)2([3]q−1)−[3]q[2]q+1)|π1DqΠ(π1)|p13[2]q)1p1+Ω1r120((([3]q)2−([2]q)2)|π1DqΠ(π2)|p1([3]q)2[2]q+(([3]q)2([2]q−1)−([2]q)2([3]q−1))|π1DqΠ(π1)|p1([3]q)2[2]q)1p1] $ | (5.3) |
where $ p_{1}^{-1}+r_{1}^{-1} = 1 $ and
$ Ω18=∫1[3]q0|t−λ|r1dqt,Ω19=∫[2]q[3]q1[3]q|t−μ|r1dqt,Ω20=∫1[2]q[3]q|t−ν|r1dqt. $ |
Proof. By applying the steps used in the proof of Theorem 4.3 and taking into account Lemma 3.2, we can obtain the required inequality (5.3).
Remark 5.5. If we assume $ \lambda = \mu = \frac{1}{\left[2\right] _{q}} $ in Theorem 5.3, then we obtain [27,Theorem 3.3].
Remark 5.6. If we take $ \lambda = \frac{1}{\left[8\right] _{q}} $, $ \mu = \frac{1}{\left[2 \right] _{q}} $, and $ \nu = \frac{\left[7\right] _{q}}{\left[8\right] _{q}} $ in Theorem 5.3, then we obtain the following inequality
$ |1[8]q[qΠ(π1)+q3[6]q[2]qΠ(π1q[2]q+π2[3]q)+q2[6]q[2]qΠ(π1q2+π2[2]q[3]q)+Π(π2)]−1π2−π1∫π2π1Π(x)π1dqx|≤q(π2−π1)[(q3r1[5]r1q[3]r1+1q[8]r1q)1r1×(1[3]2q[2]q|π1DqΠ(π1)|p1+[3]q[2]q−1[3]2q[2]q|π1DqΠ(π2)|p1)1p1+(qr1[2]q−q2r1[3]r1+1q[2]r1q)1r1 $ |
$ ×(q2+2[3]2q[2]q|π1DqΠ(π1)|p1+q[3]q[2]q−(q2+2q)[3]2q[2]q|π1DqΠ(π2)|p1)1p1+(q7r1[8]r1q−[2]q([7]q[3]q−[8]q[2]q)r1[8]r1q[3]r1+1q)1r1×([3]2q−[2]2q[3]2q[2]q|π1DqΠ(π1)|p1+q2[3]q[2]q+[2]2q−[3]2q[3]2q[2]q|π1DqΠ(π2)|p1)1p1] $ |
which is proved by Iftikhar et al. in [41].
To sum up, we provided some generalisations of quantum Simpson's and quantum Newton's inequalities for quantum differentiable convex functions with two and three parameters, respectively. It is important to note that by considering the limit $ q\rightarrow 1^{-} $ and different special choices of the involved parameters in our key results, our results transformed into some new and well-known results. We believe that it is an interesting and innovative problem for future researchers who can obtain similar inequalities for different types of convexity and quantum integrals.
This research was funded by King Mongkut's University of Technology North Bangkok. Contract no.KMUTNB-63-KNOW-22.
The authors declare no conflict of interest.
[1] | Rabal HJ, (2008) Dynamic Laser Speckle and Applications, CRC Press, New York. |
[2] |
Arizaga R, Cap NL, Rabal H, et al. (2002) Display of local activity using dynamical speckle. Opt Eng 41: 287-294. doi: 10.1117/1.1428739
![]() |
[3] |
Li PMM, Fontenelle H, Bezerianos A, et al. (2009) Imaging the cerebral blood flow with enhanced laser speckle contrast analysis (eLASCA) by monotonic point transformation. IEEE T Bio-med Eng 56:1127-1133. doi: 10.1109/TBME.2008.2006855
![]() |
[4] |
Li PMM, Rege A, Li N, et al. (2010) High resolution cerebral blood flow imaging by registered laser speckle contrast analysis. IEEE T Bio-med Eng 57: 1152-1157. doi: 10.1109/TBME.2009.2037434
![]() |
[5] |
Briers J (2001) Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging. Physiol Meas 22: R35-66. doi: 10.1088/0967-3334/22/4/201
![]() |
[6] |
Forrester K, Tulip J, Leonard C, et al. (2004) A laser speckle imaging technique for measuring tissue perfusion. IEEE T Bio-med Eng 51: 2074-2084. doi: 10.1109/TBME.2004.834259
![]() |
[7] |
Romero GG, Alanis EE, Rabal HJ (2000) Statistics of the dynamic speckle produced by a rotating diffuser and its application to the assessment of paint drying. Opt Eng 39: 1652-1658. doi: 10.1117/1.602542
![]() |
[8] |
Braga RA, Silva OB, Rabelo GF, et al. (2007) Reliability of biospeckle image analysis. Opt Lasers Eng 45: 390-395. doi: 10.1016/j.optlaseng.2006.07.002
![]() |
[9] |
Braga RA, Rabelo GF, Granato L, et al. (2005) Detection of fungi in beans by the laser biospeckle technique. Biosyst Eng 91: 465-469. doi: 10.1016/j.biosystemseng.2005.05.006
![]() |
[10] |
Rabelo GF, Braga RA, Fabbro IMD (2005) Laser speckle techniques in quality evaluation of orange fruits. Rev Bras Eng Agric Ambiental 9: 570-575. doi: 10.1590/S1415-43662005000400021
![]() |
[11] |
Pajuelo M (2003) Bio-speckle assessment of bruising in fruits. Opt Lasers Eng 40: 13-24. doi: 10.1016/S0143-8166(02)00063-5
![]() |
[12] |
Ansari MZ, Nirala AK (2013) Assessment of bioactivity using the methods of Inertia Moment and Absolute value of difference. Optik 124: 512-516. doi: 10.1016/j.ijleo.2011.12.013
![]() |
[13] |
Braga RA, Dupuy L, Pasqual M, et al. (2009) Live biospeckle laser imaging of root tissues. Eur Biophy J 38: 679-686. doi: 10.1007/s00249-009-0426-0
![]() |
[14] |
Ansari MZ, Nirala AK (2013) Biospeckle activity measurement of Indian fruits using the methods of cross-correlation and Inertia Moments. Optik 124: 2180-2186. doi: 10.1016/j.ijleo.2012.06.081
![]() |
[15] |
Cardoso RR, Costa AG, Nobre CMB, et al. (2011) Frequency signature of water activity by biospeckle laser. Opt Commun 284: 2131-2136. doi: 10.1016/j.optcom.2011.01.003
![]() |
[16] |
Godinaho RP, Silva MM, Nozela JR, et al. (2012) Online biospeckle assessment of without loss of definition and resolutions by motion history image. Opt Laser Eng 50: 366-372. doi: 10.1016/j.optlaseng.2011.10.023
![]() |
[17] | Silva ER, Muramatsu M (2007) Comparative study of analysis methods in biospeckle phenomenon. AIP Proceddings 992: 320-325. |
[18] |
Arizaga RA, Cap NL, Rabal HJ, et al. (2002) Display of local activity using dynamical speckle patterns. Opt Eng 41: 287-294. doi: 10.1117/1.1428739
![]() |
[19] |
Zdunek A, Adamiak A, Pieczywek PM, et al. (2014) The biospeckle method for the investigation of agricultural crops: A review. Opt Laser Eng 52: 276-285. doi: 10.1016/j.optlaseng.2013.06.017
![]() |
1. | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Ibrahim Slimane, Kamsing Nonlaopon, Y. S. Hamed, Some new (p, q)-Dragomir–Agarwal and Iyengar type integral inequalities and their applications, 2022, 7, 2473-6988, 5728, 10.3934/math.2022317 | |
2. | Lulu Zhang, Yu Peng, Tingsong Du, On multiplicative Hermite–Hadamard- and Newton-type inequalities for multiplicatively (P,m)-convex functions, 2024, 534, 0022247X, 128117, 10.1016/j.jmaa.2024.128117 |