Parameter | Value | Level |
Texture | ||
Clay (%) | 39 | |
Silt (%) | 46 | |
Sand (%) | 15 | |
Organic C (%) | 0.89 | Very low |
Total N (%) | 0.13 | Low |
C/N | 5.75 | Low |
Source: Soil laboratory of the Indonesian Cereal Testing Instrument Standard Institute. |
A national web-based simulation portal was developed to estimate the irrigation water requirements at plain scale in Iran. The National Water Portal (NWP) consists of four national databases (climatic, soil, crop, and spatial data), a lumped water balance model, and a graphical user interface (GUI). The irrigation water requirements in standard conditions were estimated based on the dual crop coefficient approach presented by FAO 56. Net irrigation requirements (NIR) and gross irrigation requirements (GIR) were calculated for 125 different crops cultivated in the 609 plains in Iran. Results were aggregated at both political and hydrological scales. The statistical comparison between the estimated NIR and reported values in the literature reviews indicates a correlation coefficient of 75% with root mean square error (RMSE) of less than 280 m3 ha−1. Results showed that sugar cane has the highest NIR value (18318 m3 ha−1) among the studied crops, and sugar beet has the second highest NIR value (5100–11896 m3 ha−1). The aggregated amount of NIR and GIR for the entire country was calculated as 47 and 105 billion cubic meters (BCM), respectively. Results indicate that 3.772 million cubic meter (MCM) of water can be saved by applying 15% water stress. By increasing the irrigation efficiency to 65% without considering any water stress, 3.482 MCM of water can be saved.
Citation: Majid Vazifedoust, Mohammadreza Keshavarz, Ali Mokhtari, Elham Barikani, Mojtaba Palouj. Comprehensive assessment of irrigation water requirements in Iran[J]. AIMS Agriculture and Food, 2024, 9(1): 282-303. doi: 10.3934/agrfood.2024017
[1] | Huanhai Yang, Shue Liu . A prediction model of aquaculture water quality based on multiscale decomposition. Mathematical Biosciences and Engineering, 2021, 18(6): 7561-7579. doi: 10.3934/mbe.2021374 |
[2] | Xin Jing, Jungang Luo, Shangyao Zhang, Na Wei . Runoff forecasting model based on variational mode decomposition and artificial neural networks. Mathematical Biosciences and Engineering, 2022, 19(2): 1633-1648. doi: 10.3934/mbe.2022076 |
[3] | Ziyang Sun, Xugang Xi, Changmin Yuan, Yong Yang, Xian Hua . Surface electromyography signal denoising via EEMD and improved wavelet thresholds. Mathematical Biosciences and Engineering, 2020, 17(6): 6945-6962. doi: 10.3934/mbe.2020359 |
[4] | Hongli Niu, Kunliang Xu . A hybrid model combining variational mode decomposition and an attention-GRU network for stock price index forecasting. Mathematical Biosciences and Engineering, 2020, 17(6): 7151-7166. doi: 10.3934/mbe.2020367 |
[5] | Rakesh Pilkar, Erik M. Bollt, Charles Robinson . Empirical mode decomposition/Hilbert transform analysis of postural responses to small amplitude anterior-posterior sinusoidal translations of varying frequencies. Mathematical Biosciences and Engineering, 2011, 8(4): 1085-1097. doi: 10.3934/mbe.2011.8.1085 |
[6] | Yujie Kang, Wenjie Li, Jidong Lv, Ling Zou, Haifeng Shi, Wenjia Liu . Exploring brain dysfunction in IBD: A study of EEG-fMRI source imaging based on empirical mode diagram decomposition. Mathematical Biosciences and Engineering, 2025, 22(4): 962-987. doi: 10.3934/mbe.2025035 |
[7] | Tao Zhang, Hao Zhang, Ran Wang, Yunda Wu . A new JPEG image steganalysis technique combining rich model features and convolutional neural networks. Mathematical Biosciences and Engineering, 2019, 16(5): 4069-4081. doi: 10.3934/mbe.2019201 |
[8] | Enas Abdulhay, Maha Alafeef, Hikmat Hadoush, V. Venkataraman, N. Arunkumar . EMD-based analysis of complexity with dissociated EEG amplitude and frequency information: a data-driven robust tool -for Autism diagnosis- compared to multi-scale entropy approach. Mathematical Biosciences and Engineering, 2022, 19(5): 5031-5054. doi: 10.3934/mbe.2022235 |
[9] | Konki Sravan Kumar, Daehyun Lee, Ankhzaya Jamsrandoj, Necla Nisa Soylu, Dawoon Jung, Jinwook Kim, Kyung Ryoul Mun . sEMG-based Sarcopenia risk classification using empirical mode decomposition and machine learning algorithms. Mathematical Biosciences and Engineering, 2024, 21(2): 2901-2921. doi: 10.3934/mbe.2024129 |
[10] | Xiaotong Ji, Dan Liu, Ping Xiong . Multi-model fusion short-term power load forecasting based on improved WOA optimization. Mathematical Biosciences and Engineering, 2022, 19(12): 13399-13420. doi: 10.3934/mbe.2022627 |
A national web-based simulation portal was developed to estimate the irrigation water requirements at plain scale in Iran. The National Water Portal (NWP) consists of four national databases (climatic, soil, crop, and spatial data), a lumped water balance model, and a graphical user interface (GUI). The irrigation water requirements in standard conditions were estimated based on the dual crop coefficient approach presented by FAO 56. Net irrigation requirements (NIR) and gross irrigation requirements (GIR) were calculated for 125 different crops cultivated in the 609 plains in Iran. Results were aggregated at both political and hydrological scales. The statistical comparison between the estimated NIR and reported values in the literature reviews indicates a correlation coefficient of 75% with root mean square error (RMSE) of less than 280 m3 ha−1. Results showed that sugar cane has the highest NIR value (18318 m3 ha−1) among the studied crops, and sugar beet has the second highest NIR value (5100–11896 m3 ha−1). The aggregated amount of NIR and GIR for the entire country was calculated as 47 and 105 billion cubic meters (BCM), respectively. Results indicate that 3.772 million cubic meter (MCM) of water can be saved by applying 15% water stress. By increasing the irrigation efficiency to 65% without considering any water stress, 3.482 MCM of water can be saved.
Maize is a vital crop for humans. Humans rely on maize for various purposes, including food, feed, industry, and biofuel [1]. In 2022, Indonesian maize production was 16.53 million t, decreasing by around 12.50% in 2023, while maize demand increased at an increasing rate[2,3]. A challenge for increasing maize production is agricultural expansion in areas with low soil nitrogen (N) levels.
Nitrogen (N) is crucial for maize, serving as a vital nutrient for its life cycle [4]. N deficiency can reduce leaf area and photosynthesis rate because more photosynthate is allocated to roots [5]. This deficiency may also decrease plant height, increase the Anthesis-Silking Interval, accelerate senescence [6,7,8]. Additionally, nitrogen deficiency leads to decreased maize yield during harvest [9,10,11].Yields can drop by 10–50%, reaching up to 70% under severe stress conditions due to N deficiency [12,13].
The development of maize varieties with low-nitrogen (N) tolerance has addressed the challenge of cultivating crops in areas with insufficient N levels. Globally, breeding maize with low-N tolerance has been a significant focus in maize breeding. Breeding low-N-tolerant maize plants can enhance maize yield in China by 14% [14]. More than 100 inbred lines can be used as parents for breeding with low nitrogen tolerance hybrids that have high stable yield [15,16]. Various hybrid combinations with low N tolerance in maize have also been documented by [17,18,19]. In the context of Indonesia, the CY 11, G2013631, MR 14, AVLN 118-7, and AVLN 83-2 lines demonstrate good combining ability for yield in low N conditions [20,21]. It is possible to select low-nitrogen-tolerant hybrid maize lines based on secondary characteristics, stress tolerance index, and Simple Sequence Repeat (SSR) markers [22,23,24]. In Indonesia, there are 15 low-N-tolerant hybrid maize selected based on the Stress Tolerance Index and the Stress Susceptibility Index[25,26].
Low-nitrogen-tolerant hybrid maize is a potential solution for Indonesia's low soil nitrogen (N) problems. However, the current research on this crop is limited and slow. Therefore, more research is required to overcome these challenges. This research aimed to investigate the impact of nitrogen fertilization on the growth and yield of maize hybrids and assess their tolerance to N stress. The results can provide valuable insights for breeding high-yield hybrid maize under low N conditions in Indonesia, improving food security and economic growth.
This study was conducted at the Indonesian Cereal Testing Instrument Standard Institute in Maros, South Sulawesi, Indonesia, from July to November 2022. The experiment involved a total of nine promising low-nitrogen-tolerant maize hybrids (HLN 01, HLN 02, HLN 03, HLN 04, HLN 05, HLN 06, HLN 07, HLN 08, and HLN 09) and two control varieties: ADV 777 (hybrid maize that requires high nitrogen) and JH 37 (moderately tolerant to low nitrogen and drought hybrid maize). The genotype arrangement employed a three-replication nested design. The genotypes were organized within the nested structure based on the nitrogen fertilizer levels, i.e., 0 kg N ha−1, 100 kg N ha−1, and 200 kg N ha−1. The 200 kg N ha−1 level is the usual nitrogen fertilizer level farmers use for maize in Indonesia. It represents a high fertilizer level. The 100 kg N ha−1 level represents half of the usual fertilizer dose and serves as a low fertilizer level. It allows us to observe how maize responds to a reduced fertilizer level. 0 kg N ha−1 is the baseline at which no nitrogen is applied. It helps us understand the natural conditions or the minimum nitrogen requirement for maize. The experiment plot was 3 meters by 5 meters, with plants spaced at 75 cm between rows and 20 cm within rows, so there were 100 plants in one plot. This plant spacing corresponded to a population density of 66,666 plants ha−1. At 10 days after planting (DAP), the 100 kg N ha−1 treatment was applied, while the 200 kg N ha-1 treatment was split into two doses: one at 10 DAP and the other at 35 DAP, Phosphorus (P) and potassium (K) fertilizers, each at a rate of 60 kg ha−1, were applied ten days after planting (DAP). Optimal plant maintenance practices were implemented, including weeding, watering, and hoarding.
Before the research, a soil test was done (Table 1). The total nitrogen analysis employed the Kjeldahl method [27], while soil organic carbon analysis utilized the Walkley-Black method [28]. The analysis shows that the location has a silty clay texture. The land has a very low level of organic C and low total nitrogen and C/N ratio. That level means the land is suitable for low-N-tolerant maize selection.
Parameter | Value | Level |
Texture | ||
Clay (%) | 39 | |
Silt (%) | 46 | |
Sand (%) | 15 | |
Organic C (%) | 0.89 | Very low |
Total N (%) | 0.13 | Low |
C/N | 5.75 | Low |
Source: Soil laboratory of the Indonesian Cereal Testing Instrument Standard Institute. |
The observed variables were agronomic traits and yield. The agronomic traits included plant height, ear height, stalk diameter, leaf angle, leaf length, and leaf width. The yield was corrected to t ha−1 with 15% moisture, employing the formula
Yield(tha−1)=104HAx100-GM85x EHW x SP ÷ 1.000[29] | (1) |
HA = harvested area (m2);
GM = grain moisture (%);
EHW = ear harvested weight (kg);
SP = shelling percentage (%).
An analysis of variance was performed to assess the effects of N fertilizer levels, genotype, and their interaction on the variables observed [30]. If a significant effect was found, a 5% LSD test was conducted to compare the test hybrid with control varieties.
The Stress Tolerance Index (STI) is used to measure maize hybrids' tolerance to low nitrogen (N) conditions. The STI formula is YsxYp−Y2p [31]. Ys and Yp represent the hybrid yield under low and optimum N conditions, respectively, and the average yield of all hybrids under optimum N conditions is −Y2p. The tolerance levels of the hybrids are based on their STI values: STI > 1.0 for tolerance, 0.5 < STI ≤ 1.0 for moderate tolerance, and STI ≤ 0.5 for susceptible.
The stability of the hybrid over the three N levels is another factor in determining maize hybrid tolerance. The Eberhart and Russel stability analysis [32] used bi=∑jYijIj∑jI2j, S2di=(∑jˆδ2ijj−2−s2er), where bi is the regression coefficient, S2di is the deviation from regression, i is the genotype number, j is the environment number, r is the replication number, Yij is the average yield of the ith genotype in the jth environment, Ij is the environmental index = mean index, i.e., the mean yield of the jth environment minus the mean yield of all genotypes, ∑jˆδ2ij = pooled variance, and ∑jˆδ2ij = pooled ANOVA error.
The effect of nitrogen fertilizer, genotype, and their interactions are displayed in Table 2. Table 2 demonstrates that nitrogen fertilizer and genotype significantly affected maize traits and yields. Their interaction was also significant for all variables except leaf width and angle. The variables' coefficients of variation (CVs) varied between 4.70% and 15.20%.
Variable | Mean square | CV (%) | |||||||
Nitrogen (N) | R/N | Hybrid (H) | H x N | Error | |||||
Plant height | 11777.50 | ** | 66.17 | 571.38 | * | 955.91 | ** | 218.47 | 7.40 |
Ear height | 3788.14 | ** | 28.78 | 242.23 | ** | 660.90 | ** | 64.87 | 7.60 |
Stalk diameter | 235.60 | ** | 8.28 | 14.78 | ** | 7.79 | ** | 2.84 | 7.00 |
Leaf angle | 344.93 | ** | 10.89 | 98.32 | ** | 14.82 | 14.84 | 15.20 | |
Leaf length | 1689.11 | ** | 34.30 | 152.66 | * | 45.52 | ** | 15.19 | 4.70 |
Leaf width | 9.12 | ** | 0.49 | 2.19 | ** | 0.33 | 0.44 | 6.80 | |
Yield | 289.03 | ** | 0.81 | 3.50 | ** | 3.56 | ** | 0.73 | 11.90 |
Note: * = significant at p < 0.05, ** = significant at p < 0.01, CV = coefficient of variation. |
Table 3 illustrates that the agronomic traits of maize vary with each level of fertilizer. For plant height, at 200 kg N ha−1, the range is 202.27–249.93 cm. At 100 kg N ha−1, it is 187.53–212.00 cm. At 0 kg N ha−1, it is 153.6–191.33 cm. HLN 01 and HLN 07 do not differ in plant height across the three fertilizer levels. Only HLN 01 shows no differences across the fertilizer levels for ear height. The ear height had ranges of 94.60–139.67 cm at 200 kg N ha−1, 95.47 to 115.00 cm at 100 kg N ha−1, and 61.00–111.13 cm at 0 kg N ha−1. The stalk diameter at 200 kg N ha−1 ranged from 23.80 to 29.58 mm. At 100 kg N ha−1, it ranged from 20.78 cm to 26.27 cm. At 0 kg N ha−1, it ranged from 18.44 to 24.39 mm. The leaf length was 82.13–95.91 cm at 200 kg N ha−1, 76.53–92.20 cm at 100 kg N ha−1, and 64.20–85.16 cm at 0 kg N ha−1. Only HLN 03 and JH 37 do not show any differences in stalk diameter and leaf length across all levels of fertilizers.
Hybrid | Plant height (cm) | Ear height (cm) | Stalk diameter (mm) | Leaf length (cm) | ||||||||
N2 | N1 | N0 | N2 | N1 | N0 | N2 | N1 | N0 | N2 | N1 | N0 | |
HLN 01 | 202.27 | 199.33 | 185.40 | 94.60b | 111.73 | 111.13 | 26.60 | 22.65 (x) | 20.70 (x) | 88.67 | 87.80a | 77.13 (x) |
HLN 02 | 226.60 | 202.07 (x) | 153.60 (x) | 118.53 | 115.00 | 61.00ab (x) | 26.50 | 26.27ab | 23.40a (x) | 95.91ab | 92.20ab | 85.16a (x) |
HLN 03 | 249.93 | 202.40 (x) | 177.93 (x) | 139.67 | 111.20 (x) | 99.07 (x) | 27.07 | 25.47ab | 24.39a | 89.27 | 85.33a | 81.13 (x) |
HLN 04 | 216.27 | 208.53 | 175.07 (x) | 117.00 | 95.47b (x) | 100.27 (x) | 29.55 | 24.51ab (x) | 22.39 (x) | 82.13 | 76.53 | 66.27 (x) |
HLN 05 | 210.67 | 188.47a | 182.20 (x) | 116.00 | 95.80b (x) | 105.00 | 23.80 | 22.78 | 20.86 (x) | 90.13 | 79.67 (x) | 74.53 (x) |
HLN 06 | 243.47 | 201.20 (x) | 181.60 (x) | 131.60 | 107.20 (x) | 91.80 (x) | 26.56 | 25.13ab | 21.24 (x) | 89.40 | 86.27a | 64.20 (x) |
HLN 07 | 205.93 | 187.53a | 184.73 | 113.20 | 96.33b (x) | 100.80 | 24.61 | 22.49 | 18.44 (x) | 87.33 | 86.33a | 69.07 (x) |
HLN 08 | 242.33 | 206.07 (x) | 191.33 (x) | 128.33 | 114.47 (x) | 96.87 (x) | 27.05 | 26.10ab | 21.85 (x) | 91.33a | 89.07a | 73.13 (x) |
HLN 09 | 228.33 | 212.00 | 172.93 (x) | 123.93 | 110.67 (x) | 91.27 (x) | 24.60 | 24.34ab | 20.20 (x) | 92.20ab | 88.60a | 74.93 (x) |
ADV 777 | 214.40 | 196.67 | 176.47 (x) | 122.22 | 100.00 (x) | 89.67 (x) | 29.58 | 20.78 (x) | 20.47 (x) | 84.27 | 77.20 (x) | 78.27 |
JH 37 | 215.67 | 188.33 (x) | 166.13 (x) | 114.67 | 114.40 (x) | 80.20 | 28.77 | 21.23 (x) | 22.11 (x) | 85.20 | 83.60 | 79.33 |
Mean | 223.26 | 199.33 | 177.04 | 117.96 | 96.65 | 93.37 | 26.79 | 23.8 | 21.46 | 88.71 | 84.78 | 74.83 |
LSD 5% | 24.14 | 24.14 | 24.14 | 13.15 | 13.15 | 13.25 | 2.75 | 2.75 | 2.75 | 6.36 | 6.36 | 6.36 |
Note: N0 = 0 kg N ha−1, N1 = 100 kg N ha−1, N2 = 200 kg N ha−1; in a row, (x) = significant difference from 200 kg N ha−1 by 5% LSD; in a column, a = better than ADV 777 by 5% LSD, b = better than JH 37 by 5% LSD. |
Table 4 presents the yields of the hybrids at nitrogen levels of 200 kg N ha−1, 100 kg N ha−1, and 0 kg N ha−1, along with the corresponding yield decreases and the Stress Tolerance Index (STI) levels for each fertilization level. The research study revealed that the yield of hybrid maize varied significantly with different levels of nitrogen fertilization. The yield of maize ranged from 8.42 to 12.57 t ha−1 with the application of 200 kg N ha−1. With low nitrogen fertilization of 100 kg N ha−1, the yield ranged from 4.74 to 8.09 t ha−1. However, without any nitrogen fertilizer, the yield decreased significantly. The yield of maize ranged from 4.40 to 5.33 t ha−1.
Hybrid | Yield (t ha−1) | Yield reduction (t ha−1) | STI | ||||||
N2 | N1 | N0 | N2-N1 | N2-N0 | N1-N0 | N2-N1 | N2-N0 | N1-N0 | |
HLN 01 | 8.42 | 7.00a | 5.33 | 1.42 | 3.10 | 1.67 | 0.54 (MT) | 0.41 (S) | 0.86 (MT) |
HLN 02 | 12.05ab | 8.09ab | 4.40 | 3.96 | 7.66 | 3.70 | 0.89 (MT) | 0.49 (S) | 0.82 (MT) |
HLN 03 | 12.57ab | 5.61 | 4.60 | 6.96 | 7.97 | 1.01 | 0.65 (MT) | 0.53 (MT) | 0.60 (MT) |
HLN 04 | 8.96 | 6.76a | 4.53 | 2.20 | 4.44 | 2.24 | 0.56 (MT) | 0.37 (S) | 0.71 (MT) |
HLN 05 | 9.73 | 7.30a | 4.52 | 2.43 | 5.21 | 2.78 | 0.65 (MT) | 0.40 (S) | 0.76 (MT) |
HLN 06 | 11.02ab | 7.16a | 4.84 | 3.86 | 6.18 | 2.33 | 0.72 (MT) | 0.49 (S) | 0.80 (MT) |
HLN 07 | 11.45ab | 6.16a | 4.47 | 5.29 | 6.99 | 1.69 | 0.65 (MT) | 0.47 (S) | 0.64 (MT) |
HLN 08 | 12.42ab | 6.09 | 3.90 | 6.33 | 8.52 | 2.19 | 0.69 (MT) | 0.44 (S) | 0.55 (MT) |
HLN 09 | 10.83ab | 7.16a | 5.05 | 3.67 | 5.79 | 2.11 | 0.71 (MT) | 0.50 (MT) | 0.84 (MT) |
ADV 777 | 8.50 | 4.74 | 4.58 | 3.76 | 3.92 | 0.17 | 0.37 (S) | 0.36 (S) | 0.50 (MT) |
JH 37 | 8.90 | 6.18 | 4.73 | 2.72 | 4.17 | 1.46 | 0.50 (MT) | 0.39 (S) | 0.68 (MT) |
Mean | 10.44 | 6.57 | 4.63 | 3.87 | 5.81 | 1.94 | |||
SE | 0.49 | 0.49 | 0.49 | ||||||
LSD 5% | 1.40 | 1.40 | 1.40 | ||||||
Note: N0 = 0 kg N ha−1, N1 = 100 kg N ha−1, N2 = 200 kg N ha−1, a = better than ADV 777 by 5% LSD, b = better than JH 37 by 5% LSD, S = susceptible, MT = moderate tolerance. |
As per Table 4, when comparing the yield at a rate of 200 kg N ha−1 with that at 100 kg N ha−1, the yield reduction ranged from 1.42 to 6.96 t ha−1. Similarly, the yield reduction varied from 3.10 to 8.52 t ha−1 when comparing the yield at 200 kg N ha−1 to that at 0 kg N ha−1. The yield reduction from 100 kg N ha−1 to 0 kg N ha−1 ranged from 0.17 t ha−1 to 3.70 t ha−1.
The STI values ranged from 0.37 to 0.89 when fertilized with 200 kg N ha−1 and 100 kg N ha−1. Ten hybrids showed moderate tolerance, while only one hybrid was susceptible. On the other hand, when maize fertilized was with 200 kg N ha−1 and 0 kg N ha−1, the STI index was between 0.36 and 0.53. Only two hybrids demonstrated moderate tolerance, while the rest were susceptible. At rates of 100 kg N ha−1 and 0 kg N ha−1, the STI ranged from 0.50 to 0.86, and all hybrids were classified as moderate tolerance (Table 4).
The relationship pattern of tolerance levels of the hybrids based on their STIs of 200 kg N ha−1 to 100 kg N ha−1, 200 kg N ha−1 to 0 kg N ha−1, and 100 kg N ha−1 to 0 kg N ha−1 is displayed in a Venn diagram in Figure 1. Interestingly, the tolerance level at 100 kg N ha−1 to 0 kg N ha−1 was moderate, the same as for the other dose combination. Therefore, it was not included in the Venn diagram. Only STI values for the other two dose combinations (200 kg N ha−1 to 100 kg N ha−1 and 200 kg N ha−1 to 0 kg N/ha) were shown in the diagram. The diagram shows that one hybrid is susceptible at 200 kg N ha−1 to 100 kg N ha−1 and 200 kg N ha−1 to 0 kg N/ha. Additionally, eight hybrids are moderately tolerant to the first dose combination but susceptible to the second. Two maize genotypes fall into the moderately tolerant category for both dose combinations.
Table 5 shows the average yield, regression coefficient (bi), and regression deviation value (s2di) for eleven maize hybrids at three levels of N fertilizer. The average yield was 7.21 t ha−1, ranging from 5.49 t ha−1 (ADV 777) to 8.18 t ha−1 (HLN 02). Six hybrids (HLN 02, HLN 03, HLN 06, HLN 07, HLN 08, and HLN 09) had above-average yields, while five hybrids (HLN 01, HLN 04, HLN 05, ADV 777, and JH 37) had below-average yields. Most hybrids had bi values close to 1 and s2di values close to zero, except for HLN 01, HLN 03, and HLN 08.
Hybrid | Mean yield (t ha−1) | bi | s2di |
HLN 01 | 6.92 | 0.51** | 0.02 |
HLN 02 | 8.18 | 1.28 | 0.59 |
HLN 03 | 7.60 | 1.43** | 1.50** |
HLN 04 | 6.75 | 0.74 | 0.12 |
HLN 05 | 7.18 | 0.86 | 0.45 |
HLN 06 | 7.67 | 1.05 | −0.20 |
HLN 07 | 7.36 | 1.23 | 0.02 |
HLN 08 | 7.47 | 1.49** | 0.03 |
HLN 09 | 7.68 | 0.99 | −0.22 |
ADV 777 | 5.94 | 0.72 | 0.60 |
JH 37 | 6.60 | 0.72 | −0.24 |
Mean | 7.21 | ||
Note: bi: regression coefficient; s2di: deviation from regression. |
The data presented in Table 2 shows that both nitrogen fertilizer and the genotype factors significantly affect various traits and the overall yield of maize crops. Specifically, the application of nitrogen fertilizer and the use of hybrid maize varieties were found to have considerable impacts on the traits. The interaction between nitrogen fertilizer and hybrid maize was significant for most of the measured traits. This suggests that combining these two factors can result in different outcomes than expected from each individually. It implies that both factors affect growth and yield and that hybrids respond differently to nitrogen levels. [33]. However, this combined effect did not extend to all traits, as no significant interaction was observed for leaf width and angle. The coefficient of variation (CV) ranged from 4.70% to 15.20% across the variables, indicating the experiment has moderate variance and adequate precision [34].
Generally, the observation variable tends to decline as fertilizer diminishes. Lower nitrogen levels reduced maize growth indicators such as plant height, leaf area, chlorophyll, stalk diameter, ear length, and kernel number [35,36]. Nitrogen (N) is essential for plant growth and development. Maize needs N throughout its life cycle, from the vegetative to the reproductive stage [37]. Maize requires nitrogen to synthesize proteins and chlorophyll and for other metabolic pathways [38]. Chlorophyll, the green pigment for photosynthesis, contains much nitrogen. Without sufficient nitrogen, plant leaves lose their green colour and become pale and yellow due to less chlorophyll [39]. Leaf area index (LAI) and leaf chlorophyll content are crucial in evaluating a plant's photosynthetic capacity, nutrient status, and overall health. LAI is a valuable indicator of the plant's light interception capability for photosynthesis, while leaf chlorophyll content reflects the plant's nutrient status and photosynthetic efficiency [40,41]. The reduced photosynthesis rate affects the plant's ability to generate energy and biomass, inhibiting plant growth and development. The addition of N fertilizer can enhance the vascular tissue in the stem and the synthesis of enzymes and nucleic acids that regulate protein accumulation and post-translational protein modification [42,43].
Root traits are critical for resource uptake and crop performance under low nitrogen conditions. Maize responds to nitrogen deficiency by enhancing root depth and steepening root growth angles [44,45]. Fine roots exhibit greater nitrogen uptake compared to thicker roots [46]. Root architecture plays a significant role in determining nutrient acquisition efficiency, particularly through root length and density [47,48]. A deeper root system with increased lateral root length increases nitrogen acquisition efficiency [49].
The interaction between genotype and environment is beneficial for breeders in plant-stress fields. The interaction causes each genotype to show different responses to different fertilization levels. The response is due to differences in genetic backgrounds. Tolerant genotypes will perform more stable than susceptible ones. Therefore, plant breeders can use these differences to select the desired genotypes according to their purposes [50,51].
The maize yield at each N level is varied. At a 200 kg N ha−1 rate, HLN 03 had the maximum yield (12.57 t ha−1), while HLN 01 had the minimum (8.42 t ha−1). All maize hybrids, except HLN 01, HLN 04, and HLN 05, differed from the control at this level. However, at 100 kg N ha−1, HLN 02 was the best, and ADV 777 was the worst. HLN 02 had a significant difference from the controls, achieving a yield of 8.09 t ha−1, whereas ADV 777 had the lowest yield at 4.74 t ha−1. At a 0 kg ha−1 nitrogen rate, HLN 01 exhibited the highest yield at 5.33 t ha−1, while HLN 08 had the lowest at 3.90 t ha−1 (Table 4). The interaction of genotype and N fertilizer dose led to differences in yield for each genotype at each N fertilization level [52].
The yield reduction between each level of nitrogen fertilization differs depending on the hybrid maize variety. Table 4 shows that the yield at the rate of 200 kg N ha−1 instead of 100 kg N ha−1 is reduced by 1.42–6.96 t ha−1. HLN 03 has the highest yield reduction, and HLN 01 has the lowest. The yield reduction ranges from 3.10 to 8.52 t ha−1 when the yield at rate 0 kg N ha−1 is compared to that at 200 kg N ha−1, with HLN 08 having the most considerable reduction and HLN 01 having the smallest. The yield reduction from 100 kg N ha−1 to 0 kg N ha−1 ranged from 0.17 t ha−1 (ADV 777) to 3.70 t ha−1 (HLN 03). The absence of nitrogen in the soil led to a restricted presence of starch metabolizing enzymes and hormone levels in maize, consequently causing a reduction in yield [19].
Table 4 shows the hybrid maize tolerance index values based on STI for different fertilization levels. For 200 kg N ha−1 and 100 kg N ha−1, the STI values varied from 0.37 (ADV 777) to 0.89 (HLN 02). According to the STI criteria, all hybrid maize corresponds to a moderate-tolerance group, except for ADV 777 (susceptible). For 200 kg N ha−1 and 0 kg N ha−1, the STI values ranged from 0.36 to 0.53. HLN 03 had the highest STI value, and ADV 777 had the lowest. Only HLN 03 and HLN 09 were encompassed in the moderate-tolerance criteria at this fertilization level, while the rest were susceptible. For 100 kg N ha−1 and 0 kg N ha−1, the STI values spanned from 0.50 to 0.86. ADV 777 showed the lowest STI value, and HLN 01 showed the highest based on the STI criteria. All hybrid maize belonged to a moderate-tolerance group at this fertilization level.
The STI index can identify maize genotypes with high yields under normal and stressful conditions. The STI index can screen genotypes with high yield potential and tolerance under both normal and stressful conditions [53,54]. Table 4 shows that maize hybrids with above-average yields at three fertilization levels were classified as tolerant or moderately tolerant. A similar pattern in wheat was also found, where genotypes with high yields under heat stress and normal conditions had high STI values, while genotypes with low yields had low STI values [55]. This finding was in line with previous studies by [56,57,58].
Figure 1 is a Venn diagram that shows the different groups of maize genotypes that can handle 200 kg N ha−1 and 100 kg N ha−1 of nitrogen fertilization based on their STI values. A Venn diagram is a graphical representation of the relationships among different data sets based on intersections or combinations of several sets [59,60]. Venn diagrams can categorize data by intersections or combinations of sets and are more informative than heat maps and tables for up to five variables in some cases [61,62]. In a Venn diagram, each set is shown as a transparent circle. The overlapping regions indicate the elements that belong to more than one set [63,64,65]. In Figure 1, the hybrid ADV 777 was classified as susceptible to both fertilizer conditions, meaning it had low yields under both N levels. Eight hybrids (HLN 01, HLN 02, HLN 04, HLN 05, HLN 06, HLN 07, HLN 08, and JH 37) were rated as moderately tolerant at STI 100 kg N ha−1 at susceptible to STI 0 kg N ha−1. When N levels were normal, their yields were high, but when N levels were stressed, their yields were low. Two maize hybrids (HLN 03 and HLN 09) were classified as moderately tolerant to both fertilizer conditions, meaning they had moderate yields under both N levels.
The bi and s2di values determine the maize hybrid stability. Based on these values, maize hybrids can be classified into four categories [66,67]. The first category consists of hybrids with bi values not significantly different from 1 and s2di values not significantly different from 0. These hybrids are considered stable across environments. The second category comprises hybrids with bi values significantly different from 1 and s2di values not significantly different from 0. These hybrids are adapted to specific environments. The third category includes hybrids with bi values not significantly different from 1 and s2di values significantly different from 0. The fourth category contains hybrids with bi values significantly different from 1 and s2di values significantly different from 0. Hybrids in the third and fourth categories are unstable across environments.
The HLN 03 maize hybrid is unstable due to its bi value of 1.43 (significantly different from 1) and its s2di value of 1.30 (significantly different from 0). These values indicate that HLN 03 has a high level of interaction with the environment. HLN 01 is a genotype-specific hybrid for low-N soil locations. The bi value of 0.51 (significantly lower than 1) and the s2di value of 0.02 (not significantly different from 0) of the HLN 01 maize hybrid indicate that it is suitable for cultivation in marginal environments. The HLN 08 maize hybrid has a bi value of 1.49 (significantly higher than 1) and s2di value of 0.02 (not significantly different from 0), which implies that HLN 08 is a genotype-specific hybrid for optimal environments (high N soil locations). Maize hybrids with bi values close to 1 and s2di values close to 0 have low environmental interaction and are categorized as stable hybrids. Genotypes HLN 02, HLN 04, HLN 05, HLN 06, HLN 07, HLN 09, ADV 777, and JH 37 belong to this category of stable hybrid (Table 5).
The selection that considers the tolerance and stability index in the stress conditions can identify both tolerant and widely adapted genotypes. This method has been employed in various crops, such as rice in saline conditions [68], bread wheat in drought conditions [69], and maize under waterlogging conditions [70]. In the current research, HLN 02, HLN 06, and HLN 07 are stable hybrids with yields higher than average. However, these hybrids exhibit only moderate tolerance at STI 100 kg N ha−1 and are susceptible at STI 0 kg N ha−1. In contrast, HLN 09 was identified as the most suitable maize hybrid for low-N environments. HLN 09 exhibited a relatively high yield of 7.68 t ha−1, surpassing the mean yield of 7.21 t ha−1 for all hybrids. The HLN 09 yields at 0 kg N ha−1, 100 kg N ha−1, and 200 kg N ha−1 were 5.05 t ha−1, 7.16 t ha−1, and 10.83 t ha−1, respectively, greater than mean yields at each fertilizer level (4.63 t ha−1, 6.57 t ha−1, and 10.44 t ha−1). The Stress Tolerance Index (STI) values for HLN 09 were 0.71 for N2-N1, 0.50 for N2-N0, and 0.84 for N1-N0. These STI values demonstrate that HLN 09 consistently maintained higher stress tolerance across varying nitrogen levels. Additionally, HLN 09 was characterized as a stable hybrid (bi = 0.99, s2di = −0.22). These facts indicate that HLN 09 has superior performance to other hybrids. As such, HLN 09 represents a stable and promising hybrid for low-N environments.
A decrease in nitrogen fertilizer dosage for maize significantly affected agronomic traits, followed by a yield decrease among the tested maize hybrid genotypes. This fact indicates that optimal nitrogen levels are essential to optimizing maize yield. Among the tested genotypes, the HLN 09 maize hybrid showed remarkable tolerance to nitrogen-deficient conditions, sustaining both stability and high yield. The hybrid's tolerance to low nitrogen suggests its potential for cultivation in environments with limited nitrogen availability.
The authors declare they have not used artificial intelligence (AI) tools in the creation of this article.
The author appreciates the Indonesian Cereal Testing Instrument Standard Institute chief for permission and the staff for carrying out the research well.
The authors declare no conflict of interest.
Conceptualization: M.A.; data curation: A.M.; formal analysis: R.I. and S.B.P.; investigation: R.I. and N.N.A.; methodology: A.M; project administration: R.E.; resources: S and R.E.; software: S.B.P. and N.N.A.; supervision: M.A.; validation: A.M; visualization: S; writing—original draft: R.E.; writing—review and editing: S.B.P. All authors have read and agreed to the published version of the manuscript.
[1] | Ebrahimi P (2022) Chapter 14—Analysis of social resilience of villagers in the face of drought using LPCIEA indicator case study: Downstream of Dorodzan dam. In: Pourghasemi HR (Ed.), Computers in Earth and Environmental Sciences, Elsevier, 199–219. https://doi.org/10.1016/B978-0-323-89861-4.00039-7 |
[2] |
Mokarram M, Pourghasemi HR, Hu M, et al. (2021) Determining and forecasting drought susceptibility in southwestern Iran using multi-criteria decision-making (MCDM) coupled with CA-Markov model. Sci Total Environ 781: 146703. https://doi.org/10.1016/j.scitotenv.2021.146703 doi: 10.1016/j.scitotenv.2021.146703
![]() |
[3] |
Mafi-Gholami D, Zenner EK, Jaafari A, et al. (2020) Spatially explicit predictions of changes in the extent of mangroves of Iran at the end of the 21st century. Estuarine, Coastal Shelf Sci 237:106644. https://doi.org/10.1016/j.ecss.2020.106644 doi: 10.1016/j.ecss.2020.106644
![]() |
[4] |
Mesgaran MB, Madani K, Hashemi H, et al. (2017) Iran's land suitability for agriculture. Sci Rep 7: 7670. https://doi.org/10.1038/s41598-017-08066-y doi: 10.1038/s41598-017-08066-y
![]() |
[5] | Abasi F, Naseri A, Sohran F, et al. (2015) Official Report: Improvement of water consumption efficiency. Agricultural Research Education and Extension Organization of IRAN. |
[6] |
Saemian P, Tourian MJ, AghaKouchak A, et al. (2022) How much water did Iran lose over the last two decades? J Hydrol: Reg Stud 41: 101095. https://doi.org/10.1016/j.ejrh.2022.101095 doi: 10.1016/j.ejrh.2022.101095
![]() |
[7] |
Pirmoradian N, Davatgar N (2019) Simulating the effects of climatic fluctuations on rice irrigation water requirement using AquaCrop. Agric Water Manag 213: 97–106. https://doi.org/10.1016/j.agwat.2018.10.003 doi: 10.1016/j.agwat.2018.10.003
![]() |
[8] | United Nations Educational, Scientific and Cultural Organization (UNESCO) (1979) Map of the world distribution of arid regions: Explanatory note. Paris, 54. |
[9] | Allen RG, Pereira LS, Raes D, et al. (1998) Crop Evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome 300: D05109. |
[10] |
Shahrokhnia MH, Sepaskhah AR (2013) Single and dual crop coefficients and crop evapotranspiration for wheat and maize in a semi-arid region. Theor Appl Climatol 114: 495–510. https://doi.org/10.1007/S00704-013-0848-6 doi: 10.1007/S00704-013-0848-6
![]() |
[11] | Doorenbos J (1977) Guidelines for predicting crop water requirements. FAO Irrig Drain Pap 24: 1–179. |
[12] |
Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1: 96–99. https://doi.org/10.13031/2013.26773 doi: 10.13031/2013.26773
![]() |
[13] |
Rosa RD, Paredes P, Rodrigues GC, et al. (2012) Implementing the dual crop coefficient approach in interactive software. 1. Background and computational strategy. Agric Water Manag 103: 8–24. https://doi.org/10.1016/j.agwat.2011.10.013 doi: 10.1016/j.agwat.2011.10.013
![]() |
[14] |
Liu Y, Luo Y (2010) A consolidated evaluation of the FAO-56 dual crop coefficient approach using the lysimeter data in the North China Plain. Agric Water Manag 97: 31–40. https://doi.org/10.1016/j.agwat.2009.07.003 doi: 10.1016/j.agwat.2009.07.003
![]() |
[15] |
Phogat V, Šimůnek J, Skewes MA, et al. (2016) Improving the estimation of evaporation by the FAO-56 dual crop coefficient approach under subsurface drip irrigation. Agric Water Manag 178: 189–200. https://doi.org/10.1016/j.agwat.2016.09.022 doi: 10.1016/j.agwat.2016.09.022
![]() |
[16] |
Paredes P, Rodrigues GJ, Petry MT, et al. (2018) Evapotranspiration partition and crop coefficients of Tifton 85 Bermudagrass as affected by the frequency of cuttings. Application of the FAO56 Dual Kc Model. Water 10: 558. https://doi.org/10.3390/W10050558 doi: 10.3390/W10050558
![]() |
[17] |
Abasi F, Sohrab F, Abasi N (2017) Evaluation of irrigation efficiencies in Iran. Irrig Drain Struct Eng Res 17: 113–120. https://doi.org/10.22092/aridse.2017.109617 doi: 10.22092/aridse.2017.109617
![]() |
[18] |
Mokhtari A, Noory H, Vazifedoust M, et al. (2019) Evaluation of single crop coefficient curves derived from Landsat satellite images for major crops in Iran. Agric Water Manag 218: 234–249. https://doi.org/10.1016/j.agwat.2019.03.024 doi: 10.1016/j.agwat.2019.03.024
![]() |
[19] | Nasiri A (2014) Water requirements of wheat and barley in Ahar. J Dev Geo 107: 35–40. |
[20] | Heydari N (2011) Determination and evaluation of water use efficiency of some major crops under farmers management in Iran, J Water Irrig Manag 1: 43–57. https://jwim.ut.ac.ir/article_24582.html?lang = en |
[21] |
Raoof M (2019) Determination of sugar beet crop coefficient using lysimeter in Ardabil Plain and its comparison with FAO global data. J Water Res Agric 33: 175–188. https://doi.org/10.22092/jwra.2019.119736 doi: 10.22092/jwra.2019.119736
![]() |
[22] | Shahabifar M, Rahimian M (2008) Measurement of sugar beet water requirements by lysimeter method in Mashhad. J Sugar Beet 23: 177–184. https://www.sid.ir/en/journal/ViewPaper.aspx?id=120647 |
[23] |
Panahi M, Agdaei M, Rezaei M (2006) Determination of sugar beet standard evapotranspiration by lysimeter method in Kabotar-Abad, Esfahan. J Sugar Beet 22: 37–25. https://doi.org/10.22092/jsb.2006.1663 doi: 10.22092/jsb.2006.1663
![]() |
[24] | Zare Abyaneh H, Farrokhi E, Bayat Varkeshi M, et al. (2011) Determination of water requirement and the effect of the changes on some quantitative and qualitative characteristics of products of sugar beet. J Sugar Beet 27: 153–167. https://www.sid.ir/en/journal/ViewPaper.aspx?id = 263798 |
[25] | Gheysari M, Mirlatifi SM, Homaee M, et al. (2006) Determination of crop water use and crop coefficient of corn silage based on crop growth stages. J Agric Eng Res 7: 125–142. |
[26] | Sepahvand M (2009) Comparison of water requirement, water productivity and economical water productivity of wheat and rapeseed in the west of Iran in wet years. Iran Water Res J 3: 63–68. https://www.sid.ir/en/journal/ViewPaper.aspx?id = 176386 |
[27] | Niazi JA, Fouladmand HR, Ahmadi SH, et al. (2005) Water requirement and crop coefficient of wheat in Zarghan area, Fars Province. J Sci Technol Agric Natl Resour 9: 1–9. https://www.sid.ir/en/journal/ViewPaper.aspx?id = 34199 |
[28] | Ghaemi M, Raeini Sarjaz M, Mosavi M (2013) Estimating the crop coefficient and the water requirement of the Gascogne wheat by using energy balance method in Mashhad. Iran J Irrig Water Eng 3: 58–68. https://www.sid.ir/en/journal/ViewPaper.aspx?id = 378207 |
[29] | Kamaledin H, Dahanzadeh B (2014) Evaluation of irrigation water saving amount in the wheat cultivation in Ahvaz City. J Water Eng 2: 75–86. https://jwe.shoushtar.iau.ir/article_529611.html |
[30] | Haghighati B (2013) Report of the Promotion Plan—Improving management and optimal water consumption in the process of producing agricultural products. Agricultural and Natural Resources Research Center of Chaharmahal and Bakhtiari. Persian with English abstract. |
[31] | Absalan S, Heydari N, Sedaghat M (2011) Evaluation of water productivity in the saline areas of lower karkheh basin and determination of its causes: a study from southern Iran. Cercetări Agronomice în Moldova XLIV 3. |
[32] | Ghasemi Nejad Raeini MR, Maroufi S, Zare Kohan M, et al. (2012) Study of water productivity index and its comparison with current conditions of wheat fields. Irrig Sci Eng 1: 71–77. https://sid.ir/paper/217063/fa |
[33] | Salamati N, Baghani J, Abbasi F (2018) Determination of wheat water productivity in sprinkler and surface irrigation systems (Case Study in Behbahan). Iran J Soil Water Res 49: 821–830. https://www.sid.ir/en/journal/ViewPaper.aspx?id = 653251 |
[34] |
Gholami Sefidkouhi MA, Bagheri Khalili Z, GhaleNovi MA (2021) Investigation of rice actual evapotranspiration and crop coefficients for Shiroudi and Hashemi cultivars in Sari. J Water Res Agric 36: 505–515. https://doi.org/10.22092/jwra.2021.123620 doi: 10.22092/jwra.2021.123620
![]() |
[35] |
Jalali Koutenaei N, Shahnazari A, Ziatabar Ahmadi MK, et al. (2021) Estimation of water requirement and crop coefficients of rice cultivars Kuhsar and Hashemi in different cultivation systems. J Water Res Agric 35: 235–245. https://doi.org/10.22092/jwra.2021.352374.833 doi: 10.22092/jwra.2021.352374.833
![]() |
[36] |
Shahnazari A, Ziatabar Ahmadi M, Aghajani mazandarani G (2012) The comparison of water balance parameters in traditional and leveled paddy fields in Qaemshahr, Iran. Water Soil 26: 1010–1017. https://doi.org/10.22067/jsw.v0i0.15305 doi: 10.22067/jsw.v0i0.15305
![]() |
[37] | Modabberi H, Mirlatifi M, Gholami MA (2014) Determination of evapotranspiration and crop coefficient of two rice cultivars in Mordab Plain (Guilan Province). J Hydrol Soil Sci 18: 95–106. |
[38] | Pirmoradian N, Zekri F, Rezaei M, et al. (2013) Derivation of crop coefficients of three rice varieties based on ETo estimation method in Rasht region. Cereal Res 3: 95–106. https://cr.guilan.ac.ir/article_1603.html |
[39] | Majnooni-Heris A, Nazemi AH, Sadraddini AA, et al. (2012) Evaluation of Maize Simulation Model (MSM2) by Lysimetric Data. J Water Soil Sci 22: 55. |
[40] | Mashal M, Varavypour M, Sadatnouri SA, et al. (2009) Optimizing consumptive water depth for corn by deficit-irrigation (Case Study: Varamin area). J Agric Res (Water, Soil and Plants in Agriculture) 8: 123–134. |
[41] | Zand-Parsa SH, Soltani GHR, Sepaskhah AR (2001) Determination of optimum irrigation depth of corn in sprinkler irrigation. J Hydrol Soil Sci 5: 1–7. |
[42] | Sheini Dashtegol A, Hamoodi M (2009) Studying the water requirement and plant coefficients of sugarcane by lysimetric method in the sugarcane lands of South Ahvaz. The 11th Iranian Soil Science Congress, Gorgan. Available from: https://civilica.com/doc/291596/. |
[43] |
Mirzaie-Nodoushan F, Morid S, Dehghanisanij H (2020) Reducing water footprints through healthy and reasonable changes in diet and imported products. Sustain Prod Consum 23: 30–41. https://doi.org/10.1016/j.spc.2020.04.002 doi: 10.1016/j.spc.2020.04.002
![]() |
[44] |
Karandish F, Nouri H, Brugnach M (2021) Agro-economic and socio-environmental assessments of food and virtual water trades of Iran. Sci Rep 11: 15022. https://doi.org/10.1038/s41598-021-93928-9 doi: 10.1038/s41598-021-93928-9
![]() |
[45] |
Khorsandi M, Omidi T, Van Oel P (2023) Water-related limits to growth for agriculture in Iran. Heliyon 9: e16132. https://doi.org/10.1016/j.heliyon.2023.e16132 doi: 10.1016/j.heliyon.2023.e16132
![]() |
[46] |
Khorsandi M, Homayouni S, Van Oel P (2022) The edge of the petri dish for a nation: Water resources carrying capacity assessment for Iran. Sci Total Environ 817: 153038. https://doi.org/10.1016/j.scitotenv.2022.153038 doi: 10.1016/j.scitotenv.2022.153038
![]() |
Parameter | Value | Level |
Texture | ||
Clay (%) | 39 | |
Silt (%) | 46 | |
Sand (%) | 15 | |
Organic C (%) | 0.89 | Very low |
Total N (%) | 0.13 | Low |
C/N | 5.75 | Low |
Source: Soil laboratory of the Indonesian Cereal Testing Instrument Standard Institute. |
Variable | Mean square | CV (%) | |||||||
Nitrogen (N) | R/N | Hybrid (H) | H x N | Error | |||||
Plant height | 11777.50 | ** | 66.17 | 571.38 | * | 955.91 | ** | 218.47 | 7.40 |
Ear height | 3788.14 | ** | 28.78 | 242.23 | ** | 660.90 | ** | 64.87 | 7.60 |
Stalk diameter | 235.60 | ** | 8.28 | 14.78 | ** | 7.79 | ** | 2.84 | 7.00 |
Leaf angle | 344.93 | ** | 10.89 | 98.32 | ** | 14.82 | 14.84 | 15.20 | |
Leaf length | 1689.11 | ** | 34.30 | 152.66 | * | 45.52 | ** | 15.19 | 4.70 |
Leaf width | 9.12 | ** | 0.49 | 2.19 | ** | 0.33 | 0.44 | 6.80 | |
Yield | 289.03 | ** | 0.81 | 3.50 | ** | 3.56 | ** | 0.73 | 11.90 |
Note: * = significant at p < 0.05, ** = significant at p < 0.01, CV = coefficient of variation. |
Hybrid | Plant height (cm) | Ear height (cm) | Stalk diameter (mm) | Leaf length (cm) | ||||||||
N2 | N1 | N0 | N2 | N1 | N0 | N2 | N1 | N0 | N2 | N1 | N0 | |
HLN 01 | 202.27 | 199.33 | 185.40 | 94.60b | 111.73 | 111.13 | 26.60 | 22.65 (x) | 20.70 (x) | 88.67 | 87.80a | 77.13 (x) |
HLN 02 | 226.60 | 202.07 (x) | 153.60 (x) | 118.53 | 115.00 | 61.00ab (x) | 26.50 | 26.27ab | 23.40a (x) | 95.91ab | 92.20ab | 85.16a (x) |
HLN 03 | 249.93 | 202.40 (x) | 177.93 (x) | 139.67 | 111.20 (x) | 99.07 (x) | 27.07 | 25.47ab | 24.39a | 89.27 | 85.33a | 81.13 (x) |
HLN 04 | 216.27 | 208.53 | 175.07 (x) | 117.00 | 95.47b (x) | 100.27 (x) | 29.55 | 24.51ab (x) | 22.39 (x) | 82.13 | 76.53 | 66.27 (x) |
HLN 05 | 210.67 | 188.47a | 182.20 (x) | 116.00 | 95.80b (x) | 105.00 | 23.80 | 22.78 | 20.86 (x) | 90.13 | 79.67 (x) | 74.53 (x) |
HLN 06 | 243.47 | 201.20 (x) | 181.60 (x) | 131.60 | 107.20 (x) | 91.80 (x) | 26.56 | 25.13ab | 21.24 (x) | 89.40 | 86.27a | 64.20 (x) |
HLN 07 | 205.93 | 187.53a | 184.73 | 113.20 | 96.33b (x) | 100.80 | 24.61 | 22.49 | 18.44 (x) | 87.33 | 86.33a | 69.07 (x) |
HLN 08 | 242.33 | 206.07 (x) | 191.33 (x) | 128.33 | 114.47 (x) | 96.87 (x) | 27.05 | 26.10ab | 21.85 (x) | 91.33a | 89.07a | 73.13 (x) |
HLN 09 | 228.33 | 212.00 | 172.93 (x) | 123.93 | 110.67 (x) | 91.27 (x) | 24.60 | 24.34ab | 20.20 (x) | 92.20ab | 88.60a | 74.93 (x) |
ADV 777 | 214.40 | 196.67 | 176.47 (x) | 122.22 | 100.00 (x) | 89.67 (x) | 29.58 | 20.78 (x) | 20.47 (x) | 84.27 | 77.20 (x) | 78.27 |
JH 37 | 215.67 | 188.33 (x) | 166.13 (x) | 114.67 | 114.40 (x) | 80.20 | 28.77 | 21.23 (x) | 22.11 (x) | 85.20 | 83.60 | 79.33 |
Mean | 223.26 | 199.33 | 177.04 | 117.96 | 96.65 | 93.37 | 26.79 | 23.8 | 21.46 | 88.71 | 84.78 | 74.83 |
LSD 5% | 24.14 | 24.14 | 24.14 | 13.15 | 13.15 | 13.25 | 2.75 | 2.75 | 2.75 | 6.36 | 6.36 | 6.36 |
Note: N0 = 0 kg N ha−1, N1 = 100 kg N ha−1, N2 = 200 kg N ha−1; in a row, (x) = significant difference from 200 kg N ha−1 by 5% LSD; in a column, a = better than ADV 777 by 5% LSD, b = better than JH 37 by 5% LSD. |
Hybrid | Yield (t ha−1) | Yield reduction (t ha−1) | STI | ||||||
N2 | N1 | N0 | N2-N1 | N2-N0 | N1-N0 | N2-N1 | N2-N0 | N1-N0 | |
HLN 01 | 8.42 | 7.00a | 5.33 | 1.42 | 3.10 | 1.67 | 0.54 (MT) | 0.41 (S) | 0.86 (MT) |
HLN 02 | 12.05ab | 8.09ab | 4.40 | 3.96 | 7.66 | 3.70 | 0.89 (MT) | 0.49 (S) | 0.82 (MT) |
HLN 03 | 12.57ab | 5.61 | 4.60 | 6.96 | 7.97 | 1.01 | 0.65 (MT) | 0.53 (MT) | 0.60 (MT) |
HLN 04 | 8.96 | 6.76a | 4.53 | 2.20 | 4.44 | 2.24 | 0.56 (MT) | 0.37 (S) | 0.71 (MT) |
HLN 05 | 9.73 | 7.30a | 4.52 | 2.43 | 5.21 | 2.78 | 0.65 (MT) | 0.40 (S) | 0.76 (MT) |
HLN 06 | 11.02ab | 7.16a | 4.84 | 3.86 | 6.18 | 2.33 | 0.72 (MT) | 0.49 (S) | 0.80 (MT) |
HLN 07 | 11.45ab | 6.16a | 4.47 | 5.29 | 6.99 | 1.69 | 0.65 (MT) | 0.47 (S) | 0.64 (MT) |
HLN 08 | 12.42ab | 6.09 | 3.90 | 6.33 | 8.52 | 2.19 | 0.69 (MT) | 0.44 (S) | 0.55 (MT) |
HLN 09 | 10.83ab | 7.16a | 5.05 | 3.67 | 5.79 | 2.11 | 0.71 (MT) | 0.50 (MT) | 0.84 (MT) |
ADV 777 | 8.50 | 4.74 | 4.58 | 3.76 | 3.92 | 0.17 | 0.37 (S) | 0.36 (S) | 0.50 (MT) |
JH 37 | 8.90 | 6.18 | 4.73 | 2.72 | 4.17 | 1.46 | 0.50 (MT) | 0.39 (S) | 0.68 (MT) |
Mean | 10.44 | 6.57 | 4.63 | 3.87 | 5.81 | 1.94 | |||
SE | 0.49 | 0.49 | 0.49 | ||||||
LSD 5% | 1.40 | 1.40 | 1.40 | ||||||
Note: N0 = 0 kg N ha−1, N1 = 100 kg N ha−1, N2 = 200 kg N ha−1, a = better than ADV 777 by 5% LSD, b = better than JH 37 by 5% LSD, S = susceptible, MT = moderate tolerance. |
Hybrid | Mean yield (t ha−1) | bi | s2di |
HLN 01 | 6.92 | 0.51** | 0.02 |
HLN 02 | 8.18 | 1.28 | 0.59 |
HLN 03 | 7.60 | 1.43** | 1.50** |
HLN 04 | 6.75 | 0.74 | 0.12 |
HLN 05 | 7.18 | 0.86 | 0.45 |
HLN 06 | 7.67 | 1.05 | −0.20 |
HLN 07 | 7.36 | 1.23 | 0.02 |
HLN 08 | 7.47 | 1.49** | 0.03 |
HLN 09 | 7.68 | 0.99 | −0.22 |
ADV 777 | 5.94 | 0.72 | 0.60 |
JH 37 | 6.60 | 0.72 | −0.24 |
Mean | 7.21 | ||
Note: bi: regression coefficient; s2di: deviation from regression. |
Parameter | Value | Level |
Texture | ||
Clay (%) | 39 | |
Silt (%) | 46 | |
Sand (%) | 15 | |
Organic C (%) | 0.89 | Very low |
Total N (%) | 0.13 | Low |
C/N | 5.75 | Low |
Source: Soil laboratory of the Indonesian Cereal Testing Instrument Standard Institute. |
Variable | Mean square | CV (%) | |||||||
Nitrogen (N) | R/N | Hybrid (H) | H x N | Error | |||||
Plant height | 11777.50 | ** | 66.17 | 571.38 | * | 955.91 | ** | 218.47 | 7.40 |
Ear height | 3788.14 | ** | 28.78 | 242.23 | ** | 660.90 | ** | 64.87 | 7.60 |
Stalk diameter | 235.60 | ** | 8.28 | 14.78 | ** | 7.79 | ** | 2.84 | 7.00 |
Leaf angle | 344.93 | ** | 10.89 | 98.32 | ** | 14.82 | 14.84 | 15.20 | |
Leaf length | 1689.11 | ** | 34.30 | 152.66 | * | 45.52 | ** | 15.19 | 4.70 |
Leaf width | 9.12 | ** | 0.49 | 2.19 | ** | 0.33 | 0.44 | 6.80 | |
Yield | 289.03 | ** | 0.81 | 3.50 | ** | 3.56 | ** | 0.73 | 11.90 |
Note: * = significant at p < 0.05, ** = significant at p < 0.01, CV = coefficient of variation. |
Hybrid | Plant height (cm) | Ear height (cm) | Stalk diameter (mm) | Leaf length (cm) | ||||||||
N2 | N1 | N0 | N2 | N1 | N0 | N2 | N1 | N0 | N2 | N1 | N0 | |
HLN 01 | 202.27 | 199.33 | 185.40 | 94.60b | 111.73 | 111.13 | 26.60 | 22.65 (x) | 20.70 (x) | 88.67 | 87.80a | 77.13 (x) |
HLN 02 | 226.60 | 202.07 (x) | 153.60 (x) | 118.53 | 115.00 | 61.00ab (x) | 26.50 | 26.27ab | 23.40a (x) | 95.91ab | 92.20ab | 85.16a (x) |
HLN 03 | 249.93 | 202.40 (x) | 177.93 (x) | 139.67 | 111.20 (x) | 99.07 (x) | 27.07 | 25.47ab | 24.39a | 89.27 | 85.33a | 81.13 (x) |
HLN 04 | 216.27 | 208.53 | 175.07 (x) | 117.00 | 95.47b (x) | 100.27 (x) | 29.55 | 24.51ab (x) | 22.39 (x) | 82.13 | 76.53 | 66.27 (x) |
HLN 05 | 210.67 | 188.47a | 182.20 (x) | 116.00 | 95.80b (x) | 105.00 | 23.80 | 22.78 | 20.86 (x) | 90.13 | 79.67 (x) | 74.53 (x) |
HLN 06 | 243.47 | 201.20 (x) | 181.60 (x) | 131.60 | 107.20 (x) | 91.80 (x) | 26.56 | 25.13ab | 21.24 (x) | 89.40 | 86.27a | 64.20 (x) |
HLN 07 | 205.93 | 187.53a | 184.73 | 113.20 | 96.33b (x) | 100.80 | 24.61 | 22.49 | 18.44 (x) | 87.33 | 86.33a | 69.07 (x) |
HLN 08 | 242.33 | 206.07 (x) | 191.33 (x) | 128.33 | 114.47 (x) | 96.87 (x) | 27.05 | 26.10ab | 21.85 (x) | 91.33a | 89.07a | 73.13 (x) |
HLN 09 | 228.33 | 212.00 | 172.93 (x) | 123.93 | 110.67 (x) | 91.27 (x) | 24.60 | 24.34ab | 20.20 (x) | 92.20ab | 88.60a | 74.93 (x) |
ADV 777 | 214.40 | 196.67 | 176.47 (x) | 122.22 | 100.00 (x) | 89.67 (x) | 29.58 | 20.78 (x) | 20.47 (x) | 84.27 | 77.20 (x) | 78.27 |
JH 37 | 215.67 | 188.33 (x) | 166.13 (x) | 114.67 | 114.40 (x) | 80.20 | 28.77 | 21.23 (x) | 22.11 (x) | 85.20 | 83.60 | 79.33 |
Mean | 223.26 | 199.33 | 177.04 | 117.96 | 96.65 | 93.37 | 26.79 | 23.8 | 21.46 | 88.71 | 84.78 | 74.83 |
LSD 5% | 24.14 | 24.14 | 24.14 | 13.15 | 13.15 | 13.25 | 2.75 | 2.75 | 2.75 | 6.36 | 6.36 | 6.36 |
Note: N0 = 0 kg N ha−1, N1 = 100 kg N ha−1, N2 = 200 kg N ha−1; in a row, (x) = significant difference from 200 kg N ha−1 by 5% LSD; in a column, a = better than ADV 777 by 5% LSD, b = better than JH 37 by 5% LSD. |
Hybrid | Yield (t ha−1) | Yield reduction (t ha−1) | STI | ||||||
N2 | N1 | N0 | N2-N1 | N2-N0 | N1-N0 | N2-N1 | N2-N0 | N1-N0 | |
HLN 01 | 8.42 | 7.00a | 5.33 | 1.42 | 3.10 | 1.67 | 0.54 (MT) | 0.41 (S) | 0.86 (MT) |
HLN 02 | 12.05ab | 8.09ab | 4.40 | 3.96 | 7.66 | 3.70 | 0.89 (MT) | 0.49 (S) | 0.82 (MT) |
HLN 03 | 12.57ab | 5.61 | 4.60 | 6.96 | 7.97 | 1.01 | 0.65 (MT) | 0.53 (MT) | 0.60 (MT) |
HLN 04 | 8.96 | 6.76a | 4.53 | 2.20 | 4.44 | 2.24 | 0.56 (MT) | 0.37 (S) | 0.71 (MT) |
HLN 05 | 9.73 | 7.30a | 4.52 | 2.43 | 5.21 | 2.78 | 0.65 (MT) | 0.40 (S) | 0.76 (MT) |
HLN 06 | 11.02ab | 7.16a | 4.84 | 3.86 | 6.18 | 2.33 | 0.72 (MT) | 0.49 (S) | 0.80 (MT) |
HLN 07 | 11.45ab | 6.16a | 4.47 | 5.29 | 6.99 | 1.69 | 0.65 (MT) | 0.47 (S) | 0.64 (MT) |
HLN 08 | 12.42ab | 6.09 | 3.90 | 6.33 | 8.52 | 2.19 | 0.69 (MT) | 0.44 (S) | 0.55 (MT) |
HLN 09 | 10.83ab | 7.16a | 5.05 | 3.67 | 5.79 | 2.11 | 0.71 (MT) | 0.50 (MT) | 0.84 (MT) |
ADV 777 | 8.50 | 4.74 | 4.58 | 3.76 | 3.92 | 0.17 | 0.37 (S) | 0.36 (S) | 0.50 (MT) |
JH 37 | 8.90 | 6.18 | 4.73 | 2.72 | 4.17 | 1.46 | 0.50 (MT) | 0.39 (S) | 0.68 (MT) |
Mean | 10.44 | 6.57 | 4.63 | 3.87 | 5.81 | 1.94 | |||
SE | 0.49 | 0.49 | 0.49 | ||||||
LSD 5% | 1.40 | 1.40 | 1.40 | ||||||
Note: N0 = 0 kg N ha−1, N1 = 100 kg N ha−1, N2 = 200 kg N ha−1, a = better than ADV 777 by 5% LSD, b = better than JH 37 by 5% LSD, S = susceptible, MT = moderate tolerance. |
Hybrid | Mean yield (t ha−1) | bi | s2di |
HLN 01 | 6.92 | 0.51** | 0.02 |
HLN 02 | 8.18 | 1.28 | 0.59 |
HLN 03 | 7.60 | 1.43** | 1.50** |
HLN 04 | 6.75 | 0.74 | 0.12 |
HLN 05 | 7.18 | 0.86 | 0.45 |
HLN 06 | 7.67 | 1.05 | −0.20 |
HLN 07 | 7.36 | 1.23 | 0.02 |
HLN 08 | 7.47 | 1.49** | 0.03 |
HLN 09 | 7.68 | 0.99 | −0.22 |
ADV 777 | 5.94 | 0.72 | 0.60 |
JH 37 | 6.60 | 0.72 | −0.24 |
Mean | 7.21 | ||
Note: bi: regression coefficient; s2di: deviation from regression. |