Research article

Longevity risk analysis: applications to the Italian regional data

  • Received: 03 March 2022 Revised: 27 March 2022 Accepted: 28 March 2022 Published: 30 March 2022
  • JEL Codes: C02, C15, C22

  • Longevity risk is the risk that members of a given population will live longer than expected. When it occurs, pension providers may have to pay pensions for longer than expected, significantly increasing their costs. While this risk is being adequately studied using the national mortality data provided by the Human Mortality Database, relatively few studies exist that analyse sub-national data. This manuscript proposes a comparative study of some stochastic mortality models to measure the longevity risk on Italian mortality data at the regional level. In particular, the use of the Lee-Carter and Li-Lee models is explored. The models are compared in fitting quality, forecasting accuracy and complexity. Numerical experiments and applications to immediate life annuity evaluation are presented.

    Citation: Salvatore Scognamiglio. Longevity risk analysis: applications to the Italian regional data[J]. Quantitative Finance and Economics, 2022, 6(1): 138-157. doi: 10.3934/QFE.2022006

    Related Papers:

  • Longevity risk is the risk that members of a given population will live longer than expected. When it occurs, pension providers may have to pay pensions for longer than expected, significantly increasing their costs. While this risk is being adequately studied using the national mortality data provided by the Human Mortality Database, relatively few studies exist that analyse sub-national data. This manuscript proposes a comparative study of some stochastic mortality models to measure the longevity risk on Italian mortality data at the regional level. In particular, the use of the Lee-Carter and Li-Lee models is explored. The models are compared in fitting quality, forecasting accuracy and complexity. Numerical experiments and applications to immediate life annuity evaluation are presented.



    加载中


    [1] Apicella G, Dacorogna M, Di Lorenzo E, et al. (2019) Improving the forecast of longevity by combining models. N Am Actuar J 23: 298–319. https://doi.org/10.1080/10920277.2018.1556701 doi: 10.1080/10920277.2018.1556701
    [2] Booth H, Hyndman RJ, Tickle L, et al. (2006) Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions. Demogr Res 15: 298–319. https://doi.org/10.4054/DemRes.2006.15.9 doi: 10.4054/DemRes.2006.15.9
    [3] Bozzo G, Levantesi S, Menzietti M (2021) Longevity risk and economic growth in sub-populations: evidence from Italy. Decis Econ Financ 44: 101–115. https://doi.org/10.1007/s10203-020-00275-x doi: 10.1007/s10203-020-00275-x
    [4] Brouhns N, Denuit M, Vermunt JK (2002) A Poisson log-bilinear regression approach to the construction of projected lifetables. Insur Math Econ 31: 373–393. https://doi.org/10.1016/S0167-6687(02)00185-3 doi: 10.1016/S0167-6687(02)00185-3
    [5] Cairns A, Blake D, Dowd K (2006) A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration. J Risk Insur 73: 687–718. https://doi.org/10.1016/S0167-6687(02)00185-3 doi: 10.1016/S0167-6687(02)00185-3
    [6] Cairns A, Blake D, Dowd K, et al. (2009) A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. N Am Actuar J 13: 1–35. https://doi.org/10.1080/10920277.2009.10597538 doi: 10.1080/10920277.2009.10597538
    [7] Chen H, MacMinn R, Sun T (2015) Multi-population mortality models: A factor copula approach. Insur Math Econ 63: 135–146. https://doi.org/10.1016/j.insmatheco.2015.03.022 doi: 10.1016/j.insmatheco.2015.03.022
    [8] Chen RY, Millossovich P (2018) Sex-specific mortality forecasting for UK countries: a coherent approach. Eur Actuar J 8: 69–95. https://doi.org/10.1007/s13385-017-0164-0 doi: 10.1007/s13385-017-0164-0
    [9] Currie ID (2013) Smoothing constrained generalized linear models with an application to the Lee-Carter model. Stat Model 13: 69–93. https://doi.org/10.1177/1471082X12471373 doi: 10.1177/1471082X12471373
    [10] Currie ID, Durban M, Eilers PHC (2018) Smoothing and forecasting mortality rates. Stat Model 4: 279–298. https://doi.org/10.1191/1471082X04st080oa doi: 10.1191/1471082X04st080oa
    [11] Danesi IL, Haberman S, Millossovich P (2018) Forecasting mortality in subpopulations using Lee–Carter type models: A comparison. Insur Math Econ 62: 151–161. https://doi.org/10.1016/j.insmatheco.2015.03.010 doi: 10.1016/j.insmatheco.2015.03.010
    [12] Delwarde A, Denuit M, Eilers P (2007) Smoothing the Lee–Carter and Poisson log-bilinear models for mortality forecasting: a penalized log-likelihood approach. J Popul Res 7: 29–48. https://doi.org/10.1177/1471082X0600700103 doi: 10.1177/1471082X0600700103
    [13] De Waegenaere A, Melenberg B, Stevens R (2010) Longevity risk. De Econ 158: 151–192. https://doi.org/10.1007/s10645-010-9143-4 doi: 10.1007/s10645-010-9143-4
    [14] Enchev V, Kleinow T, Cairns A (2017) Multi-population mortality models: fitting, forecasting and comparisons. Scand Actuar J 4: 319–342. https://doi.org/10.1080/03461238.2015.1133450 doi: 10.1080/03461238.2015.1133450
    [15] Franzini L, Giannoni M (2010) Determinants of health disparities between Italian regions. BMC Public Health 10: 1–10. https://doi.org/10.1186/1471-2458-10-296 doi: 10.1186/1471-2458-10-296
    [16] Gao G, Shi Y (2021). Age-coherent extensions of the Lee–Carter model. Scand Actuar J 10: 998–1016. https://doi.org/10.1080/03461238.2021.1918578 doi: 10.1080/03461238.2021.1918578
    [17] Hainaut D, Denuit M (2020) Wavelet-based feature extraction for mortality projection. ASTIN B J IAA 50: 675–707. https://doi.org/10.1017/asb.2020.18 doi: 10.1017/asb.2020.18
    [18] Hyndman RJ, Ullah MS (2007) Robust forecasting of mortality and fertility rates: A functional data approach. Comput Stat & Data Anal 51: 4942–4956. https://doi.org/10.1016/j.csda.2006.07.028 doi: 10.1016/j.csda.2006.07.028
    [19] Hyndman R, Booth H, Yasmeen F (2017) Coherent mortality forecasting: the product-ratio method with functional time series models. Demography 50: 261–283. https://doi.org/10.1007/s13524-012-0145-5 doi: 10.1007/s13524-012-0145-5
    [20] Kleinow T (2015) A common age effect model for the mortality of multiple populations. Insur Math Econ 63: 147–152. https://doi.org/10.1007/s13524-012-0145-5 doi: 10.1007/s13524-012-0145-5
    [21] Lee RD, Carter LR (1992) Modeling and forecasting US mortality. J Am Stat Assoc 87: 659–671. https://doi.org/10.1080/01621459.1992.10475265 doi: 10.1080/01621459.1992.10475265
    [22] Li N, Lee R (2005) Coherent mortality forecasts for a group of populations: An extension of the Lee-Carter method. Demography 42: 575–594. https://doi.org/10.1353/dem.2005.0021 doi: 10.1353/dem.2005.0021
    [23] Li J (2013) A Poisson common factor model for projecting mortality and life expectancy jointly for females and males. Popul Stud 67: 111–126. https://doi.org/10.1080/00324728.2012.689316 doi: 10.1080/00324728.2012.689316
    [24] Nigri A, Levantesi S, Marino M, et al. (2019) A deep learning integrated Lee–Carter model. Risks 7: 33. https://doi.org/10.3390/risks7010033 doi: 10.3390/risks7010033
    [25] Perla F, Richman R, Scognamiglio S, et al. (2021) Time-series forecasting of mortality rates using deep learning. Scand Actuar J 2021: 1–27. https://doi.org/10.1080/03461238.2020.1867232 doi: 10.1080/03461238.2020.1867232
    [26] Renshaw A, Haberman S (2003) Lee–Carter mortality forecasting with age-specific enhancement. Insur Math Econ 33: 255–272. https://doi.org/10.1016/S0167-6687(03)00138-0 doi: 10.1016/S0167-6687(03)00138-0
    [27] Renshaw A, Haberman S (2006) A cohort-based extension to the Lee–Carter model for mortality reduction factors. Insur Math Econ 38: 556–570. https://doi.org/10.1016/j.insmatheco.2005.12.001 doi: 10.1016/j.insmatheco.2005.12.001
    [28] Richman R, Wüthrich MV (2021) A neural network extension of the Lee–Carter model to multiple populations. Ann Actuar Sci 15: 346–366. https://doi.org/10.1017/S1748499519000071 doi: 10.1017/S1748499519000071
    [29] Schnürch S, Kleinow T, Korn R (2021) Clustering-Based Extensions of the Common Age Effect Multi-Population Mortality Model. Risks 9: 45. https://doi.org/10.3390/risks9030045 doi: 10.3390/risks9030045
    [30] Shang HL, Yang Y (2021) Forecasting Australian subnational age-specific mortality rates. J Popul Res 38: 1–24. https://doi.org/10.1007/s12546-020-09250-0 doi: 10.1007/s12546-020-09250-0
    [31] Wilmoth JR and Shkolnikov V (2021) University of California, Berkeley (US), and Max Planck Institute for Demographic Research (Germany).
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1731) PDF downloads(146) Cited by(1)

Article outline

Figures and Tables

Figures(10)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog