Loading [MathJax]/jax/output/SVG/jax.js
Research article

Affected albumin endocytosis as a new neurotoxicity mechanism of amyloid beta

  • Received: 30 July 2020 Accepted: 17 September 2020 Published: 23 September 2020
  • Senile plaques, a hallmark of Alzheimer's disease, are composed by Amyloid-Beta (Aβ). Aβ 25-35 toxicity is caused mainly by increasing reactive oxygen species (ROS), which is reversed by albumin preventing Aβ internalization. In addition, key cellular processes and basic cell functions require of endocytosis, particularly relevant in neurons. To understand the protective effect of albumin and the toxicity mechanism of Aβ, the need of albumin uptake for neurons protection as well as the possible influence of Aβ on albumin endocytosis were investigated. With this aim the influence of lectin from soybeans (LEC), which prevents albumin endocytosis, on the effects of Aβ 25-35 on cellular morphology and viability, ROS generation and Aβ uptake with and without albumin in neurons in primary culture was investigated. Influence of Aβ on albumin endocytosis was studied using FITC-labelled albumin. LEC did not modify Aβ effects with or without albumin on neuronal morphology, but increased cell viability. LEC increased ROS generation with and without Aβ in the same magnitude. Diminished Aβ internalization observed with albumin was not affected by LEC. In presence of Aβ albumin is internalized, but endosomes did not deliver their cargo to the lysosomes for degradation. It is concluded that formation of Aβ-albumin complex does not require of albumin internalization, thus is extracellular. Aβ affects albumin endocytosis preventing late endosomes and lysosomes degradation, probably caused by changes in albumin structure or deregulation in vesicular transport. Considering the consequences such as its osmotic effects, the inability to exert its antioxidant properties, its effects on neuronal plasticity and excitability albumin affected endocytosis induced by Aβ is proposed as a new physiopathology mechanism in AD. It is hypothesized that there is critical intraneuronal level above which albumin becomes toxic.

    Citation: Lourdes A. Vega Rasgado, Arantxa Tabernero Urbieta, José María Medina Jiménez. Affected albumin endocytosis as a new neurotoxicity mechanism of amyloid beta[J]. AIMS Neuroscience, 2020, 7(3): 344-359. doi: 10.3934/Neuroscience.2020021

    Related Papers:

    [1] Kangqun Zhang . Existence and uniqueness of positive solution of a nonlinear differential equation with higher order Erdélyi-Kober operators. AIMS Mathematics, 2024, 9(1): 1358-1372. doi: 10.3934/math.2024067
    [2] Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas . On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions. AIMS Mathematics, 2022, 7(7): 12718-12741. doi: 10.3934/math.2022704
    [3] Hasanen A. Hammad, Hassen Aydi, Maryam G. Alshehri . Solving hybrid functional-fractional equations originating in biological population dynamics with an effect on infectious diseases. AIMS Mathematics, 2024, 9(6): 14574-14593. doi: 10.3934/math.2024709
    [4] Mohamed Jleli, Bessem Samet . Nonexistence for fractional differential inequalities and systems in the sense of Erdélyi-Kober. AIMS Mathematics, 2024, 9(8): 21686-21702. doi: 10.3934/math.20241055
    [5] Min Jiang, Rengang Huang . Existence of solutions for q-fractional differential equations with nonlocal Erdélyi-Kober q-fractional integral condition. AIMS Mathematics, 2020, 5(6): 6537-6551. doi: 10.3934/math.2020421
    [6] M. Manigandan, Subramanian Muthaiah, T. Nandhagopal, R. Vadivel, B. Unyong, N. Gunasekaran . Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order. AIMS Mathematics, 2022, 7(1): 723-755. doi: 10.3934/math.2022045
    [7] Miao Yang, Lizhen Wang . Lie symmetry group, exact solutions and conservation laws for multi-term time fractional differential equations. AIMS Mathematics, 2023, 8(12): 30038-30058. doi: 10.3934/math.20231536
    [8] Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad . Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions. AIMS Mathematics, 2022, 7(5): 8314-8329. doi: 10.3934/math.2022463
    [9] XuRan Hai, ShuHong Wang . Hermite-Hadamard type inequalities based on the Erdélyi-Kober fractional integrals. AIMS Mathematics, 2021, 6(10): 11494-11507. doi: 10.3934/math.2021666
    [10] Wei Fan, Kangqun Zhang . Local well-posedness results for the nonlinear fractional diffusion equation involving a Erdélyi-Kober operator. AIMS Mathematics, 2024, 9(9): 25494-25512. doi: 10.3934/math.20241245
  • Senile plaques, a hallmark of Alzheimer's disease, are composed by Amyloid-Beta (Aβ). Aβ 25-35 toxicity is caused mainly by increasing reactive oxygen species (ROS), which is reversed by albumin preventing Aβ internalization. In addition, key cellular processes and basic cell functions require of endocytosis, particularly relevant in neurons. To understand the protective effect of albumin and the toxicity mechanism of Aβ, the need of albumin uptake for neurons protection as well as the possible influence of Aβ on albumin endocytosis were investigated. With this aim the influence of lectin from soybeans (LEC), which prevents albumin endocytosis, on the effects of Aβ 25-35 on cellular morphology and viability, ROS generation and Aβ uptake with and without albumin in neurons in primary culture was investigated. Influence of Aβ on albumin endocytosis was studied using FITC-labelled albumin. LEC did not modify Aβ effects with or without albumin on neuronal morphology, but increased cell viability. LEC increased ROS generation with and without Aβ in the same magnitude. Diminished Aβ internalization observed with albumin was not affected by LEC. In presence of Aβ albumin is internalized, but endosomes did not deliver their cargo to the lysosomes for degradation. It is concluded that formation of Aβ-albumin complex does not require of albumin internalization, thus is extracellular. Aβ affects albumin endocytosis preventing late endosomes and lysosomes degradation, probably caused by changes in albumin structure or deregulation in vesicular transport. Considering the consequences such as its osmotic effects, the inability to exert its antioxidant properties, its effects on neuronal plasticity and excitability albumin affected endocytosis induced by Aβ is proposed as a new physiopathology mechanism in AD. It is hypothesized that there is critical intraneuronal level above which albumin becomes toxic.


    The Schrödinger-Virasoro algebra is an infinite-dimensional Lie algebra that was introduced (see, e.g., [10]) in the context of non-equilibrium statistical physics. In [21], the author give a representation of the Schrödinger-Virasoro algebra by using vertex algebras, and introduced an extension of the Schrödinger-Virasoro algebra. To be precise, for ε{0,12}, the Schrödinger-Virasoro algebra SV(ε) is a Lie algebra with the C basis

    {Li,Hj,Ii|iZ,jε+Z}

    and Lie brackets

    [Lm,Ln]=(mn)Lm+n,[Lm,Hn]=(12mn)Hm+n,[Lm,In]=nIm+n,[Hm,Hn]=(mn)Im+n,[Hm,In]=[Im,In]=0.

    The Lie algebra SV(12) is called the original Schrödinger-Virasoro algebra, and SV(0) is called the twisted Schrödinger-Virasoro algebra. Recently, the theory of the structure and representations of both original and twisted Schrödinger-Virasoro algebra has been investigated in a series of studies. For instance, the Lie bialgebra structures, (bi)derivations, automorphisms, 2-cocycles, vertex algebra representations and Whittaker modules were investigated in [9,11,14,15,21].

    Post-Lie algebras were introduced around 2007 by B. Vallette [22], who found the structure in a purely operadic manner as the Koszul dual of a commutative trialgebra. Post-Lie algebras have arose the interest of a great many authors, see [4,5,12,13]. One of the most important problems in the study of post-Lie algebras is to find the post-Lie algebra structures on the (given) Lie algebras. In [13,18,20], the authors determined all post-Lie algebra structures on sl(2,C) of special linear Lie algebra of order 2, the Witt algebra and the W-algebra W(2,2) respectively.

    In this paper, we shall study the graded post-Lie algebra structures on the Schrödinger-Virasoro algebra. We only study the twisted Schrödinger-Virasoro algebra SV(0), the case for the original Schrödinger-Virasoro algebra SV(12) is similar. For convenience we denote S=SV(0). It should be noted that the commutative post-Lie algebra structures on S already are given by [11], we will consider the general case.

    Throughout this paper, we denote by Z the set of all integers. For a subset S of Z and a fixed integer k, denote S=S{0}, S>k={tS|t>k}, S<k={tS|t<k}, Sk={tS|tk} and Sk={tS|tk}. We assume that the field in this paper always is the complex number field C.

    The paper is organized as follows. In Section 2, we give general results on post-Lie algebras and some lemmas which will be used to our proof. In Section 3, we completely characterize the graded post-Lie algebra structures on Schrödinger-Virasoro algebra S. In Section 4, by using the post-Lie algebra structures we characterize the forms of the homogeneous Rota-Baxter operator on S.

    We will give the essential definitions and results as follows.

    Definition 2.1. A post-Lie algebra (V,,[,]) is a vector space V over a field k equipped with two k-bilinear products xy and [x,y] satisfying that (V,[,]) is a Lie algebra and

    [x,y]z=x(yz)y(xz)x,yz, (1)
    x[y,z]=[xy,z]+[y,xz] (2)

    for all x,yV, where x,y=xyyx. We also say that (V,,[,]) is a post-Lie algebra structure on the Lie algebra (V,[,]). If a post-Lie algebra (V,,[,]) satisfies xy=yx for all x,yV, then it is called a commutative post-Lie algebra.

    Suppose that (L,[,]) is a Lie algebra. Two post-Lie algebras (L,[,],1) and (L,[,],2) on the Lie algebra L are called to the isomorphic if there is an automorphism τ of the Lie algebra (L,[,]) satisfies

    τ(x1y)=τ(x)2τ(y),x,yL.

    Remark 1. The left multiplications of the post-Lie algebra (V,[,],) are denoted by L, i.e., we have L(x)(y)=xy for all x,yV. By (2), we see that all operator L(x) are Lie algebra derivations of the Lie algebra (V, [, ]).

    Lemma 2.2. [15] Denote by Der(S) and by Inn(S) the space of derivations and the space of inner derivations of S respectively. Then

    Der(S)=Inn(S)CD1CD2CD3

    where D1,D2,D3 are outer derivations defined by

    D1(Ln)=0,D1(Hn)=Hn,D1(In)=2In,D2(Ln)=nIn,D2(Hn)=0,D2(In)=0,D3(Ln)=In,D3(Hn)=0,D3(In)=0.

    Since the Schrödinger-Virasoro algebra S is graded, we suppose that the post-Lie algebra structure on the Schrödinger-Virasoro algebra S to be graded. Namely, we mainly consider the post-Lie algebra structure on Schrödinger-Virasoro algebra S which satisfies

    LmLn=ϕ(m,n)Lm+n, (3)
    LmHn=φ(m,n)Hm+n, (4)
    LmIn=χ(m,n)Im+n, (5)
    HmLn=ψ(m,n)Hm+n, (6)
    HmHn=ξ(m,n)Im+n, (7)
    ImLn=θ(m,n)Im+n, (8)
    HmIn=ImHn=ImIn=0, (9)

    for all m,nZ, where ϕ, φ, χ, ψ, ξ, θ are complex-valued functions on Z×Z.

    We start with the crucial lemma.

    Lemma 3.1. There exists a graded post-Lie algebra structure on S satisfying (3)-(9) if and only if there are complex-valued functions f,g,h on Z and complex numbers a,μ such that

    ϕ(m,n)=(mn)f(m), (10)
    φ(m,n)=(m2n)f(m)+δm,0μ, (11)
    χ(m,n)=nf(m)+2δm,0μ, (12)
    ψ(m,n)=(n2m)h(m), (13)
    ξ(m,n)=(mn)h(m), (14)
    θ(m,n)=mg(m)+δm,0na, (15)
    (mn)(f(m+n)(1+f(m)+f(n))f(n)f(m))=0, (16)
    (mn)δm+n,0μ(1+f(m)+f(n))=0, (17)
    (m2n)(h(m+n)(1+f(m)+h(n))f(m)h(n))=0, (18)
    nδm+n,0a(1+f(m)+g(n))=0, (19)
    n(m+n)(g(m+n)(1+f(m)+g(n))f(m)g(n))    =δn,0m2a(f(m)g(m)), (20)
    (mn)δm+n,0a(1+h(m)+h(n))=0, (21)
    (mn)(g(m+n)(1+h(m)+h(n))h(m)h(n))=0. (22)

    Proof. Suppose that there exists a graded post-Lie algebra structure satisfying (3)-(9) on S. By Remark 1, L(x) is a derivation of S. It follows by Lemma 2.2 that there are a linear map ψ from S into itself and linear functions α,β,γ on S such that

    xy=(adψ(x)+α(x)D1+β(x)D2+γ(x)D3)(y)=[ψ(x),y]+α(x)D1(y)+β(x)D2(y)+γ(x)D3(y)

    where Di,i=1,2,3 are given by Lemma 2.2. This, together with (3)-(9), gives that

    LmLn=[ψ(Lm),Ln]+β(Lm)nIn+γ(Lm)In=ϕ(m,n)Lm+n, (23)
    LmHn=[ψ(Lm),Hn]+α(Lm)Hn=φ(m,n)Hm+n, (24)
    LmIn=[ψ(Lm),In]+α(Lm)2In=χ(m,n)Im+n, (25)
    HmLn=[ψ(Hm),Ln]+β(Hm)nIn+γ(Hm)In=ψ(m,n)Hm+n, (26)
    HmHn=[ψ(Hm),Hn]+α(Hm)Hn=ξ(m,n)Im+n, (27)
    HmIn=[ψ(Hm),In]+α(Hm)2In=0, (28)
    ImLn=[ψ(Im),Ln]+β(Im)nIn+γ(Im)In=θ(m,n)Im+n, (29)
    ImHn=[ψ(Im),Hn]+α(Im)Hn=0, (30)
    ImIn=[ψ(Im),In]+α(Im)2In=0. (31)

    Let

    ψ(Lm)=iZa(m)iLi+iZb(m)iHi+iZc(m)iIi,ψ(Hm)=iZd(m)iLi+iZe(m)iHi+iZf(m)iIi,ψ(Im)=iZg(m)iLi+iZh(m)iHi+iZx(m)iIi

    where a(m)i,b(m)i,c(m)i,d(m)i,e(m)i,f(m)i,g(m)i,h(m)i,x(m)iC for all iZ. Then by (23)-(31), similar to the proof of [18], we obtain that (10)-(22) hold.

    The "if'' part is a direct checking. The proof is completed.

    Lemma 3.2. Let f,g,h be complex-valued functions on Z and μ,aC satisfying (18) and (20). Then we have

    g(n),h(n){0,1}for everyn0. (32)

    Proof. By letting m=0 in (18) and (20), respectively, we have nh(n)(1+h(n))=0 and n2g(n)(1+g(n))=0. This implies (32).

    Lemma 3.3. Let f,g,h be complex-valued functions on Z and μ,a be complex numbers satisfying (17)-(22). If f(Z)=0, then we have μ=a=0 and

    g(Z)=h(Z)=0org(Z)=h(Z)=1.

    Proof. Since f(Z)=0, we take m=n=1 in (17) and (19) we have μ=0 and

    a(1+g(1))=0. (33)

    By letting n=0 and m=1 in (20) we deduce that ag(1)=0. This, together with (33), implies a=0. As μ=a=0, so Equations (18), (20) and (22) become to

    (m2n)(h(m+n)(1+h(n))=0, (34)
    n(m+n)(g(m+n)(1+g(n))=0, (35)
    (mn)(g(m+n)h(m)h(n)+h(m)g(m+n)+h(n)g(m+n))=0. (36)

    We now prove the following four claims:

    Claim 1. If h(1)=0, then h(Z)=0.

    By (34) with n=1 we see that h(m+1)=0 for all m2. It follows that h(Z{3})=0. Since h(2)=0, by taking n=2,m=1 in (34) we have 32h(3)=0, which implies h(3)=0. We obtain h(Z)=0.

    Claim 2. If h(1)=1, then h(Z)=1.

    By (34) with m+n=1 we see that h(n)=1 for all nZ with 13n20. This means that h(Z)=1.

    Claim 3. If g(1)=0, then g(Z)=0.

    By (35) with n=1 we see that g(m+1)=0 for all m1. It follows that g(Z)=0.

    Claim 4. If g(1)=1, then g(Z)=1.

    By (35) with m+n=1 we see that g(n)=1 for all n0. This means that g(Z)=1.

    Now we consider the values of h(1) and g(1) according to (32).

    Case i. If h(1)=g(1)=0, then by Claims 1 and 3 we have h(Z)=0 and g(Z)=0. According to (36) with n=1 and m=1 we know g(0)=0. This means that g(Z)=0.

    Case ii. If h(1)=g(1)=1, then by Claims 2 and 4 we have h(Z)=1 and g(Z)=1. According to (36) with n=1 and m=1 we see that 1+g(0)=0 and so that g(0)=1. This implies g(Z)=1.

    Case iii. If h(1)=0, g(1)=1, then we will get a contradiction. In fact, by Claims 1 and 4, we have h(Z)=0 and g(Z)=1. From (36) with m=2,n=1 we see that g(1)=0 which contradicts g(1)=1.

    Case iv. If h(1)=1, g(1)=0, then we will also get a contradiction. In fact, by Claims 2 and 3, we have h(Z)=1 and g(Z)=0. From (36) with with m=2, n=1 we see that g(1)=1 which contradicts g(1)=0. The proof is completed.

    Lemma 3.4. Let f,g,h be complex-valued functions on Z and μ,a be complex numbers satisfying (17)-(22). If f(Z2)=1,f(Z1)=0, then μ=a=0 and g, h must satisfy one of the following forms:

    (i) g(Z)=h(Z)=0;

    (ii) g(Z)=h(Z)=1;

    (iii) h(Z0)=0, h(Z1)=1 and

    g(Z1)=0, g(Z1)=1, g(0)=ˆλ for some ˆλC.

    Proof. By f(Z2)=1,f(Z1)=0, similar to the proof of Lemma 3.3, we know μ=a=0. From this, we have by (18), (20) and (22) that

    h(m+n)(h(n)+1)=0 if m1,m2n0, (37)
    g(m+n)(g(n)+1)=0 if m1,n0,m+n0, (38)
    g(m+n)(1+h(m)+h(n))=h(m)h(n) if mn. (39)

    We first prove the following six claims:

    Claim 1. If h(1)=0, then h(Z)=0.

    By (37) with n=1 we see that h(m+1)=0 for all m210 with m1. Hence, we deduce that h(Z2)=0. Note that h(2)=0, by (37) with n=2 we see that h(m+2)=0 for all m220 with m1. We now have h(Z3)=0. If we repeat this process, we see that h(Zk)=0 for all k=1,2,3,. Note that k1(Zk)=Z, so one has h(Z)=0.

    Claim 2. If h(1)=1, then h(Z)=1.

    By (37) with m+n=1 we see that h(n)=h(1m)=1 for all 3m2+10 with m1. This deduces that h(Z2)=1. Note that h(2)=1, by (37) with m+n=2 we see that h(m2)=1 for all 3m2+20 with m1. Thus, h(Z3)=1. If we repeat this process, we see that h(Zk)=1 for all k=1,2,3,. Note that k1(Zk)=Z, so one has h(Z)=1.

    Claim 3. If h(1)=1, then h(Z1)=1.

    By (37) with m+n=1 we see that h(n)=h(1m)=1 for all 3m210 with m1. This implies h(Z1)=1.

    Claim 4. If h(1)=0, then h(Z0)=0.

    By (37) with n=1 we see that h(m1)=0 for all m2 with m1. It follows that h(Z0{3})=0. Let m=1,n=2 in (37), from m2n we have h(3)=0. Therefore, we get h(Z0)=0.

    Next, similar to Claims 1 and 3, we from (38) obtain the following claims.

    Claim 5. If g(1)=0, then g(Z)=0.

    Claim 6. If g(1)=1, then g(Z1)=1.

    Now we discuss the values of h(1) and h(1). By (32), h(1),h(1){1,0}.

    Case i. When h(1)=0.

    By Claim 1 we have h(Z)=0. According to (39), one has g(m+n)=0 for any m,nZ with mn. This implies g(Z)=0.

    Case ii. When h(1)=1.

    By Claim 2 we have h(Z)=1. According to (39), one has g(m+n)=1 for any m,nZ with mn. This implies g(Z)=1.

    Case iii. When h(1)=1 and h(1)=0.

    By Claims 3 and 4 we have h(Z0)=0 and h(Z1)=1. This, together with (39), yields g(m+n)=0 for any m,nZ with m,n0 and mn, and g(m+n)=1 for any m,nZ with m,n1 and mn. Consequently, we obtain g(Z1)=0 and g(Z3)=1. By (32), g(1){1,0}. If g(1)=0, then Claim 5 tells us that g(Z)=0 which contracts g(Z3)=1. Therefore, we have g(1)=1. From this with Claim 6 we have g(Z1)=1. Let g(0)=ˆλ for some ˆλC.

    It is easy to check that the values of g given in Cases i-iii above are consistent with (38). They give the conclusions (i), (ii) and (iii) respectively. The proof is completed.

    Lemma 3.5. Let f,g,h be complex-valued functions on Z and μ,a be complex numbers satisfying (17)-(22). If f(Z>0)=1,f(Z<0)=0 and f(0)=c for some cC, then there are λ,ˆτC such that μ,a, g, h must be one of the following forms:

    (i) a=0, μC and g(Z)=h(Z)=0;

    (ii) a=0, μC and g(Z)=h(Z)=1;

    (iii) μC, h(Z>0)=1, h(Z<0)=0, h(0)=λ and g(Zk)=1, g(Zk1)=0

    for some k{2,1,1,2,3}, g(0)=ˆτ and a=0 when k1;

    (iv) a=0, μC and h(Zt)=1, h(Zt1)=0 for some tZ{0,1} and

    g(Zs)=1, g(Zs1)=0 for some s{2t2,2t1,2t,2t+1,2t+2}.

    Proof. Take m=n0 in (18)-(22), one has

    h(0)(1+f(n)+h(n))=f(n)h(n), for all n0, (40)
    a(1+f(n)+g(n))=0, for all n0, (41)
    a(1+h(n)+h(n))=0, for all n0, (42)
    g(0)(1+h(n)+h(n))=h(n)h(n), for all n0. (43)

    Note that f(Z>0)=1,f(Z<0)=0 and f(0)=c for some cC. It is follows by (18), (20) and (22) that

    h(n)(h(m+n)+1)=0 for all m>0,m2n0; (44)
    h(m+n)(h(n)+1)=0 for all m<0,m2n0; (45)
    g(n)(g(m+n)+1)=0 for all m>0,n0,m+n0; (46)
    g(m+n)(g(n)+1)=0 for all m<0,n0,m+n0; (47)
    g(m+n)(1+h(m)+h(n))=h(m)h(n) for all mn. (48)

    For any tZ, we first prove some claims as follows.

    Claim 1. If h(t)=0, then h(Zt)=0.

    In fact, by (44) with n=tm we deduce h(tm)=0 for all m>0 with m23t. This implies h(Zt{13t})=0. On the other hand, by (45) with n=t we see that h(m+t)=0 for all m<0 with m2t. This gives that h(Zt{3t})=0. Clearly, 3t13t since t0. Thereby, we obtain h(Zt)=0.

    Claim 2. If h(t)=1, then h(Zt)=1.

    This proof is similar to Claim 1 by using (44) and (45). Also, similar to Claims 1 and 2, by (46) and (47) we can obtain the following two claims:

    Claim 3. If g(t)=0, then g(Zt)=0.

    Claim 4. If g(t)=1, then g(Zt)=1.

    According to (32), by Claims 1 and 2, h must be one of the following forms:

    (1) h(Z)=0;

    (2) h(Z)=1;

    (3) h(Z>0)=1, h(Z<0)=0 and h(0)=λ for some λC;

    (4) h(Zt)=1, h(Zt1)=0 for some tZ{0,1}.

    In view of the above result, the next proof will be divided into the following cases.

    Case i. When h(Z)=0.

    By taking n=1 in (40), one has h(0)=0. Hence we see that h(Z)=0. This together with (48) yields g(Z)=0. In addition, we have by (43) that a=0.

    Case ii. When h(Z)=1.

    By taking n=1 in (40), one has h(0)=1. Hence we see that h(Z)=1. This together with (48) yields g(Z)=1. In addition, by (43) we get a=0.

    Case iii. When h(Z>0)=1, h(Z<0)=0 and h(0)=λ for some λC.

    By (48) we see that g(m+n)=1 for any m,nZ with m,n>0 and mn, and g(m+n)=0 for any m,nZ with m,n<0 and mn. Consequently, we obtain g(Z3)=0 and g(Z3)=1. By (32), g(i){1,0} for i{2,1,1,2}. In view of Claims 3 and 4, we can assume that g(k)=1 and g(k1)=0 for some k{2,1,1,2,3}. In all, by Claims 3 and 4 we get g(Zk)=1 and g(Zk1)=0. Next, if k{1,2} then by taking n=k in (41) we have a=0; and if k{2,3} then by taking n=k1 in (41) we also have a=0. But a can be arbitrary if k=1.

    Case iv. When h(Zt)=1, h(Zt1)=0 for some tZ{0,1}.

    Note that t2 or t1, then by taking n=1 in (42) we have a=0. Next, by(48) we see that g(m+n)=1 for any m,nZ with m,nt and mn, and g(m+n)=0 for any m,nZ with m,nt1 and mn. Consequently, we obtain g(Z2t3)=0 and g(Z2t+1)=1. By (32), g(i){1,0} for i{2t2,2t1,2t,2t+1}. In view of Claims 3 and 4, we can assume that g(s)=1 and g(s1)=0 for some s{2t2,2t1,2t,2t+1,2t+2}. Note that 0{2t2,2t1,2t,2t+1} since t0,1, by Claims 3 and 4 we get g(Zs)=1 and g(Zs1)=0. The proof is completed.

    Lemma 3.6. Let f,g,h be complex-valued functions on Z and μ,a be complex numbers. Then (17)-(22) hold if and only if f,g,h,a,μ meet one of the situations listed in Table 2.

    Table 2.  Values of f,g,h satisfying (16)-(22), where a,μC, k{2,1,1,2,3}, tZ{0,1} and s{2t2,2t1,2t,2t+1,2t+2}.
    Cases f(n) from Table 1 a, μ h(n),g(n)
    WP11 P1 a=μ=0 h(Z)=g(Z)=0
    WP12 P1 a=μ=0 h(Z)=g(Z)=1
    WP21 P2 a=μ=0 h(Z)=g(Z)=0
    WP22 P2 a=μ=0 h(Z)=g(Z)=1
    WPc31,μ Pc3 a=0 and μ h(Z)=g(Z)=0
    WPc32,μ Pc3 a=0 and μ h(Z)=g(Z)=1
    WPc3,k3,μ Pc3 a=0 and μ h(Z>0)=1, h(Z<0)=0 and
    g(Zk)=1, g(Zk1)=0
    WPc3,k=14,a,μ Pc3 a and μ h(Z>0)=1, h(Z<0)=0 and
    g(Z>0)=1, g(Z<0)=0
    WPc3,s,t5,μ Pc3 a=0 and μ h(Zt)=1, h(Zt1)=0 and
    g(Zs)=1, g(Zs1)=0
    WPc41,μ Pc4 a=0 and μ h(Z)=g(Z)=0
    WPc42,μ Pc4 a=0 and μ h(Z)=g(Z)=1
    WPc4,k3,μ Pc4 a=0 and μ h(Z>0)=0, h(Z<0)=1 and
    g(Zk)=0, g(Zk1)=1
    WPc4,k=14,a,μ Pc4 a and μ h(Z>0)=0, h(Z<0)=1 and
    g(Z>0)=0, g(Z<0)=1
    WPc4,s,t5,μ Pc4 a=0 and μ h(Zt)=0, h(Zt1)=1 and
    g(Zs)=0, g(Zs1)=1
    WP51 P5 a=μ=0 h(Z)=g(Z)=0
    WP52 P5 a=μ=0 h(Z)=g(Z)=1
    WP53 P5 a=μ=0 h(Z0)=0, h(Z1)=1 and
    g(Z1)=0, g(Z1)=1
    WP61 P6 a=μ=0 h(Z)=g(Z)=0
    WP62 P6 a=μ=0 h(Z)=g(Z)=1
    WP63 P6 a=μ=0 h(Z0)=1, h(Z1)=0 and
    g(Z1)=1, g(Z1)=0
    WP71 P7 a=μ=0 h(Z)=g(Z)=0
    WP72 P7 a=μ=0 h(Z)=g(Z)=1
    WP73 P7 a=μ=0 h(Z0)=1, h(Z1)=0 and
    g(Z1)=1, g(Z1)=0
    WP81 P8 a=μ=0 h(Z)=g(Z)=0
    WP82 P8 a=μ=0 h(Z)=g(Z)=1
    WP83 P8 a=μ=0 h(Z0)=0, h(Z1)=1 and
    g(Z1)=0, g(Z1)=1

     | Show Table
    DownLoad: CSV

    Proof. The proof of the "if" direction can be directly verified. We now prove the "only if" direction. In view of f satisfying (16), by Theorem 2.4 of [10] we know that f is determined by Table 1.

    Table 1.  Values of f satisfying (16), where cC.
    Cases f(n)
    P1 f(Z)=0
    P2 f(Z)=1
    Pc3 f(Z>0)=1,f(Z<0)=0andf(0)=c
    Pc4 f(Z>0)=0,f(Z<0)=1andf(0)=c
    P5 f(Z2)=1andf(Z1)=0
    P6 f(Z2)=0andf(Z1)=1
    P7 f(Z1)=0andf(Z2)=1
    P8 f(Z1)=1andf(Z2)=0

     | Show Table
    DownLoad: CSV

    When f takes the form of Case P1 in Table 1, by the results of Lemma 3.3, we see that μ,a,g,h must satisfy the condition of Cases WP11 and WP12 in Table 2. From Lemma 3.3, Cases WP11,i=1,2 is easy to say. In the same way, when f takes the form of Case P2 in Table 1, then we obtain the forms of Cases WP21 and WP22 in Table 2.

    When f takes the form of Case Pc3 in Table 1, by the results of Lemma 3.5, we see that μ,a,g,h must satisfy the one condition of Cases WPc3i,μ,i=1,2, WPc3,k3,μ, WPc3,k=14,a,μ and WPc3,s,t5,μ in Table 2. From Lemma 3.5, the results of Cases WPc3i,μ,i=1,2 are easily obtained; and Case WPc3,k3,μ satisfies μC, h(Z>0)=1, h(Z<0)=0, h(0)=λ and g(Zk)=1, g(Zk1)=0, for some k{2,1,1,2,3}, g(0)=ˆτ with a=0 when k1 and a is arbitrary if k=1; Case WPc3,k=14,a,μ satisfies μC, h(Z>0)=1, h(Z<0)=0, h(0)=λ and g(Z>0)=1, g(Z<0)=0 for some k=1, g(0)=ˆτ; Case WPc3,s,t5,μ satisfies a=0, μC and h(Zt)=1, h(Zt1)=0 for some tZ{0,1} and g(Zs)=1, g(Zs1)=0 for some s{2t2,2t1,2t,2t+1,2t+2}. In the same way, when f takes the form of Case Pc4 in Table 1, then we obtain the results of Cases WPc4i,μ,i=1,2, WPc4,k3,μ, WPc4,k=14,a,μ and WPc4,s,t5,μ in Table 2, respectively.

    When f takes the form of Case P5 in Table 1, by the results of Lemma 3.4, we see that μ,a,g,h must satisfy the condition of Cases WP5i,i=1,2,3 in Table 2. From Lemma 3.4, the results of Cases WP5i,i=1,2, are easily obtained; and for Case WP53, we get h(Z0)=0, h(Z1)=1 and g(Z1)=0, g(Z1)=1, g(0)=ˆλ for some ˆλC. Similarly, when f takes the form of Case Pk,k=6,7,8 in Table 1, then we obtain the forms of Cases WPki, i=1,2,3, k=6,7,8 in Table 2. The proof is completed.

    Lemma 3.7. Let (P(ϕi,φi,χi,ψi,ξi,θi),i), i=1,2 be two algebras with the same linear space as S and equipped with C-bilinear products xiy such that

    LmiLn=ϕi(m,n)Lm+n,LmiHn=φi(m,n)Hm+n,LmiIn=χi(m,n)Im+n,HmiLn=ψi(m,n)Hm+n,HmiHn=ξi(m,n)Im+n,ImiLn=θi(m,n)Im+n,HmiIn=ImiHn=ImiIn=0

    for all m,nZ, where ϕi,φi,χi,ψi,ξi,θi, i=1,2 are complex-valued functions on Z×Z. Furthermore, let τ:P(ϕ1,φ1,χ1,ψ1,ξ1,θ1)P(ϕ2,φ2,χ2,ψ2,ξ2,θ2) be a linear map determined by

    τ(Lm)=Lm,τ(Hm)=Hm,τ(Im)=Im

    for all mZ. In addition, suppose that (P(ϕ1,φ1,χ1,ψ1,ξ1,θ1),[,],1) is a post-Lie algebra. Then (P(ϕ2,φ2,χ2,ψ2,ξ2,θ2),[,],,2) is a post-Lie algebra and τ is an isomorphism on post-Lie algebras if and only if

    {ϕ2(m,n)=ϕ1(m,n);φ2(m,n)=φ1(m,n);χ2(m,n)=χ1(m,n);ψ2(m,n)=ψ1(m,n);ξ2(m,n)=ξ1(m,n);θ2(m,n)=θ1(m,n). (49)

    Proof. Clearly, τ is a Lie automorphism of S. Suppose (P(ϕ2,φ2,χ2,ψ2,ξ2,θ2),[,],2) is a post-Lie algebra and τ:P(ϕ1,φ1,χ1,ψ1,ξ1,θ1)P(ϕ2,φ2,χ2,ψ2,ξ2,θ2) is a post-Lie isomorphism. Then we have

    τ(LmiLn)=ϕi(m,n)L(m+n),τ(LmiHn)=φi(m,n)H(m+n),τ(LmiIn)=χi(m,n)I(m+n),τ(HmiLn)=ψi(m,n)H(m+n),τ(HmiHn)=ξi(m,n)I(m+n),τ(ImiLn)=θi(m,n)I(m+n)

    for i=1,2. This tell us that that (49) holds. Conversely, we first suppose that (49) hold. Then, by using Lemma 3.1 and (ϕ1,φ1,χ1,ψ1,ξ1,θ1,[,],1) is a post-Lie algebra, we know that there are complex-valued functions f1,g1,h1 on Z and complex numbers a1,μ1 satisfying (10)-(22) with replacing (ϕ,φ,χ,ψ,ξ,θ,f,g,h,μ,a) by (ϕ1,φ1,χ1,ψ1,ξ1,θ1,f1,g1,h1,μ1,a1). Next, let f2(m)=f1(m), g2(m)=g1(m), h2(m)=h1(m), μ2=μ1 and a2=a1, then we see that (10)-(22) hold with replacing (ϕ,φ,χ,ψ,ξ,θ,f,g,h,μ,a) by (ϕ2,φ2,χ2,ψ2,ξ2,θ2,f1,g1,h1,μ1,a1). By Lemma 3.1, P(ϕ2,φ2,χ2,ψ2,ξ2,θ2) is a post-Lie algebra.

    The remainder is to prove that τ is an isomorphism between post-Lie algebra. But one has

    τ(Lm1Ln)=ϕ1(m,n)L(m+n)=ϕ2(m,n)L(m+n)=τ(Lm)2τ(Ln),τ(Lm1Hn)=φ1(m,n)H(m+n)=φ2(m,n)H(m+n)=τ(Lm)2τ(Hn),τ(Lm1In)=χ1(m,n)I(m+n)=χ2(m,n)I(m+n)=τ(Lm)2τ(In),τ(Hm1Ln)=ψ1(m,n)H(m+n)=ψ2(m,n)H(m+n)=τ(Hm)2τ(Ln),τ(Hm1Hn)=φ1(m,n)I(m+n)=φ2(m,n)I(m+n)=τ(Hm)2τ(Hn),
    τ(Im1Ln)=θ1(m,n)I(m+n)=ϕ2(m,n)I(m+n)=τ(Im)2τ(Ln)

    and τ(Hm1In)=τ(Hm)2τ(In)=0, τ(Im1Hn)=τ(Im)2τ(Hn) = 0, τ(Im1In)=τ(Im)2τ(In) = 0. The proof is completed.

    Theorem 3.8. A graded post-Lie algebra structure on S satisfying (3)-(9) must be one of the following types, for all m,nZ (in every case ImHn=HmIn=ImIn=0),

    (WP11): LmP11Ln=0, LmP11Hn=0, LmP11In=0, HmP11Ln=0, HmP11Hn=0, ImP11Ln=0;

    (WP12): LmP12Ln=0, LmP12Hn=0, LmP12In=0, HmP12Ln=(n2m)Hm+n, HmP12Hn=(nm)Im+n, ImP12Ln=mIm+n;

    (WP21): LmP21Ln=(nm)Lm+n, LmP21Hn=(nm2)Hm+n, LmP21In=nIm+n, HmP21Ln=0, HmP21Hn=0, ImP21Ln=0;

    (WP22): LmP22Ln=(nm)Lm+n, LmP22Hn=(nm2)Hm+n, LmP22In=nIm+n, HmP22Ln=(n2m)Hm+n, HmP22Hn=(nm)Im+n, ImP22Ln=mIm+n;

    (WPc3,s,k,ti,a,μ,λ): i=1,2,3,4,5

    LmPc3iLn={(nm)Lm+n,m>0,ncLn,m=0,0,m<0;

    LmPc3iHn={(nm2)Hm+n,m>0,(nc+μ)Hn,m=0,0,m<0;

    LmPc3iIn={nIm+n,m>0,(nc+2μ)In,m=0,0,m<0;

      HmPc3iLn=δi,2(n2m)Hm+n

         +(δi,3+δi,4){(n2m)Hm+n,m>0,n2λHn,m=0,0,m<0;

         +δi,5{(n2m)Hm+n,mt,0,mt1;

      HmPc3iHn=δi,2(nm)Im+n

         +(δi,3+δi,4){(nm)Im+n,m>0,nλIn,m=0,0,m<0;

         +δi,5{(nm)Im+n,mt,0,mt1;

      ImPc3iLn=δi,2(m)Im+n

         +δi,3{mIm+n,mk,0,mk1;

         +δi,4{mIm+n,m>0,naIn,m=0,0,m<0;

         +δi,5{mIm+n,ms,0,ms1;

    (WPc4,s,k,ti,a,μ,λ): i=1,2,3,4,5

           LmPc4iLn={(nm)Lm+n,m<0,ncLn,m=0,0,m>0;

           LmPc4iHn={(nm2)Hm+n,m<0,(nc+μ)Hn,m=0,0,m>0;

          LmPc4iIn={nIm+n,m<0,(nc+2μ)In,m=0,0,m>0;

    HmPc4iLn=δi,2(n2m)Hn+m

         +(δi,3+δi,4){0,m>0,n2λHn,m=0,(n2m)Hm+n,m<0;

         +δi,5{0,mt,(n2m)Hm+n,mt1;

    HmPc4iHn=δi,2(nm)In+m

         +(δi,3+δi,4){0,m>0,nλIn,m=0,(nm)Im+n,m<0;

         +δi,5{0,mt,(nm)Im+n,mt1;

    ImPc4iLn=δi,2(m)In+m

         +δi,3{0,mk,mIm+n,mk1;

         +δi,4{0,m>0,naIn,m=0,mIm+n,m<0;

         +δi,5{0,ms,mIm+n,ms1;

    (WP5i): i=1,2,3,

           LmP5iLn={(nm)Lm+n,m2,0,m1;

           LmP5iHn={(nm2)Lm+n,m2,0,m1;

          LmP5iIn={nIm+n,m2,0,m1;

    HmP5iLn=δi,2(n2m)Hm+n

         +δi,3{0,m0,(n2m)Hm+n,m1;

    HmP5iHn=δi,2(nm)Im+n

         +δi,3{0,m0,(nm)Im+n,m1;

    ImP5iLn=δi,2(m)Im+n

         +δi,3{0,m0,mIm+n,m1;

    (WP6i): i=1,2,3,

           LmP6iLn={(nm)Lm+n,m1,0,m2;

           LmP6iHn={(nm2)Hm+n,m1,0,m2;

          LmP6iIn={nIm+n,m1,0,m2;

    HmP6iLn=δi,2(n2m)Hm+n

         +δi,3{(n2m)Hm+n,m0,0,m1;

    HmP6iHn=δi,2(nm)Im+n

         +δi,3{(nm)Im+n,m0,0,m1;

    ImP6iLn=δi,2(m)Im+n

         +δi,3{mIm+n,m1,0,m0;

    (WP7i): i=1,2,3,

           LmP7iLn={(nm)Lm+n,m2,0,m1;

           LmP7iHn={(nm2)Hm+n,m2,0,m1;

          LmP7iIn={nIm+n,m2,0,m1;

    HmP7iLn=δi,2(n2m)Hm+n

         +δi,3{(n2m)Hm+n,m0,0,m1;

    HmP7iHn=δi,2(nm)Im+n

         +δi,3{(nm)Im+n,m0,0,m1;

    ImP7iLn=δi,2(m)Im+n

         +δi,3{mIm+n,m1,0,m0;

    (WP8i): i=1,2,3,

           LmP8iLn={(nm)Lm+n,m1,0,m2;

           LmP8iHn={(nm2)Hm+n,m1,0,m2;

           LmP8iIn={nIm+n,m1,0,m2;

    HmP8iLn=δi,2(n2m)Hm+n

         +δi,3{0,m0,(n2m)Hm+n,m1

    HmP8iHn=δi,2(nm)Im+n

         +δi,3{0,m0,(nm)Im+n,m1

    ImP8iLn=δi,2(m)Im+n

         +δi,3{0,m0,mIm+n,m1

    where c,a,μ,λC, k{2,1,1,2,3}, tZ{0,1} and s{2t2,2t1,2t,2t+1,2t+2}. Conversely, the above types are all the graded post-Lie algebra structures satisfying (3)-(9) on S. Furthermore, the post-Lie algebras WPc3,s,k,ti,a,μ,λ, WP5j and WP6j are isomorphic to the post-Lie algebras WPc4,s,k,ti,a,μ,λ, WP7j and WP8j, i=1,2,3,4,5 and j=1,2,3 respectively, and other post-Lie algebras are not mutually isomorphic.

    Proof. Suppose that (S,[,],) is a class of post-Lie algebra structures satisfying (3)-(9) on the Schrödinger-Virasoro algebra S. By Lemma 3.3-3.5, there are complex-valued functions f, g, h on Z and complex numbers μ,a such that one of 26 cases in Table 2 holds. From this with Lemma 3.1, we obtain 26 classes of graded post-Lie algebra structures on S. We claim that h(0)=λ and g(0)=ˆτ in WPcj,s,k,ti,a,μ,λ,j=3,4 and i=1,2,3,4,5 and g(0)=ˆλ in WPji, j=5,6,7,8 and i=1,2,3. We claim that g(0)=ˆλ and g(0)=ˆτ will not appear in every structures, when m=0, for example, in Case WP5i, i=1,2,3, then ImP53Ln=0ˆλI0+n=0, one has ImP53Ln=0 for m0, and in Case WPc3,s,k,ti,a,μ,λ, i=1,2,3,4,5, then HmP33,λLn=(n20)λH0+n=0, one has HmP33,λLn=n2λHn for m=0. Hence we can obtain 26 classes of graded post-Lie algebra structures on S listed in the theorem.

    Conversely, every type of the 26 cases means that there are complex-valued functions f and g, h on Z and complex numbers a,μ such that (10)-(15) hold and, the Equations (16)-(22) are easily verified. Thus, by Lemma 3.1 we see that they are the all graded post-Lie algebra structures satisfying (3)-(9) on the Schrödinger-Virasoro algebra S.

    Finally, by Lemma 3.7 with maps LmLm, HmHm, ImIm we know that the post-Lie algebras WPc3,s,k,ti,a,μ,λ, WP5j and WP6j are isomorphic to the post-Lie algebras WPc4,s,k,ti,a,μ,λ, WP7j and WP8j, i=1,2,3,4,5 and j=1,2,3 respectively. Clearly, the other post-Lie algebras are not mutually isomorphic. The proof is completed.

    The Rota-Baxter algebra was introduced by the mathematician Glen E. Baxter [2] in 1960 in his probability study, and was popularized mainly by the work of Rota [G. Rota1, G. Rota2] and his school. Recently, the Rota-Baxter algebra relation were introduced to solve certain analytic and combinatorial problem and then applied to many fields in mathematics and mathematical physics (see [6,7,19,23] and the references therein). Now let us recall the definition of Rota-Baxter operator.

    Definition 4.1. Let L be a complex Lie algebra. A Rota-Baxter operator of weight λC is a liner map R:LL satisfying

    [R(x),R(y)]=R([R(x),y]+[x,R(y)])+λR([x,y]),x,yL. (50)

    Note that if R is a Rota-Baxter operator of weight λ0, then λ1R is a Rota-Baxter operator of weight 1. Therefore, one only needs to consider Rota-Baxter operators of weight 0 and 1.

    In this section, we mainly consider the homogeneous Rota-Baxter operator R of weight 1 on the Schrödinger-Virasoro S given by

    R(Lm)=f(m)Lm,   R(Hm)=h(m)Hm,   R(Im)=g(m)Im (51)

    for all mZ, where f,g,h are complex-valued functions on Z.

    Lemma 4.2. (see [1]) Let (L,[,]) be a Lie algebra and R:LL a Rota-Baxter operator of weight 1. Define a new operation xy=[R(x),y] on L. Then (L,[,],) is a post-Lie algebra.

    Theorem 4.3. A homogeneous Rote-Baxrer operator R of weight 1 satisfying (51) on the Schrödinger-Virasoro S must be one of the following types

    (RP11): R(Lm)=0,R(Hn)=0,R(In)=0;

    (RP12): R(Lm)=0,R(Hn)=Hn,R(In)=In;

    (RP21): R(Lm)=Lm,R(Hn)=0,R(In)=0;

    (RP22): R(Lm)=Lm,R(Hn)=Hn,R(In)=In;

    (RPc31): R(Lm)={Lm,  m>0,cL0,  m=0,0,m<0; R(Hn)=0, R(In)=0;

    (RPc32): R(Lm)={Lm,  m>0,cL0,  m=0,0,m<0; R(Hn)=Hn, R(In)=In;

    (RPc3,k3,ˆτ,λ): R(Lm)={Lm,  m>0,cL0,  m=0,0,m<0; R(Hn)={Hn,  n>0,λH0,  n=0,0,n<0;

    R(In)={In,  nk,ˆτI0,  n=0,0,nk1;

    (RPc3,s,t5): R(Lm)={Lm,  m>0,cL0,  m=0,0,m<0; R(Hn)={Hn,  nt,0,  nt1;

    R(In)={In,  ns,0,  ns1;

    (RPc41): R(Lm)={Lm,  m<0,cL0,  m=0,0,m>0; R(Hn)=0, R(In)=0;

    (RPc42): R(Lm)={Lm,  m<0,cL0,  m=0,0,m>0; R(Hn)=Hn, R(In)=In;

    (RPc4,k3,ˆτ,λ): R(Lm)={Lm,  m<0,cL0,  m=0,0,m>0; R(Hn)={0,  n>0,λH0,  n=0,Hn,  n<0;

    R(In)={0,  nk,ˆτI0,  n=0,In,  nk1;

    (RPc4,s,t5): R(Lm)={Lm,  m>0,cL0,  m=0,0,m<0; R(Hn)={0,  nt,Hn,  nt1;

    R(In)={0,  ns,In,  ns1;

    (RP51): R(Lm)={Lm,  m2,0,  m1; R(Hn)=0, R(In)=0;

    (RP52): R(Lm)={Lm,  m2,0,  m1; R(Hn)=Hn, R(In)=In;

    (RP53,ˆλ): R(Lm)={Lm,  m2,0,  m1; R(Hn)={0,  n0,Hn,  n1;

    R(In)={0,  n1,ˆλI0,  n=0,In,  n1;

    (RP61): R(Lm)={Lm,m1,0,  m2; R(Hn)=0, R(In)=0;

    (RP62): R(Lm)={Lm,m1,0,  m2; R(Hn)=Hn, R(In)=In;

    (RP63,ˆλ): R(Lm)={Lm,m1,0,  m2; R(Hn)={Hn,n0,0,  n1;

    R(In)={In,n1,ˆλI0,  n=0,0,  n1;

    (RP71): R(Lm)={Lm,m2,0,  m1; R(Hn)=0, R(In)=0;

    (RP72): R(Lm)={Lm,m2,0,  m1; R(Hn)=Hn, R(In)=In;

    (RP73,ˆλ): R(Lm)={Lm,m2,0,  m1; R(Hn)={0,  n1,Hn,  n0;

    R(In)={0,n1,ˆλI0,  n=0,In,  n1;

    (RP81): R(Lm)={Lm,m1,0,  m2; R(Hn)=0, R(In)=0;

    (RP82): R(Lm)={Lm,m1,0,  m2, R(Hn)=Hn, R(In)=In;

    (RP83,ˆλ): R(Lm)={Lm,m1,0,  m2, R(Hn)={Hn,n1,0,  n0;

    R(In)={In,n1,ˆλI0,  n=0,0,  n1

    for all m,nZ, where c,λ,ˆλ,ˆτC, k{2,1,1,2,3} with k1, tZ{0,1} and s{2t2,2t1,2t,2t+1,2t+2}.

    Proof. In view of Lemma 4.2, if we define a new operation xy=[R(x),y] on S, then (S,[,],) is a post-Lie algebra. By (51), we have

    LmLn=[R(Lm),Ln]=(mn)f(m)Lm+n, (52)
    LmHn=[R(Lm),Hn]=(m2n)f(m)Hm+n, (53)
    LmIn=[R(Lm),In]=nf(m)Im+n, (54)
    HmLn=[R(Hm),Ln]=(n2m)h(m)Hm+n, (55)
    HmHn=[R(Hm),Hn]=(mn)h(m)Im+n, (56)
    ImLn=[R(Im),Ln]=mg(m)Im+n (57)

    and ImHn=[R(Im),Hn]=HmIn=[R(Hm),In]=ImIn=[R(Im),In]=0 for all m,nZ. This means that (S,[,],) is a graded post-Lie algebras structure satisfying (3)-(9) with ϕ(m,n)=(mn)f(m), φ(m,n)=(m2n)f(m), χ(m,n)=nf(m), ψ(m,n)=(n2m)h(m), ξ(m,n)=(mn)h(m) and θ(m,n)=mg(m).

    A similar discussion to Lemma 3.1 gives

    (mn)(f(m+n)f(n)f(m)+f(m)f(m+n)+f(n)f(m+n))=0,(m2n)(h(m+n)f(m)h(n)+f(m)h(m+n)+h(n)h(m+n))=0,n(m+n)(g(m+n)(1+f(m)+g(n))f(m)g(n))=0,(mn)(g(m+n)h(m)h(n)+h(m)g(m+n)+h(n)g(m+n))=0.

    From this we conclude that Equations (10)-(22) hold with a=μ=0. In the same way of Lemma 3.6, we see that f,g,h must satisfy Table 2 with a=μ=0. This excludes Cases WPc3,k=14,a,μ and WPc4,k=14,a,μ. Thus, f, g, h must be of the 24 cases listed in Table 2 with a=μ=0, which can yield the 24 forms of R one by one. It is easy to verify that every form of R listed in the above is a Rota-Baxter operator of weight 1 satisfying (51). The proof is completed.

    The natural question is: how we can characterize the Rota-Baxter operators of weight zero on the Schrödinger-Virasoro S? This is related to the so called pre-Lie algebra which is a class of Lie-admissible algebras whose commutators are Lie algebras. Pre-Lie algebras appeared in many fields in mathematics and physics under different names like left-symmetric algebras, Vinberg algebras and quasi-associative algebras (see the survey article [3] and the references therein). Now we recall the definition of pre-Lie algebra as follows.

    Definition 4.4. A pre-Lie algebra A is a vector space A with a bilinear product satisfying

    (xy)zx(yz)=(yx)zy(xz),x,y,zA. (58)

    As a parallel result of Lemma 4.2, one has the following conclusion.

    Proposition 1. (see [8]) Let (L,[,]) be a Lie algebra with a Rota-Baxter operator R of weight 0 on it. Define a new operation xy=[R(x),y] for any x,yL. Then (L,) is a pre-Lie algebra.

    Using a similar method on classification of Rota-Baxter operators of weight 1 in the above subsection, by Proposition 1 we can get the forms of Rota-Baxter operators of weight zero when the corresponding structure of pre-Lie algebra are known. For example, consider the homogeneous Rota-Baxter operator R of weight zero on the Schrödinger-Virasoro algebra S satisfying (51). According to Proposition 1, if we define a new operation xy=[R(x),y] on S, then (S,) is a pre-Lie algebra. By (51), we have Equations (52)-(57) hold. At this point we can apply the relevant results on pre-Lie algebra satisfying (52)-(57). But the classification of graded pre-Lie algebra structures on S is also an unsolved problem, as far as we know. In fact, we can direct characterize the Rota-Baxter operators of weight zero on the Schrödinger-Virasoro S satisfying (51) following the approach of [6]. Due to limited space, it will not be discussed here.

    We would like to express our sincere thanks to the anonymous referees for their careful reading and valuable comments towards the improvement of this article.


    Abbreviation AD: Alzheimer disease; Aβ: Amyloid-Beta; ANOVA: Analysis of variance; BBB: Blood-brain barrier; BSA: Bovine serum albumin; CNS: Central nervous system; CSF: Cerebrospinal fluid; Cy3: Cyanine 3; DCF: 2′,7′-dichlorofluorescein; DCFH: 2′,7′-dichlorodihydrofluorescein; DCFH-DA: 2′,7′-dichlorodihydrofluorescein-diacetate; DMEM: Dulbeco's modified Eagle's medium; FCS: Fetal calf serum; FITC-BSA: Fluorescein isothiocyanate-albumin; GAP-43: Growth associated protein 43; MAP-2: Microtubules associated protein-2; LEC: Soybean lectin; MTT: 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide; ROS: Reactive oxygen species; SEM: Standard error of the mean;
    Acknowledgments



    This work was supported by the Junta de Castilla y León, Spain, and the Section of Postgraduate Studies and Research, Academic Secretary of National Polytechnic Institute, Mexico.

    Conflict of interest



    All authors declare no conflicts of interest in this paper.

    [1] Peterson BR (2008) Receptor-mediated endocytosis. The WileyEncyclopedia of Chemical Biology Hoboken, NJ: John Wiley and Sons Ltd, 1-13.
    [2] Schmidt MR, Haucke V (2007) Recycling endosomes in neuronal membrane traffic. Biol Cell 99: 333-342. doi: 10.1042/BC20070007
    [3] Benmerah A, Lamaze C (2007) Clathrin-coated pits: vive la difference? Traffic 8: 970-982. doi: 10.1111/j.1600-0854.2007.00585.x
    [4] Sandvig K, Torgersen ML, Raa HA, et al. (2008) Clathrin-independent endocytosis: from nonexisting to an extreme degree of complexity. Histochem Cell Biol 129: 267-276. doi: 10.1007/s00418-007-0376-5
    [5] Watson HA, Von Zastrow M, Wendland B (2004) Endocytosis. Encyclopedia of Molecular Cell Biology and Molecular Medicine Berlin, Germany: Wiley-VCH, 181-224.
    [6] Lentini D, Guzzi F, Pimpinelli F, et al. (2008) Polarization of caveolins and caveolae during migration of immortalized neurons. J Neurochem 104: 514-523.
    [7] Nixon RA (2005) Endosome function and dysfunction in Alzheimer's disease and other neurodegenerative diseases. Neurobiol Aging 26: 373-382. doi: 10.1016/j.neurobiolaging.2004.09.018
    [8] Behl C, Davis JB, Lesley R, et al. (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77: 817-827. doi: 10.1016/0092-8674(94)90131-7
    [9] Harris ME, Hensley K, Butterfield DA, et al. (1995) Direct evidence of oxidative injury produced by the Alzheimer's beta-amyloid peptide (1–40) in cultured hippocampal neurons. Exp Neurol 131: 193-202. doi: 10.1016/0014-4886(95)90041-1
    [10] Bergin DH, Liu P (2010) Agmatine protects against beta-amyloid 25-35-induced memory impairments in the rat. Neuroscience 169: 794-811. doi: 10.1016/j.neuroscience.2010.05.004
    [11] Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J, et al. (1995) Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25-35 region to aggregation and neurotoxicity. J Neurochem 64: 253-265. doi: 10.1046/j.1471-4159.1995.64010253.x
    [12] Varadarajan S, Kanski J, Aksenova M, et al. (2001) Different mechanisms of oxidative stress and neurotoxicity for Alzheimer's A beta (1–42) and A beta (25−35). J Am Chem Soc 123: 5625-5631. doi: 10.1021/ja010452r
    [13] Koudinov AR, Berezov TT (2004) Alzheimer's amyloid-beta (A beta) is an essential synaptic protein, not neurotoxic junk. Acta Neurobiol Exp (Wars) 64: 71-79.
    [14] Malyshev IY, Wiegant FA, Mashina SY, et al. (2005) Possible use of adaptation to hypoxia in Alzheimer's disease: a hypothesis. Med Sci Monit 11: HY31-HY38.
    [15] Fishman PS, Farrand DA, Kristt DA (1990) Internalization of plasma proteins by cerebellar Purkinje cells. J Neurol Sci 100: 43-49. doi: 10.1016/0022-510X(90)90011-B
    [16] Granda B, Tabernero A, Tello V, et al. (2003) Oleic acid induces GAP-43 expression through a protein kinase C-mediated mechanism that is independent of NGF but synergistic with NT-3 and NT-4/5. Brain Res 988: 1-8. doi: 10.1016/S0006-8993(03)03253-0
    [17] Juurlink BH, Devon RM (1990) Macromolecular translocation—a possible function of astrocytes. Brain Res 533: 73-77. doi: 10.1016/0006-8993(90)91797-K
    [18] Tabernero A, Medina A, Sanchez-Abarca LI, et al. (1999) The effect of albumin on astrocyte energy metabolism is not brought about through the control of cytosolic Ca2+ concentrations but by free-fatty acid sequestration. Glia 25: 1-9. doi: 10.1002/(SICI)1098-1136(19990101)25:1<1::AID-GLIA1>3.0.CO;2-2
    [19] Vicario C, Medina JM (1992) Metabolism of lactate in the rat brain during the early neonatal period. J Neurochem 59: 32-40. doi: 10.1111/j.1471-4159.1992.tb08872.x
    [20] Tildon JT, McKenna MC, Stevenson J, et al. (1993) Transport of L-lactate by cultured rat brain astrocytes. Neurochem Res 18: 177-184. doi: 10.1007/BF01474682
    [21] Tabernero A, Granda B, Medina A, et al. (2002) Albumin promotes neuronal survival by increasing the synthesis and release of glutamate. J Neurochem 81: 881-891. doi: 10.1046/j.1471-4159.2002.00843.x
    [22] Puzzo D, Privitera L, Leznik E, et al. (2008) Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J Neurosci 28: 14537-14545. doi: 10.1523/JNEUROSCI.2692-08.2008
    [23] Garcia-Osta A, Alberini CM (2009) Amyloid beta mediates memory formation. Learn Mem 16: 267-272. doi: 10.1101/lm.1310209
    [24] Morley JE, Farr SA, Banks WA, et al. (2010) A physiological role for amyloid-beta protein:enhancement of learning and memory. J Alzheimers Dis 19: 441-449. doi: 10.3233/JAD-2010-1230
    [25] Masters CL, Selkoe DJ (2012) Biochemistry of amyloid beta-protein and amyloid deposits in Alzheimer disease. Cold Spring Harbor Perspect Med 2: a006262. doi: 10.1101/cshperspect.a006262
    [26] Stevens RW, Elmendorf D, Gourlay M, et al. (1979) Application of fluoroimmunoassay to cerebrospinal fluid immunoglobulin G and albumin. J Clin Microbiol 10: 346-350. doi: 10.1128/JCM.10.3.346-350.1979
    [27] Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harbor Perspect Biol 7: a020412. doi: 10.1101/cshperspect.a020412
    [28] Daneman R (2012) The blood-brain barrier in health and disease. Ann Neurol 72: 648-672. doi: 10.1002/ana.23648
    [29] Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57: 178-201. doi: 10.1016/j.neuron.2008.01.003
    [30] Erickson MA, Banks WA (2013) Blood-brain barrier dysfunction as a cause and consequence of Alzheimer's disease. J Cereb Blood Flow Metab 33: 1500-1513. doi: 10.1038/jcbfm.2013.135
    [31] Zenaro E, Piacentino G, Constantin G (2017) The blood-brain barrier in Alzheimer's disease. Neurobiol Dis 107: 41-56. doi: 10.1016/j.nbd.2016.07.007
    [32] Zlokovic BV (2005) Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends Neurosci 28: 202-208. doi: 10.1016/j.tins.2005.02.001
    [33] Bowman GL, Kaye JA, Moore M, et al. (2007) Blood-brain barrier impairment in Alzheimer disease: stability and functional significance. Neurology 68: 1809-1814. doi: 10.1212/01.wnl.0000262031.18018.1a
    [34] Vega L, Arroyo AA, Tabernero A, et al. (2009) Albumin-blunted deleterious effect of amyloid-beta by preventing the internalization of the peptide into neurons. J Alzheimers Dis 17: 795-805. doi: 10.3233/JAD-2009-1093
    [35] Shearman MS, Ragan CI, Iversen LL (1994) Inhibition of PC12 cell redox activity is a specific, early indicator of the mechanism of beta-amyloid-mediated cell death. Proc Natl Acad Sci USA 91: 1470-1474. doi: 10.1073/pnas.91.4.1470
    [36] Megias L, Guerri C, Fornas E, et al. (2000) Endocytosis and transcytosis in growing astrocytes in primary culture. Possible implications in neural development. Int J Dev Biol 44: 209-221.
    [37] Murk JL, Humbel BM, Ziese U, et al. (2003) Endosomal compartmentalization in three dimensions: implications for membrane fusion. Proc Natl Acad Sci USA 100: 13332-13337. doi: 10.1073/pnas.2232379100
    [38] Tabernero A, Bolanos JP, Medina JM (1993) Lipogenesis from lactate in rat neurons and astrocytes in primary culture. Biochem J 294: 635-638. doi: 10.1042/bj2940635
    [39] Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89: 271-277. doi: 10.1016/0022-1759(86)90368-6
    [40] Rosenkranz AR, Schmaldienst S, Stuhlmeier KM, et al. (1992) A microplate assay for the detection of oxidative products using 2′,7′-dichlorofluorescin-diacetate. J Immunol Methods 156: 39-45. doi: 10.1016/0022-1759(92)90008-H
    [41] Tabernero A, Lavado EM, Granda B, et al. (2001) Neuronal differentiation is triggered by oleic acid synthesized and released by astrocytes. J Neurochem 79: 606-616. doi: 10.1046/j.1471-4159.2001.00598.x
    [42] Lis H, Sela BA, Sachs L, et al. (1970) Specific inhibition by N-acetyl-D-galactosamine of the interaction between soybean agglutinin and animal cell surfaces. Biochim Biophys Acta 211: 582-585. doi: 10.1016/0005-2736(70)90265-8
    [43] Tabernero A, Velasco A, Granda B, et al. (2002) Transcytosis of albumin in astrocytes activates the sterol regulatory element-binding protein-1, which promotes the synthesis of the neurotrophic factor oleic acid. J Biol Chem 277: 4240-4246. doi: 10.1074/jbc.M108760200
    [44] Schnitzer JE, Carley WW, Palade GE (1988) Albumin interacts specifically with a 60-kDa microvascular endothelial glycoprotein. Proc Natl Acad Sci USA 85: 6773-6777. doi: 10.1073/pnas.85.18.6773
    [45] Crescenzi O, Tomaselli S, Guerrini R, et al. (2002) Solution structure of the Alzheimer amyloid beta-peptide (1–42) in an apolar microenvironment. Similarity with a virus fusion domain. Eur J Biochem 269: 5642-5648. doi: 10.1046/j.1432-1033.2002.03271.x
    [46] D'Ursi AM, Armenante MR, Guerrini R, et al. (2004) Solution structure of amyloid beta-peptide (25–35) in different media. J Med Chem 47: 4231-4238. doi: 10.1021/jm040773o
    [47] Chen GF, Xu TH, Yan Y, et al. (2017) Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 38: 1205-1235. doi: 10.1038/aps.2017.28
    [48] Kaminsky YG, Marlatt MW, Smith MA, et al. (2010) Subcellular and metabolic examination of amyloid-beta peptides in Alzheimer disease pathogenesis: evidence for Abeta (25–35). Exp Neurol 221: 26-37. doi: 10.1016/j.expneurol.2009.09.005
    [49] Pena F, Ordaz B, Balleza-Tapia H, et al. (2010) Beta-amyloid protein (25–35) disrupts hippocampal network activity: role of Fyn-kinase. Hippocampus 20: 78-96.
    [50] Bi H, Sze CI (2002) N-methyl-D-aspartate receptor subunit NR2A and NR2B messenger RNA levels are altered in the hippocampus and entorhinal cortex in Alzheimer's disease. J Neurol Sci 200: 11-18. doi: 10.1016/S0022-510X(02)00087-4
    [51] Wesen E, Jeffries GDM, Matson Dzebo M, et al. (2017) Endocytic uptake of monomeric amyloid-beta peptides is clathrin- and dynamin-independent and results in selective accumulation of Abeta (1–42) compared to Abeta (1–40). Sci Rep 7: 2021. doi: 10.1038/s41598-017-02227-9
    [52] Glick JL (1991) Proposed mechanism for alteration of albumin structure and function in Alzheimer's disease. J Theor Biol 148: 283-286. doi: 10.1016/S0022-5193(05)80346-7
    [53] Liu Z, Liu J, Wang S, et al. (2016) Neuronal uptake of serum albumin is associated with neuron damage during the development of epilepsy. Exp Ther Med 12: 695-701. doi: 10.3892/etm.2016.3397
    [54] Hassel B, Iversen EG, Fonnum F (1994) Neurotoxicity of albumin in vivo. Neurosci Lett 167: 29-32. doi: 10.1016/0304-3940(94)91020-0
    [55] LeVine SM (2016) Albumin and multiple sclerosis. BMC Neurol 16: 47. doi: 10.1186/s12883-016-0564-9
    [56] Basi GS, Jacobson RD, Virag I, et al. (1987) Primary structure and transcriptional regulation of GAP-43, a protein associated with nerve growth. Cell 49: 785-791. doi: 10.1016/0092-8674(87)90616-7
    [57] Gorgels TG, Van Lookeren Campagne M, Oestreicher AB, et al. (1989) B-50/GAP43 is localized at the cytoplasmic side of the plasma membrane in developing and adult rat pyramidal tract. J Neurosci 9: 3861-3869. doi: 10.1523/JNEUROSCI.09-11-03861.1989
    [58] Huang SL, Merat D, Cheung WY (1989) Phosphatidylinositol modulates the response of calmodulin-dependent phosphatase to calmodulin. Arch Biochem Biophys 270: 42-49. doi: 10.1016/0003-9861(89)90005-2
    [59] James G, Olson EN (1989) Identification of a novel fatty acylated protein that partitions between the plasma membrane and cytosol and is deacylated in response to serum and growth factor stimulation. J Biol Chem 264: 20998-21006.
    [60] Jochen A, Hays J, Lianos E, et al. (1991) Insulin stimulates fatty acid acylation of adipocyte proteins. Biochem Biophys Res Commun 177: 797-801. doi: 10.1016/0006-291X(91)91859-B
    [61] Patterson SI, Skene JH (1999) A shift in protein S-palmitoylation, with persistence of growth-associated substrates, marks a critical period for synaptic plasticity in developing brain. J Neurobiol 39: 423-437. doi: 10.1002/(SICI)1097-4695(19990605)39:3<423::AID-NEU8>3.0.CO;2-Z
    [62] Rossi S, Furlan R, De Chiara V, et al. (2012) Interleukin-1 beta causes synaptic hyperexcitability in multiple sclerosis. Ann Neurol 71: 76-83. doi: 10.1002/ana.22512
    [63] Li V, Brustovetsky T, Brustovetsky N (2009) Role of cyclophilin D-dependent mitochondrial permeability transition in glutamate-induced calcium deregulation and excitotoxic neuronal death. Exp Neurol 218: 171-182. doi: 10.1016/j.expneurol.2009.02.007
    [64] Paul J, Strickland S, Melchor JP (2007) Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimer's disease. J Exp Med 204: 1999-2008. doi: 10.1084/jem.20070304
    [65] Revett TJ, Baker GB, Jhamandas J, et al. (2013) Glutamate system, amyloid ss peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatry Neurosci 38: 6-23. doi: 10.1503/jpn.110190
    [66] Malik AR, Willnow TE (2019) Excitatory Amino Acid Transporters in Physiology and Disorders of the Central Nervous System. Int J Mol Sci 20: 5671. doi: 10.3390/ijms20225671
  • This article has been cited by:

    1. Zhongxian Huang, Biderivations of the extended Schrödinger-Virasoro Lie algebra, 2023, 8, 2473-6988, 28808, 10.3934/math.20231476
    2. Ivan Kaygorodov, Abror Khudoyberdiyev, Zarina Shermatova, Transposed Poisson structures on not-finitely graded Witt-type algebras, 2025, 31, 1405-213X, 10.1007/s40590-024-00702-8
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3592) PDF downloads(68) Cited by(1)

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog