| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
|
Citation: Lourdes A. Vega Rasgado, Arantxa Tabernero Urbieta, José María Medina Jiménez. Affected albumin endocytosis as a new neurotoxicity mechanism of amyloid beta[J]. AIMS Neuroscience, 2020, 7(3): 344-359. doi: 10.3934/Neuroscience.2020021
[1] | Kangqun Zhang . Existence and uniqueness of positive solution of a nonlinear differential equation with higher order Erdélyi-Kober operators. AIMS Mathematics, 2024, 9(1): 1358-1372. doi: 10.3934/math.2024067 |
[2] | Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas . On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions. AIMS Mathematics, 2022, 7(7): 12718-12741. doi: 10.3934/math.2022704 |
[3] | Hasanen A. Hammad, Hassen Aydi, Maryam G. Alshehri . Solving hybrid functional-fractional equations originating in biological population dynamics with an effect on infectious diseases. AIMS Mathematics, 2024, 9(6): 14574-14593. doi: 10.3934/math.2024709 |
[4] | Mohamed Jleli, Bessem Samet . Nonexistence for fractional differential inequalities and systems in the sense of Erdélyi-Kober. AIMS Mathematics, 2024, 9(8): 21686-21702. doi: 10.3934/math.20241055 |
[5] | Min Jiang, Rengang Huang . Existence of solutions for q-fractional differential equations with nonlocal Erdélyi-Kober q-fractional integral condition. AIMS Mathematics, 2020, 5(6): 6537-6551. doi: 10.3934/math.2020421 |
[6] | M. Manigandan, Subramanian Muthaiah, T. Nandhagopal, R. Vadivel, B. Unyong, N. Gunasekaran . Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order. AIMS Mathematics, 2022, 7(1): 723-755. doi: 10.3934/math.2022045 |
[7] | Miao Yang, Lizhen Wang . Lie symmetry group, exact solutions and conservation laws for multi-term time fractional differential equations. AIMS Mathematics, 2023, 8(12): 30038-30058. doi: 10.3934/math.20231536 |
[8] | Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad . Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions. AIMS Mathematics, 2022, 7(5): 8314-8329. doi: 10.3934/math.2022463 |
[9] | XuRan Hai, ShuHong Wang . Hermite-Hadamard type inequalities based on the Erdélyi-Kober fractional integrals. AIMS Mathematics, 2021, 6(10): 11494-11507. doi: 10.3934/math.2021666 |
[10] | Wei Fan, Kangqun Zhang . Local well-posedness results for the nonlinear fractional diffusion equation involving a Erdélyi-Kober operator. AIMS Mathematics, 2024, 9(9): 25494-25512. doi: 10.3934/math.20241245 |
The Schrödinger-Virasoro algebra is an infinite-dimensional Lie algebra that was introduced (see, e.g., [10]) in the context of non-equilibrium statistical physics. In [21], the author give a representation of the Schrödinger-Virasoro algebra by using vertex algebras, and introduced an extension of the Schrödinger-Virasoro algebra. To be precise, for
{Li,Hj,Ii|i∈Z,j∈ε+Z} |
and Lie brackets
[Lm,Ln]=(m−n)Lm+n,[Lm,Hn]=(12m−n)Hm+n,[Lm,In]=−nIm+n,[Hm,Hn]=(m−n)Im+n,[Hm,In]=[Im,In]=0. |
The Lie algebra
Post-Lie algebras were introduced around 2007 by B. Vallette [22], who found the structure in a purely operadic manner as the Koszul dual of a commutative trialgebra. Post-Lie algebras have arose the interest of a great many authors, see [4,5,12,13]. One of the most important problems in the study of post-Lie algebras is to find the post-Lie algebra structures on the (given) Lie algebras. In [13,18,20], the authors determined all post-Lie algebra structures on
In this paper, we shall study the graded post-Lie algebra structures on the Schrödinger-Virasoro algebra. We only study the twisted Schrödinger-Virasoro algebra
Throughout this paper, we denote by
The paper is organized as follows. In Section 2, we give general results on post-Lie algebras and some lemmas which will be used to our proof. In Section 3, we completely characterize the graded post-Lie algebra structures on Schrödinger-Virasoro algebra
We will give the essential definitions and results as follows.
Definition 2.1. A post-Lie algebra
[x,y]▹z=x▹(y▹z)−y▹(x▹z)−⟨x,y⟩▹z, | (1) |
x▹[y,z]=[x▹y,z]+[y,x▹z] | (2) |
for all
Suppose that
τ(x▹1y)=τ(x)▹2τ(y),∀x,y∈L. |
Remark 1. The left multiplications of the post-Lie algebra
Lemma 2.2. [15] Denote by
Der(S)=Inn(S)⊕CD1⊕CD2⊕CD3 |
where
D1(Ln)=0,D1(Hn)=Hn,D1(In)=2In,D2(Ln)=nIn,D2(Hn)=0,D2(In)=0,D3(Ln)=In,D3(Hn)=0,D3(In)=0. |
Since the Schrödinger-Virasoro algebra
Lm▹Ln=ϕ(m,n)Lm+n, | (3) |
Lm▹Hn=φ(m,n)Hm+n, | (4) |
Lm▹In=χ(m,n)Im+n, | (5) |
Hm▹Ln=ψ(m,n)Hm+n, | (6) |
Hm▹Hn=ξ(m,n)Im+n, | (7) |
Im▹Ln=θ(m,n)Im+n, | (8) |
Hm▹In=Im▹Hn=Im▹In=0, | (9) |
for all
We start with the crucial lemma.
Lemma 3.1. There exists a graded post-Lie algebra structure on
ϕ(m,n)=(m−n)f(m), | (10) |
φ(m,n)=(m2−n)f(m)+δm,0μ, | (11) |
χ(m,n)=−nf(m)+2δm,0μ, | (12) |
ψ(m,n)=−(n2−m)h(m), | (13) |
ξ(m,n)=(m−n)h(m), | (14) |
θ(m,n)=mg(m)+δm,0na, | (15) |
(m−n)(f(m+n)(1+f(m)+f(n))−f(n)f(m))=0, | (16) |
(m−n)δm+n,0μ(1+f(m)+f(n))=0, | (17) |
(m2−n)(h(m+n)(1+f(m)+h(n))−f(m)h(n))=0, | (18) |
nδm+n,0a(1+f(m)+g(n))=0, | (19) |
n(m+n)(g(m+n)(1+f(m)+g(n))−f(m)g(n)) =δn,0m2a(f(m)−g(m)), | (20) |
(m−n)δm+n,0a(1+h(m)+h(n))=0, | (21) |
(m−n)(g(m+n)(1+h(m)+h(n))−h(m)h(n))=0. | (22) |
Proof. Suppose that there exists a graded post-Lie algebra structure satisfying (3)-(9) on
x▹y=(adψ(x)+α(x)D1+β(x)D2+γ(x)D3)(y)=[ψ(x),y]+α(x)D1(y)+β(x)D2(y)+γ(x)D3(y) |
where
Lm▹Ln=[ψ(Lm),Ln]+β(Lm)nIn+γ(Lm)In=ϕ(m,n)Lm+n, | (23) |
Lm▹Hn=[ψ(Lm),Hn]+α(Lm)Hn=φ(m,n)Hm+n, | (24) |
Lm▹In=[ψ(Lm),In]+α(Lm)2In=χ(m,n)Im+n, | (25) |
Hm▹Ln=[ψ(Hm),Ln]+β(Hm)nIn+γ(Hm)In=ψ(m,n)Hm+n, | (26) |
Hm▹Hn=[ψ(Hm),Hn]+α(Hm)Hn=ξ(m,n)Im+n, | (27) |
Hm▹In=[ψ(Hm),In]+α(Hm)2In=0, | (28) |
Im▹Ln=[ψ(Im),Ln]+β(Im)nIn+γ(Im)In=θ(m,n)Im+n, | (29) |
Im▹Hn=[ψ(Im),Hn]+α(Im)Hn=0, | (30) |
Im▹In=[ψ(Im),In]+α(Im)2In=0. | (31) |
Let
ψ(Lm)=∑i∈Za(m)iLi+∑i∈Zb(m)iHi+∑i∈Zc(m)iIi,ψ(Hm)=∑i∈Zd(m)iLi+∑i∈Ze(m)iHi+∑i∈Zf(m)iIi,ψ(Im)=∑i∈Zg(m)iLi+∑i∈Zh(m)iHi+∑i∈Zx(m)iIi |
where
The "if'' part is a direct checking. The proof is completed.
Lemma 3.2. Let
g(n),h(n)∈{0,−1}for everyn≠0. | (32) |
Proof. By letting
Lemma 3.3. Let
g(Z)=h(Z)=0org(Z)=h(Z)=−1. |
Proof. Since
a(1+g(−1))=0. | (33) |
By letting
(m2−n)(h(m+n)(1+h(n))=0, | (34) |
n(m+n)(g(m+n)(1+g(n))=0, | (35) |
(m−n)(g(m+n)−h(m)h(n)+h(m)g(m+n)+h(n)g(m+n))=0. | (36) |
We now prove the following four claims:
Claim 1. If
By (34) with
Claim 2. If
By (34) with
Claim 3. If
By (35) with
Claim 4. If
By (35) with
Now we consider the values of
Case i. If
Case ii. If
Case iii. If
Case iv. If
Lemma 3.4. Let
(i)
(ii)
(iii)
Proof. By
h(m+n)(h(n)+1)=0 if m⩽1,m2−n≠0, | (37) |
g(m+n)(g(n)+1)=0 if m⩽1,n≠0,m+n≠0, | (38) |
g(m+n)(1+h(m)+h(n))=h(m)h(n) if m≠n. | (39) |
We first prove the following six claims:
Claim 1. If
By (37) with
Claim 2. If
By (37) with
Claim 3. If
By (37) with
Claim 4. If
By (37) with
Next, similar to Claims 1 and 3, we from (38) obtain the following claims.
Claim 5. If
Claim 6. If
Now we discuss the values of
Case i. When
By Claim 1 we have
Case ii. When
By Claim 2 we have
Case iii. When
By Claims 3 and 4 we have
It is easy to check that the values of
Lemma 3.5. Let
(i)
(ii)
(iii)
for some
(iv)
Proof. Take
h(0)(1+f(−n)+h(n))=f(−n)h(n), for all n≠0, | (40) |
a(1+f(−n)+g(n))=0, for all n≠0, | (41) |
a(1+h(−n)+h(n))=0, for all n≠0, | (42) |
g(0)(1+h(−n)+h(n))=h(−n)h(n), for all n≠0. | (43) |
Note that
h(n)(h(m+n)+1)=0 for all m>0,m2−n≠0; | (44) |
h(m+n)(h(n)+1)=0 for all m<0,m2−n≠0; | (45) |
g(n)(g(m+n)+1)=0 for all m>0,n≠0,m+n≠0; | (46) |
g(m+n)(g(n)+1)=0 for all m<0,n≠0,m+n≠0; | (47) |
g(m+n)(1+h(m)+h(n))=h(m)h(n) for all m≠n. | (48) |
For any
Claim 1. If
In fact, by (44) with
Claim 2. If
This proof is similar to Claim 1 by using (44) and (45). Also, similar to Claims 1 and 2, by (46) and (47) we can obtain the following two claims:
Claim 3. If
Claim 4. If
According to (32), by Claims 1 and 2,
(1)
(2)
(3)
(4)
In view of the above result, the next proof will be divided into the following cases.
Case i. When
By taking
Case ii. When
By taking
Case iii. When
By (48) we see that
Case iv. When
Note that
Lemma 3.6. Let
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
|
Proof. The proof of the "if" direction can be directly verified. We now prove the "only if" direction. In view of
| |
| |
| |
| |
| |
| |
| |
| |
|
When
When
When
Lemma 3.7. Let (P(ϕi,φi,χi,ψi,ξi,θi),▹i), i=1,2 be two algebras with the same linear space as S and equipped with C-bilinear products x▹iy such that
Lm▹iLn=ϕi(m,n)Lm+n,Lm▹iHn=φi(m,n)Hm+n,Lm▹iIn=χi(m,n)Im+n,Hm▹iLn=ψi(m,n)Hm+n,Hm▹iHn=ξi(m,n)Im+n,Im▹iLn=θi(m,n)Im+n,Hm▹iIn=Im▹iHn=Im▹iIn=0 |
for all m,n∈Z, where ϕi,φi,χi,ψi,ξi,θi, i=1,2 are complex-valued functions on Z×Z. Furthermore, let τ:P(ϕ1,φ1,χ1,ψ1,ξ1,θ1)→P(ϕ2,φ2,χ2,ψ2,ξ2,θ2) be a linear map determined by
τ(Lm)=−L−m,τ(Hm)=−H−m,τ(Im)=−I−m |
for all
{ϕ2(m,n)=−ϕ1(−m,−n);φ2(m,n)=−φ1(−m,−n);χ2(m,n)=−χ1(−m,−n);ψ2(m,n)=−ψ1(−m,−n);ξ2(m,n)=−ξ1(−m,−n);θ2(m,n)=−θ1(−m,−n). | (49) |
Proof. Clearly,
τ(Lm▹iLn)=−ϕi(m,n)L−(m+n),τ(Lm▹iHn)=−φi(m,n)H−(m+n),τ(Lm▹iIn)=−χi(m,n)I−(m+n),τ(Hm▹iLn)=−ψi(m,n)H−(m+n),τ(Hm▹iHn)=−ξi(m,n)I−(m+n),τ(Im▹iLn)=−θi(m,n)I−(m+n) |
for
The remainder is to prove that
τ(Lm▹1Ln)=−ϕ1(m,n)L−(m+n)=ϕ2(−m,−n)L−(m+n)=τ(Lm)▹2τ(Ln),τ(Lm▹1Hn)=−φ1(m,n)H−(m+n)=φ2(−m,−n)H−(m+n)=τ(Lm)▹2τ(Hn),τ(Lm▹1In)=−χ1(m,n)I−(m+n)=χ2(−m,−n)I−(m+n)=τ(Lm)▹2τ(In),τ(Hm▹1Ln)=−ψ1(m,n)H−(m+n)=ψ2(−m,−n)H−(m+n)=τ(Hm)▹2τ(Ln),τ(Hm▹1Hn)=−φ1(m,n)I−(m+n)=φ2(−m,−n)I−(m+n)=τ(Hm)▹2τ(Hn), |
τ(Im▹1Ln)=−θ1(m,n)I−(m+n)=ϕ2(−m,−n)I−(m+n)=τ(Im)▹2τ(Ln) |
and
Theorem 3.8. A graded post-Lie algebra structure on
where
Proof. Suppose that
Conversely, every type of the
Finally, by Lemma 3.7 with maps
The Rota-Baxter algebra was introduced by the mathematician Glen E. Baxter [2] in 1960 in his probability study, and was popularized mainly by the work of Rota [G. Rota1, G. Rota2] and his school. Recently, the Rota-Baxter algebra relation were introduced to solve certain analytic and combinatorial problem and then applied to many fields in mathematics and mathematical physics (see [6,7,19,23] and the references therein). Now let us recall the definition of Rota-Baxter operator.
Definition 4.1. Let
[R(x),R(y)]=R([R(x),y]+[x,R(y)])+λR([x,y]),∀x,y∈L. | (50) |
Note that if
In this section, we mainly consider the homogeneous Rota-Baxter operator
R(Lm)=f(m)Lm, R(Hm)=h(m)Hm, R(Im)=g(m)Im | (51) |
for all
Lemma 4.2. (see [1]) Let
Theorem 4.3. A homogeneous Rote-Baxrer operator
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
for all
Proof. In view of Lemma 4.2, if we define a new operation
Lm▹Ln=[R(Lm),Ln]=(m−n)f(m)Lm+n, | (52) |
Lm▹Hn=[R(Lm),Hn]=(m2−n)f(m)Hm+n, | (53) |
Lm▹In=[R(Lm),In]=−nf(m)Im+n, | (54) |
Hm▹Ln=[R(Hm),Ln]=−(n2−m)h(m)Hm+n, | (55) |
Hm▹Hn=[R(Hm),Hn]=(m−n)h(m)Im+n, | (56) |
Im▹Ln=[R(Im),Ln]=mg(m)Im+n | (57) |
and
A similar discussion to Lemma 3.1 gives
(m−n)(f(m+n)−f(n)f(m)+f(m)f(m+n)+f(n)f(m+n))=0,(m2−n)(h(m+n)−f(m)h(n)+f(m)h(m+n)+h(n)h(m+n))=0,n(m+n)(g(m+n)(1+f(m)+g(n))−f(m)g(n))=0,(m−n)(g(m+n)−h(m)h(n)+h(m)g(m+n)+h(n)g(m+n))=0. |
From this we conclude that Equations (10)-(22) hold with
The natural question is: how we can characterize the Rota-Baxter operators of weight zero on the Schrödinger-Virasoro
Definition 4.4. A pre-Lie algebra
(x▹y)▹z−x▹(y▹z)=(y▹x)▹z−y▹(x▹z),∀x,y,z∈A. | (58) |
As a parallel result of Lemma 4.2, one has the following conclusion.
Proposition 1. (see [8]) Let
Using a similar method on classification of Rota-Baxter operators of weight
We would like to express our sincere thanks to the anonymous referees for their careful reading and valuable comments towards the improvement of this article.
[1] | Peterson BR (2008) Receptor-mediated endocytosis. The WileyEncyclopedia of Chemical Biology Hoboken, NJ: John Wiley and Sons Ltd, 1-13. |
[2] |
Schmidt MR, Haucke V (2007) Recycling endosomes in neuronal membrane traffic. Biol Cell 99: 333-342. doi: 10.1042/BC20070007
![]() |
[3] |
Benmerah A, Lamaze C (2007) Clathrin-coated pits: vive la difference? Traffic 8: 970-982. doi: 10.1111/j.1600-0854.2007.00585.x
![]() |
[4] |
Sandvig K, Torgersen ML, Raa HA, et al. (2008) Clathrin-independent endocytosis: from nonexisting to an extreme degree of complexity. Histochem Cell Biol 129: 267-276. doi: 10.1007/s00418-007-0376-5
![]() |
[5] | Watson HA, Von Zastrow M, Wendland B (2004) Endocytosis. Encyclopedia of Molecular Cell Biology and Molecular Medicine Berlin, Germany: Wiley-VCH, 181-224. |
[6] | Lentini D, Guzzi F, Pimpinelli F, et al. (2008) Polarization of caveolins and caveolae during migration of immortalized neurons. J Neurochem 104: 514-523. |
[7] |
Nixon RA (2005) Endosome function and dysfunction in Alzheimer's disease and other neurodegenerative diseases. Neurobiol Aging 26: 373-382. doi: 10.1016/j.neurobiolaging.2004.09.018
![]() |
[8] |
Behl C, Davis JB, Lesley R, et al. (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77: 817-827. doi: 10.1016/0092-8674(94)90131-7
![]() |
[9] |
Harris ME, Hensley K, Butterfield DA, et al. (1995) Direct evidence of oxidative injury produced by the Alzheimer's beta-amyloid peptide (1–40) in cultured hippocampal neurons. Exp Neurol 131: 193-202. doi: 10.1016/0014-4886(95)90041-1
![]() |
[10] |
Bergin DH, Liu P (2010) Agmatine protects against beta-amyloid 25-35-induced memory impairments in the rat. Neuroscience 169: 794-811. doi: 10.1016/j.neuroscience.2010.05.004
![]() |
[11] |
Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J, et al. (1995) Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25-35 region to aggregation and neurotoxicity. J Neurochem 64: 253-265. doi: 10.1046/j.1471-4159.1995.64010253.x
![]() |
[12] |
Varadarajan S, Kanski J, Aksenova M, et al. (2001) Different mechanisms of oxidative stress and neurotoxicity for Alzheimer's A beta (1–42) and A beta (25−35). J Am Chem Soc 123: 5625-5631. doi: 10.1021/ja010452r
![]() |
[13] | Koudinov AR, Berezov TT (2004) Alzheimer's amyloid-beta (A beta) is an essential synaptic protein, not neurotoxic junk. Acta Neurobiol Exp (Wars) 64: 71-79. |
[14] | Malyshev IY, Wiegant FA, Mashina SY, et al. (2005) Possible use of adaptation to hypoxia in Alzheimer's disease: a hypothesis. Med Sci Monit 11: HY31-HY38. |
[15] |
Fishman PS, Farrand DA, Kristt DA (1990) Internalization of plasma proteins by cerebellar Purkinje cells. J Neurol Sci 100: 43-49. doi: 10.1016/0022-510X(90)90011-B
![]() |
[16] |
Granda B, Tabernero A, Tello V, et al. (2003) Oleic acid induces GAP-43 expression through a protein kinase C-mediated mechanism that is independent of NGF but synergistic with NT-3 and NT-4/5. Brain Res 988: 1-8. doi: 10.1016/S0006-8993(03)03253-0
![]() |
[17] |
Juurlink BH, Devon RM (1990) Macromolecular translocation—a possible function of astrocytes. Brain Res 533: 73-77. doi: 10.1016/0006-8993(90)91797-K
![]() |
[18] |
Tabernero A, Medina A, Sanchez-Abarca LI, et al. (1999) The effect of albumin on astrocyte energy metabolism is not brought about through the control of cytosolic Ca2+ concentrations but by free-fatty acid sequestration. Glia 25: 1-9. doi: 10.1002/(SICI)1098-1136(19990101)25:1<1::AID-GLIA1>3.0.CO;2-2
![]() |
[19] |
Vicario C, Medina JM (1992) Metabolism of lactate in the rat brain during the early neonatal period. J Neurochem 59: 32-40. doi: 10.1111/j.1471-4159.1992.tb08872.x
![]() |
[20] |
Tildon JT, McKenna MC, Stevenson J, et al. (1993) Transport of L-lactate by cultured rat brain astrocytes. Neurochem Res 18: 177-184. doi: 10.1007/BF01474682
![]() |
[21] |
Tabernero A, Granda B, Medina A, et al. (2002) Albumin promotes neuronal survival by increasing the synthesis and release of glutamate. J Neurochem 81: 881-891. doi: 10.1046/j.1471-4159.2002.00843.x
![]() |
[22] |
Puzzo D, Privitera L, Leznik E, et al. (2008) Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J Neurosci 28: 14537-14545. doi: 10.1523/JNEUROSCI.2692-08.2008
![]() |
[23] |
Garcia-Osta A, Alberini CM (2009) Amyloid beta mediates memory formation. Learn Mem 16: 267-272. doi: 10.1101/lm.1310209
![]() |
[24] |
Morley JE, Farr SA, Banks WA, et al. (2010) A physiological role for amyloid-beta protein:enhancement of learning and memory. J Alzheimers Dis 19: 441-449. doi: 10.3233/JAD-2010-1230
![]() |
[25] |
Masters CL, Selkoe DJ (2012) Biochemistry of amyloid beta-protein and amyloid deposits in Alzheimer disease. Cold Spring Harbor Perspect Med 2: a006262. doi: 10.1101/cshperspect.a006262
![]() |
[26] |
Stevens RW, Elmendorf D, Gourlay M, et al. (1979) Application of fluoroimmunoassay to cerebrospinal fluid immunoglobulin G and albumin. J Clin Microbiol 10: 346-350. doi: 10.1128/JCM.10.3.346-350.1979
![]() |
[27] |
Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harbor Perspect Biol 7: a020412. doi: 10.1101/cshperspect.a020412
![]() |
[28] |
Daneman R (2012) The blood-brain barrier in health and disease. Ann Neurol 72: 648-672. doi: 10.1002/ana.23648
![]() |
[29] |
Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57: 178-201. doi: 10.1016/j.neuron.2008.01.003
![]() |
[30] |
Erickson MA, Banks WA (2013) Blood-brain barrier dysfunction as a cause and consequence of Alzheimer's disease. J Cereb Blood Flow Metab 33: 1500-1513. doi: 10.1038/jcbfm.2013.135
![]() |
[31] |
Zenaro E, Piacentino G, Constantin G (2017) The blood-brain barrier in Alzheimer's disease. Neurobiol Dis 107: 41-56. doi: 10.1016/j.nbd.2016.07.007
![]() |
[32] |
Zlokovic BV (2005) Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends Neurosci 28: 202-208. doi: 10.1016/j.tins.2005.02.001
![]() |
[33] |
Bowman GL, Kaye JA, Moore M, et al. (2007) Blood-brain barrier impairment in Alzheimer disease: stability and functional significance. Neurology 68: 1809-1814. doi: 10.1212/01.wnl.0000262031.18018.1a
![]() |
[34] |
Vega L, Arroyo AA, Tabernero A, et al. (2009) Albumin-blunted deleterious effect of amyloid-beta by preventing the internalization of the peptide into neurons. J Alzheimers Dis 17: 795-805. doi: 10.3233/JAD-2009-1093
![]() |
[35] |
Shearman MS, Ragan CI, Iversen LL (1994) Inhibition of PC12 cell redox activity is a specific, early indicator of the mechanism of beta-amyloid-mediated cell death. Proc Natl Acad Sci USA 91: 1470-1474. doi: 10.1073/pnas.91.4.1470
![]() |
[36] | Megias L, Guerri C, Fornas E, et al. (2000) Endocytosis and transcytosis in growing astrocytes in primary culture. Possible implications in neural development. Int J Dev Biol 44: 209-221. |
[37] |
Murk JL, Humbel BM, Ziese U, et al. (2003) Endosomal compartmentalization in three dimensions: implications for membrane fusion. Proc Natl Acad Sci USA 100: 13332-13337. doi: 10.1073/pnas.2232379100
![]() |
[38] |
Tabernero A, Bolanos JP, Medina JM (1993) Lipogenesis from lactate in rat neurons and astrocytes in primary culture. Biochem J 294: 635-638. doi: 10.1042/bj2940635
![]() |
[39] |
Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89: 271-277. doi: 10.1016/0022-1759(86)90368-6
![]() |
[40] |
Rosenkranz AR, Schmaldienst S, Stuhlmeier KM, et al. (1992) A microplate assay for the detection of oxidative products using 2′,7′-dichlorofluorescin-diacetate. J Immunol Methods 156: 39-45. doi: 10.1016/0022-1759(92)90008-H
![]() |
[41] |
Tabernero A, Lavado EM, Granda B, et al. (2001) Neuronal differentiation is triggered by oleic acid synthesized and released by astrocytes. J Neurochem 79: 606-616. doi: 10.1046/j.1471-4159.2001.00598.x
![]() |
[42] |
Lis H, Sela BA, Sachs L, et al. (1970) Specific inhibition by N-acetyl-D-galactosamine of the interaction between soybean agglutinin and animal cell surfaces. Biochim Biophys Acta 211: 582-585. doi: 10.1016/0005-2736(70)90265-8
![]() |
[43] |
Tabernero A, Velasco A, Granda B, et al. (2002) Transcytosis of albumin in astrocytes activates the sterol regulatory element-binding protein-1, which promotes the synthesis of the neurotrophic factor oleic acid. J Biol Chem 277: 4240-4246. doi: 10.1074/jbc.M108760200
![]() |
[44] |
Schnitzer JE, Carley WW, Palade GE (1988) Albumin interacts specifically with a 60-kDa microvascular endothelial glycoprotein. Proc Natl Acad Sci USA 85: 6773-6777. doi: 10.1073/pnas.85.18.6773
![]() |
[45] |
Crescenzi O, Tomaselli S, Guerrini R, et al. (2002) Solution structure of the Alzheimer amyloid beta-peptide (1–42) in an apolar microenvironment. Similarity with a virus fusion domain. Eur J Biochem 269: 5642-5648. doi: 10.1046/j.1432-1033.2002.03271.x
![]() |
[46] |
D'Ursi AM, Armenante MR, Guerrini R, et al. (2004) Solution structure of amyloid beta-peptide (25–35) in different media. J Med Chem 47: 4231-4238. doi: 10.1021/jm040773o
![]() |
[47] |
Chen GF, Xu TH, Yan Y, et al. (2017) Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 38: 1205-1235. doi: 10.1038/aps.2017.28
![]() |
[48] |
Kaminsky YG, Marlatt MW, Smith MA, et al. (2010) Subcellular and metabolic examination of amyloid-beta peptides in Alzheimer disease pathogenesis: evidence for Abeta (25–35). Exp Neurol 221: 26-37. doi: 10.1016/j.expneurol.2009.09.005
![]() |
[49] | Pena F, Ordaz B, Balleza-Tapia H, et al. (2010) Beta-amyloid protein (25–35) disrupts hippocampal network activity: role of Fyn-kinase. Hippocampus 20: 78-96. |
[50] |
Bi H, Sze CI (2002) N-methyl-D-aspartate receptor subunit NR2A and NR2B messenger RNA levels are altered in the hippocampus and entorhinal cortex in Alzheimer's disease. J Neurol Sci 200: 11-18. doi: 10.1016/S0022-510X(02)00087-4
![]() |
[51] |
Wesen E, Jeffries GDM, Matson Dzebo M, et al. (2017) Endocytic uptake of monomeric amyloid-beta peptides is clathrin- and dynamin-independent and results in selective accumulation of Abeta (1–42) compared to Abeta (1–40). Sci Rep 7: 2021. doi: 10.1038/s41598-017-02227-9
![]() |
[52] |
Glick JL (1991) Proposed mechanism for alteration of albumin structure and function in Alzheimer's disease. J Theor Biol 148: 283-286. doi: 10.1016/S0022-5193(05)80346-7
![]() |
[53] |
Liu Z, Liu J, Wang S, et al. (2016) Neuronal uptake of serum albumin is associated with neuron damage during the development of epilepsy. Exp Ther Med 12: 695-701. doi: 10.3892/etm.2016.3397
![]() |
[54] |
Hassel B, Iversen EG, Fonnum F (1994) Neurotoxicity of albumin in vivo. Neurosci Lett 167: 29-32. doi: 10.1016/0304-3940(94)91020-0
![]() |
[55] |
LeVine SM (2016) Albumin and multiple sclerosis. BMC Neurol 16: 47. doi: 10.1186/s12883-016-0564-9
![]() |
[56] |
Basi GS, Jacobson RD, Virag I, et al. (1987) Primary structure and transcriptional regulation of GAP-43, a protein associated with nerve growth. Cell 49: 785-791. doi: 10.1016/0092-8674(87)90616-7
![]() |
[57] |
Gorgels TG, Van Lookeren Campagne M, Oestreicher AB, et al. (1989) B-50/GAP43 is localized at the cytoplasmic side of the plasma membrane in developing and adult rat pyramidal tract. J Neurosci 9: 3861-3869. doi: 10.1523/JNEUROSCI.09-11-03861.1989
![]() |
[58] |
Huang SL, Merat D, Cheung WY (1989) Phosphatidylinositol modulates the response of calmodulin-dependent phosphatase to calmodulin. Arch Biochem Biophys 270: 42-49. doi: 10.1016/0003-9861(89)90005-2
![]() |
[59] | James G, Olson EN (1989) Identification of a novel fatty acylated protein that partitions between the plasma membrane and cytosol and is deacylated in response to serum and growth factor stimulation. J Biol Chem 264: 20998-21006. |
[60] |
Jochen A, Hays J, Lianos E, et al. (1991) Insulin stimulates fatty acid acylation of adipocyte proteins. Biochem Biophys Res Commun 177: 797-801. doi: 10.1016/0006-291X(91)91859-B
![]() |
[61] |
Patterson SI, Skene JH (1999) A shift in protein S-palmitoylation, with persistence of growth-associated substrates, marks a critical period for synaptic plasticity in developing brain. J Neurobiol 39: 423-437. doi: 10.1002/(SICI)1097-4695(19990605)39:3<423::AID-NEU8>3.0.CO;2-Z
![]() |
[62] |
Rossi S, Furlan R, De Chiara V, et al. (2012) Interleukin-1 beta causes synaptic hyperexcitability in multiple sclerosis. Ann Neurol 71: 76-83. doi: 10.1002/ana.22512
![]() |
[63] |
Li V, Brustovetsky T, Brustovetsky N (2009) Role of cyclophilin D-dependent mitochondrial permeability transition in glutamate-induced calcium deregulation and excitotoxic neuronal death. Exp Neurol 218: 171-182. doi: 10.1016/j.expneurol.2009.02.007
![]() |
[64] |
Paul J, Strickland S, Melchor JP (2007) Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimer's disease. J Exp Med 204: 1999-2008. doi: 10.1084/jem.20070304
![]() |
[65] |
Revett TJ, Baker GB, Jhamandas J, et al. (2013) Glutamate system, amyloid ss peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatry Neurosci 38: 6-23. doi: 10.1503/jpn.110190
![]() |
[66] |
Malik AR, Willnow TE (2019) Excitatory Amino Acid Transporters in Physiology and Disorders of the Central Nervous System. Int J Mol Sci 20: 5671. doi: 10.3390/ijms20225671
![]() |
1. | Zhongxian Huang, Biderivations of the extended Schrödinger-Virasoro Lie algebra, 2023, 8, 2473-6988, 28808, 10.3934/math.20231476 | |
2. | Ivan Kaygorodov, Abror Khudoyberdiyev, Zarina Shermatova, Transposed Poisson structures on not-finitely graded Witt-type algebras, 2025, 31, 1405-213X, 10.1007/s40590-024-00702-8 |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
|
| |
| |
| |
| |
| |
| |
| |
| |
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
|
| |
| |
| |
| |
| |
| |
| |
| |
|