Citation: Luca Azzolin, Luca Dedè, Antonello Gerbi, Alfio Quarteroni. Effect of fibre orientation and bulk modulus on the electromechanical modelling of human ventricles[J]. Mathematics in Engineering, 2020, 2(4): 614-638. doi: 10.3934/mine.2020028
[1] | Ambrosi D, Arioli G, Nobile F, et al. (2011) Electromechanical coupling in cardiac dynamics: The active strain approach. SIAM J Appl Math 71: 605-621. doi: 10.1137/100788379 |
[2] | Ambrosi D, Pezzuto S (2012) Active stress vs. active strain in mechanobiology: constitutive issues. J Elasticity 107: 199-212. |
[3] | Arevalo HJ, Vadakkumpadan F, Guallar E, et al. (2016) Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nature Commun 7: 1-8. |
[4] | Azzolin L, Quarteroni A, Dedè L, et al. (2018) Electromechanical modelling of the human heart in bi-ventricle geometries. MSc thesis, Politecnico di Milano, Italy. |
[5] | Barbarotta L, Rossi S, Dedè L, et al. (2018) A transmurally heterogeneous orthotropic activation model for ventricular contraction and its numerical validation. Int J Numer Meth Bio 34: 2040-7939. |
[6] | Bayer J, Blake R, Plank G, et al. (2012) A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models. Ann Biomed Eng 40: 2243-2254. doi: 10.1007/s10439-012-0593-5 |
[7] | Boron W, Boulpaep E (2012) Medical Physiology, Saunders. |
[8] | Bovendeerd PHM, Huyghe J, Arts T, et al. (1994) Influence of endocardial-epicardial crossover of muscle fibers on left ventricular wall mechanics. J Biomech 27: 941-951. doi: 10.1016/0021-9290(94)90266-6 |
[9] | Brenner JI, Baker KR, Berman MA (1980) Prediction of left ventricular pressure in infants with aortic stenosis. Heart 44: 406-410. doi: 10.1136/hrt.44.4.406 |
[10] | Bueno-Orovio A, Cherry E, Fenton F (2008) Minimal model for human ventricular action potentials in tissue. J Theor Biol 253: 544-560. doi: 10.1016/j.jtbi.2008.03.029 |
[11] | Chabiniok R, Wang V, Hadjicharalambous M, et al. (2016) Multiphysics and multiscale modelling, data-model fusion and integration of organ physiology in the clinic: Ventricular cardiac mechanics. Interface Focus 6: 15-83. |
[12] | Colli Franzone P, Pavarino LF, Savaré G (2006) Computational electrocardiology: Mathematical and numerical modeling, In: Complex Systems in Biomedicine, Springer, 187-241. |
[13] | Coupé P, Manjón JV, Fonov V, et al. (2011) Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. NeuroImage 54: 940-954. doi: 10.1016/j.neuroimage.2010.09.018 |
[14] | Eriksson T, Prassl A, Plank G, et al. (2013) Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction. Math Mech Solids 18: 592-606. doi: 10.1177/1081286513485779 |
[15] | Fedele M, Faggiano E, Dedè L, et al. (2017) A patient specific aortic valve model based on moving resistive immersed surfaces. Biomech Model Mechan 16: 1779-1803. doi: 10.1007/s10237-017-0919-1 |
[16] | Formaggia L, Quarteroni A, Veneziani A (2010) Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, Springer Science & Business Media. |
[17] | Gerbi A (2018) Numerical approximation of cardiac electro-fluid-mechanical models: Coupling strategies for large-scale simulation. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland. |
[18] | Gerbi A, Dedè L, Deparis S, et al. The lifev finite elements library: Recent developments and cardiovascular applications, In: ENUMATH 2017, Voss, Norway. |
[19] | Gerbi A, Dedè L, Quarteroni A (2019) A monolithic algorithm for the simulation of cardiac electromechanics in the human left ventricle. Mathematics in Engineering 1: 1-37. |
[20] | Gerbi A, Dedè L, Quarteroni A (2018) Segregated algorithms for the numerical simulation of cardiac electromechanics in the left human ventricle, MOX Report No. 28. |
[21] | Godunov S (1959) A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat Sbornik 89: 271-306. |
[22] | Goldberger AL, Amaral LAN, Glass L, et al. (2000) Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals. Circulation 101: e215-e220. |
[23] | Holzapfel G, Ogden R (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos T Roy Soc A 367: 3445-3475. doi: 10.1098/rsta.2009.0091 |
[24] | Hoogendoorn C, Duchateau N, Sanchez-Quintana D, et al. (2013) A high-resolution atlas and statistical model of the human heart from multislice CT. IEEE T Med Imaging 32: 28-44. doi: 10.1109/TMI.2012.2230015 |
[25] | Hsu M, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation. Finite Elem Anal Des 47: 593-599. doi: 10.1016/j.finel.2010.12.015 |
[26] | Hunter P, Nash M, Sands G (1997) Computational electromechanics of the heart. Comput Biol Heart 12: 347-407. |
[27] | Isgum I, Staring M, Rutten A, et al. (2009) Multi-atlas-based segmentation with local decision fusion-application to cardiac and aortic segmentation in CT scans. IEEE T Med Imaging 28: 1000-1010. doi: 10.1109/TMI.2008.2011480 |
[28] | Krishnamurthy A, Villongco CT, Chuang J (2013) Patient-specific models of cardiac biomechanics. J Comput Phys 244: 4-21. doi: 10.1016/j.jcp.2012.09.015 |
[29] | Lee H, Codella N, Cham M, et al. (2010) Automatic left ventricle segmentation using iterative thresholding and an active contour model with adaptation on short-axis cardiac mri. IEEE T Biomed Eng 57: 905-913. doi: 10.1109/TBME.2009.2014545 |
[30] | Ogden RW (1997) Non-linear Elastic Deformations, Courier Corporation. |
[31] | Organization WH, Cardiovascular diseases (cvds), 2017, Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). |
[32] | Otto CM (1995) Hurst's the Heart: Arteries and Veins. JAMA 274: 1640-1641. |
[33] | Pennacchio M, Savaré G, Colli Franzone P (2005) Multiscale modeling for the bioelectric activity of the heart. SIAM J Math Anal 37: 1333-1370. doi: 10.1137/040615249 |
[34] | Potse M, Dubé B, Richer J, et al. (2006) A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE T Biomed Eng 53: 2425-2435. doi: 10.1109/TBME.2006.880875 |
[35] | Quarteroni A, Dede' L, Manzoni A, et al. (2009) Mathematical Modelling of the Human Cardiovascular System: Data, Numerical Approximation, Clinical Applications, Cambridge University Press. |
[36] | Quarteroni A, Lassila T, Rossi S, et al. (2017) Integrated heart-coupling multiscale and multiphysics models for the simulation of the cardiac function. Comput Method Appl M 314: 345-407. doi: 10.1016/j.cma.2016.05.031 |
[37] | Quarteroni A, Sacco R, Saleri F (2010) Numerical Mathematics, Springer Science & Business Media. |
[38] | Redington AN, Gray HH, Hodson ME, et al. (1988) Characterisation of the normal right ventricular pressure-volume relation by biplane angiography and simultaneous micromanometer pressure measurements. Heart 59: 23-30. doi: 10.1136/hrt.59.1.23 |
[39] | Rossi S (2014) Anisotropic modeling of cardiac mechanical activation. PhD thesis, EPFL, Switzerland. |
[40] | Rossi S, Ruiz-Baier R, Pavarino L, et al. (2012) Orthotropic active strain models for the numerical simulation of cardiac biomechanics. Int J Numer Meth Bio 28: 761-788. doi: 10.1002/cnm.2473 |
[41] | Ruiz-Baier R, Gizzi A, Rossi S, et al. (2014) Mathematical modelling of active contraction in isolated cardiomyocytes. Math Med Biol 31: 259-283. doi: 10.1093/imammb/dqt009 |
[42] | Saffitz J, Kanter H, Green K, et al. (1994) Tissue-specific determinants of anisotropic conduction velocity in canine atrial and ventricular myocardium. Circ Res 74: 1065-1070. doi: 10.1161/01.RES.74.6.1065 |
[43] | Sainte-Marie J, Chapelle D, Cimrman R, et al. (2006) Modeling and estimation of the cardiac electromechanical activity. Comput Struct 84: 1743-1759. doi: 10.1016/j.compstruc.2006.05.003 |
[44] | Santiago A, Aguado-Sierra J, Zavala-Aké M, et al. (2018) Fully coupled fluid-electro-mechanical model of the human heart for supercomputers. Int J Numer Meth Bio 34: e3140. doi: 10.1002/cnm.3140 |
[45] | Smith N, Nickerson D, Crampin E, et al. (2004) Multiscale computational modelling of the heart. Acta Numer 13: 371-431. doi: 10.1017/S0962492904000200 |
[46] | Tagliabue A, Dedè L, Quarteroni A (2017) Complex blood flow patterns in an idealized left ventricle: A numerical study. Chaos 27: 093939. doi: 10.1063/1.5002120 |
[47] | Tagliabue A, Dedè L, Quarteroni A (2017) Fluid dynamics of an idealized left ventricle: The extended Nitsche's method for the treatment of heart valves as mixed time varying boundary conditions. Int J Numer Meth Fl 85: 135-164. doi: 10.1002/fld.4375 |
[48] | Takizawa K, Bazilevs Y, Tezduyar T (2012) Space-time and ale-vms techniques for patient-specific cardiovascular fluid-structure interaction modeling. Arch Comput Method E 19: 171-225. doi: 10.1007/s11831-012-9071-3 |
[49] | Usyk T, LeGrice I, McCulloch A (2002) Computational model of three-dimensional cardiac electromechanics. Comput Visual Sci 4: 249-257. doi: 10.1007/s00791-002-0081-9 |
[50] | Vadakkumpadan F, Arevalo H, Ceritoglu C, et al. (2012) Image-based estimation of ventricular fiber orientations for personalized modeling of cardiac electrophysiology. IEEE T Med Imaging 31: 1051-1060. doi: 10.1109/TMI.2012.2184799 |
[51] | Westerhof N, Lankhaar J, Westerhof B (2009) The arterial windkessel. Med Biol Eng Comput 47: 131-141. doi: 10.1007/s11517-008-0359-2 |