Citation: Sudarshan Tiwari, Axel Klar, Giovanni Russo. Interaction of rigid body motion and rarefied gas dynamics based on the BGK model[J]. Mathematics in Engineering, 2020, 2(2): 203-229. doi: 10.3934/mine.2020010
[1] | Avesani D, Dumbser M, Bellin A (2014) A new class of Moving-Least-Squares WENO-SPH schemes. J Comput Phys 270: 278-299. doi: 10.1016/j.jcp.2014.03.041 |
[2] | Arslanbekov RR, Kolobov VI, Frolova AA (2011) Immersed Boundary Method for Boltzmann and Navier-Stokes Solvers with Adaptive Cartesian Mesh. AIP Conference Proceedings 1333: 873-877. |
[3] | Babovsky H (1989) A convergence proof for Nanbu's Boltzmann simulation scheme. Eur J Mech 8: 41-55. |
[4] | Baier T, Tiwari S, Shrestha S, et al. (2018) Thermophoresis of Janus particles at large Knudsen numbers. Phys Rev Fluids 3: 094202. doi: 10.1103/PhysRevFluids.3.094202 |
[5] | Bird G (1995) Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford: Clarendon Press. |
[6] | Cercignani C, Illner R, Pulvirenti M (2013) The Mathematical Theory of Dilute Gases, Springer Science & Business Media. |
[7] | Chapman S, Cowling TW (1970) The Mathematical Theory of Non-Uniform Gases, England: Cambridge University Press. |
[8] | Chertock A, Coco A, Kurganov A, et al. (2018) A second-order finite-difference method for compressible fluids in domains with moving boundaries. Commun Comput Phys 23: 230-263. |
[9] | Chu CK (1965) Kinetic-theoretic description of the formation of a shock wave. Phys Fluids 8: 12-22. doi: 10.1063/1.1761077 |
[10] | Dechristé G, Mieussens L (2012) Numerical simulation of micro flows with moving obstacles. Journal of Physics: Conference Series 362: 012030. doi: 10.1088/1742-6596/362/1/012030 |
[11] | Dechristé G, Mieussens L (2016) A Cartesian cut cell method for rarefied flow simulations around moving obstacles. J Comput Phys 314: 454-488. |
[12] | Degond P, Dimarco G, Pareshi L (2011) The moment guided Monte Carlo method. Int J Numer Meth Fluids 67: 189-213. doi: 10.1002/fld.2345 |
[13] | Frangi A, Frezzotti A, Lorenzani S (2007) On the application of the BGK kinetic model to the analysis of gas-structure interactions in MEMS. Comput Struct 85: 810-817. doi: 10.1016/j.compstruc.2007.01.011 |
[14] | Groppi M, Russo G, Stracquadanio G (2007) High order semi-Lagrangian methods for the BGK equation. Commun Math Sci 14: 289-417. |
[15] | Groppi M, Russo G, Stracquadanio G (2018) Semi-Lagrangian Approximation of BGK Models for Inert and Reactive Gas Mixtures, In: Goncalves P, Soares AJ, From Particle Systems to Partial Differential Equations, Springer. |
[16] | Karniadakis G, Beskok A, Aluru N (2005) Microflows and Nanoflows: Fundamentals and Simulations, New York: Springer. |
[17] | Kuhnert J (1999) General smoothed particle hydrodynamics, PhD Thesis, University of Kaiserslautern, Germany. |
[18] | Li Q, Luo KH, Li XJ (2012) Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows. Phys Rev E 86: 278-299. |
[19] | Neunzert H, Struckmeier J (1995) Particle methods for the Boltzmann equation. Acta Numer 4: 417-457. doi: 10.1017/S0962492900002579 |
[20] | Pareshi L, Russo G (2000) Numerical solution of the Boltzmann equation I: Spectrally accurate accurate approximation of the collision operator. SIAM J Numer Anal 37: 1217-1245. doi: 10.1137/S0036142998343300 |
[21] | Peskin CS (1972) Flow patterns around heart valves: A digital computer method for solving the equations of motion, PhD thesis, Albert Einstein College of Medicine. |
[22] | Russo G, Filbet F (2009) Semi-Lagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics. Kinet Relat Mod, AIMS 2: 231-250. doi: 10.3934/krm.2009.2.231 |
[23] | Shan X, Chen H (1993) Latticeemph Boltzmann model for simulating flows with multiple phases and components. Phys Rev E 47: 1815-1819. doi: 10.1103/PhysRevE.47.1815 |
[24] | Shrestha S, Tiwari S, Klar A, et al. (2015) Numerical simulation of a moving rigid body in a rarefied gas. J Comput Phys 292: 239-252. doi: 10.1016/j.jcp.2015.03.030 |
[25] | Shrestha S, Tiwari S, Klar A (2015) Comparison of numerical simulations of the Boltzmann and the Navier-Stokes equations for a moving rigid circular body in a micro scaled cavity. Int J Adv Eng Sci Appl Math 7: 38-50. doi: 10.1007/s12572-015-0125-2 |
[26] | Sonar T (2005) Difference operators from interpolating moving least squares and their deviation from optimality. ESAIM: Math Model Num 39: 883-908. doi: 10.1051/m2an:2005039 |
[27] | Tiwari S, Klar A, Russo G (2019) A meshfree method for solving BGK model of rarefied gas dynamics. Int J Adv Eng Sci Appl Math 11: 187-197. doi: 10.1007/s12572-019-00254-5 |
[28] | Tiwari S, Klar A, Hardt S (2009) A particle-particle hybrid method for kinetic and continuum equations. J Comput Phys 228: 7109-7124. doi: 10.1016/j.jcp.2009.06.019 |
[29] | Tiwari S, Klar A, Hardt S (2013) Coupled solution of the Boltzmann and Navier-Stokes equations in gas-liquid two phase flow. Comput Fluids 71: 283-296. doi: 10.1016/j.compfluid.2012.10.018 |
[30] | Tsuji T, Aoki K (2013) Moving boundary problems for a rarefied gas: Spatially one dimensional case. J Comput Phys 250: 574-600. doi: 10.1016/j.jcp.2013.05.017 |
[31] | Tsuji T, Aoki K (2014) Gas motion in a microgap between a stationary plate and a plate oscillating in its normal direction. Microfluid Nanofluid 16: 1033-1045. doi: 10.1007/s10404-014-1374-2 |
[32] | Xiong T, Russo G, Qiu JM (2019) Conservative multi-dimensional semi-Lagrangian finite difference scheme: Stability and applications to the kinetic and fluid simulations, J Sci Comput 79: 1241-1270. |
[33] | Yomsatieanku W (2010) High-order non-oscillatory schemes using meshfree interpolating moving least squares reconstruction for hyperbolic conservation laws, PhD Thesis, TU CaroloWilhelmina zu Braunschweig, Germany. |