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Abstract: In this paper we present simulations of moving rigid bodies immersed in a rarefied gas.
The rarefied gas is simulated by solving the Bhatnager-Gross-Krook (BGK) model for the Boltzmann
equation. The Newton-Euler equations are solved to simulate the rigid body motion. The force and the
torque on the rigid body is computed from the surrounded gas. An explicit Euler scheme is used for
the time integration of the Newton-Euler equations. The BGK model is solved by the semi-Lagrangian
method suggested by Russo & Filbet [22]. Due to the motion of the rigid body, the computational
domain for the rarefied gas (and the interface between the rigid body and the gas domain) changes with
respect to time. To allow a simpler handling of the interface motion we have used a meshfree method
for the interpolation procedure in the semi-Lagrangian scheme. We have considered a one way, as
well as a two-way coupling of rigid body and gas flow. We use diffuse reflection boundary conditions
on the rigid body and also on the boundary of the computational domain. In one space dimension the
numerical results are compared with analytical as well as with Direct Simulation Monte Carlo (DSMC)
solutions of the Boltzmann equation. In the two-dimensional case results are compared with DSMC
simulations for the Boltzmann equation and with results obtained by other researchers. Several test
problems and applications illustrate the versatility of the approach.
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1. Introduction

In recent years moving boundary problems for rarefied gas dynamics have been extensively
investigated in the connection with Micro-Electro-Mechanical-Systems (MEMS),
see [4, 10, 11, 16, 22, 24, 25, 29–31]. In micro scale geometries the mean free path is often of the order
or larger than the characteristic length of the geometry, requiring the solution of kinetic equations.
Usually, these flows have low Mach numbers, therefore, stochastic methods like DSMC are not the
optimal choice, since statistical noise dominates the flow quantities. Moreover, when one considers
moving rigid body, the gas domain will change in time and one has to encounter unsteady flow
problems such that averages over long runs cannot be taken. Instead, one has to perform many
independent runs in order to get smooth solutions. Although some attempts have been made to reduce
the statistical noise, see, for example, [12], many works rather employ deterministic approaches for
simplified models of the Boltzmann equation, like the Bhatnagar-Gross-Krook (BGK) model,
see [10, 22, 30].

In this paper we are following deterministic approach to solve the BGK model and extend the semi-
Lagrangian method suggested in [22] to two dimensions in physical space and three dimensions in
velocity space. Since the rigid body moves in time, classical interpolation procedures near the rigid
body become complicated and possibly inaccurate because of the arbitrary intersection of cells by the
rigid body. We note that a cartesian cut cell method has been introduced in [11] to handle the moving
object in the rarefied gas. A different technique has been used in [8], where the authors have used
ghost point methods in a finite difference framework to treat moving boundaries. We refer also to
the treatment of interfaces, for example, for multiphase flow problems in the framework of Lattice-
Boltzmann schemes, see [18, 23] for a review and further references.

We use an immersed boundary type approach [21] to simulate the fluid-rigid body interactions.
However, at variance with the original immersed boundary method, which dealt with an
incompressible fluid, here we treat the interaction of a rarefied gas with a rigid body, see [2, 10] for
immersed boundary approaches applied to kinetic equations. This means that we use a kinetic
description of the gas, which is defined by a distribution function, and has therefore many more
degrees of freedom than a (compressible or incompressible) fluid. The interaction with the boundary
is based on mass conservation, and exchange of momentum and energy. About the energy exchange,
we assume that the heat capacity of the solid is much larger than the one of the gas, so that the
temperature of the solid object will be assumed constant in time. The approach is based on the
combination between grid-based and mesh-free methods: the information about the distribution
function is stored in an arbitrary fixed grid on a given domain. For this, the computational domain is
discretized by a discrete set of fixed grid points which do not need to be regularly distributed.
Moreover, the boundaries are also approximated by a discrete set of boundary points. On the
boundary points we apply the boundary conditions. If boundaries move, the boundary particles also
move with them.

In the present approach the rigid body overlaps the gas grid points. We do not consider those gas-
grid-points which are overlapped by the rigid body in the computation and define them as in-active
points. The non-overlapped points are defined as active points. All boundary points are defined as
active points (refer to Figure 1). Therefore, the distribution of the active grid points is not uniform
in the vicinity of a rigid boundary, even if we use a regular lattice for the gas grid points. Moreover,
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it is varying over time as the rigid body moves. A moving least squares approach (later on referred
as MLS) is a particularly suitable interpolation procedure in such a situation not requiring any special
treatment. One only has to determine the overlapping and non-overlapping points and to update the
kinetic distribution function from the active points with the help of the MLS-interpolation procedure.
This process continues until the end of the simulation.

We finally note that in the present paper we restrict to a first order algorithm. Higher order methods
are under construction.

The paper is organised as follows. In Section 2 we present the BGK model for the Boltzmann
equation and the Newton-Euler equations for rigid body motions. In Section 3 we present the
semi-Lagrangian scheme for the BGK model. Moreover, in the same section we present the moving
least squares approximation, activating/deactivating grid points, boundary conditions and the coupling
algorithm for the rigid body motion and rarefied gases. In Section 4 we present numerical results in
one and two space dimensions. Finally, in Section 5 some conclusion and an outlook are presented.

2. The model

We consider the BGK-model for rarefied gas dynamics and the Newton-Euler equations for the
motion of the rigid body inside the gas.

2.1. BGK model for rarefied gas dynamics

Consider first the BGK equation for the distribution function of gas molecules denoted by f =

f (t, x, v), t ≥ 0, x ∈ Ω ⊂ Rd, (d = 1, 2) and v = (vx, vy, vz) ∈ R3. It is given by

∂ f
∂t

+ v · ∇ f =
1
τ

(M[ f ] − f ) (2.1)

with initial value f (0, x, v) = f0(x, v) and boundary conditions discussed later. For the numerical
examples we consider one- and two-dimensional spatial geometries and use suitable reduction
procedures for the BGK equation, see [9, 14].

Here τ is the relaxation time and M[ f ] is the local Maxwellian given by

M[ f ] =
ρ

(2πRT )3/2 exp
(
−
|v − U|2

2RT

)
, (2.2)

ρ,U,T are macroscopic quantities: Density, mean velocity and temperature, R is the universal gas
constant.

These macroscopic quantities are computed from f (t, x, v) in the following way. Let
φ(v) =

(
1, v, |v|

2

2

)
be the collision invariants. The moments are defined by

(ρ, ρU, E) =

∫
R3
φ(v) f (t, x, v)dv. (2.3)

E is the total energy density and it is related to the temperature through the internal energy

e(t, x) =
3
2

RT, ρe = E −
1
2
ρ|U|2.
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2.2. Newton-Euler equations for rigid body motion

The mechanical properties of the rigid body are uniquely defined by its mass and its moment of
inertia, and its displacement is determined by the position of the center of mass and its orientation. The
dynamics of the rigid body is determined by the Newton-Euler equations

M
dV
dt

= F, [I] ·
dω
dt

+ ω × ([I]·ω) = T, (2.4)

where M is the total mass of the body S with center of mass Xc, V is the translational velocity of
the center of mass, while ω denotes the angular velocity vector describing the rotation around an axis
passing through Xc. F is the translation force, T is the torque and [I] is the barycentric moment of
inertia.

The center of mass of the rigid body are obtained by

dXc

dt
= V. (2.5)

Finally, the velocity of the rigid body is given by Uw = V + (x − Xc) × ω, x ∈ S .
The force F and torque T are computed according to

F =

∫
ΓS

(−ϕ · n)dA, T =

∫
ΓS

(x − Xc) × (−ϕ · n)dA, (2.6)

where n is the unit boundary normal vector of the rigid body pointing towards the gas domain and ϕ is
the pressure tensor given by

ϕ =

∫
R3

(v − Uw) ⊗ (v − Uw) f (t, x, v)dv. (2.7)

ΓS denotes the boundary of S , see Figure 1.

Rigid
body

S

ΓS

Gas
Ω

Figure 1. Rigid body S with boundary ΓS immersed in the gas. Black and gray circles
are active and non-active interior grid points, respectively and red circles are boundary grid
points, which are always active.

In this paper we limit to study one and two dimensional problems. In 1D the rigid body does not
rotate, so the moment of inertia does not play any role. In 2D the center of mass is determined by two
coordinates, Xc = (Xc,Yc), the only non zero component of the angular velocity vector is the out of
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plane z-component ω, and the barycentric moment of inertia is a scalar which can be computed from
the mass distribution of the object:

I =

∫
S
(x − Xc)2ρ(x) dx.

In all our tests we assume the mass is uniformly distributed in the body of the object (which is a surface
in 2D), therefore the moment of inertia depends only on the mass and the geometry of the object.

3. Numerical methods

We describe a Semi-Lagrangian scheme with least squares interpolation for the BGK equation for
three dimensional velocity space and two dimensional physical space.

3.1. Semi-Lagrangian scheme for BGK model

We consider a constant time step ∆t, a uniform mesh in velocity space with mesh size ∆v and a,
in general, non-uniform mesh with average spacing ∆x in physical space. The time discretization is
denoted tn = n∆t, n = 0, 1, . . .. The space discretization is obtained by filling (regular or irregular) grid
points xi = (xi, yi) ∈ Ω ⊂ R2, i = 1, . . . ,Nx, where Nx is the total number of grid points in physical
space. We note that the Nx grid points include interior as well boundary points. The interior grid points
are fixed and located inside the whole computational domain including the moving object. In contrast,
the boundary points are fixed to the boundaries, that means moving on the boundaries of the moving
object and fixed on the fixed boundaries. The interior grid points are distinguished according to whether
they are overlapping with the moving body or not. In the first case they are called non-active points,
otherwise active points. See Figure 1 for an illustration. Moreover, we consider an even number Nv of
velocity grid points in each direction and a uniform velocity grid size ∆v in all directions. We assume
the distribution function is negligible for |vx,y,z| > vmax = Nv∆v

2 . The uniform velocity grids are denoted
by v j, vk and vl in x, y and z directions, respectively, where v j = −vmax + ( j − 1)∆v, j = 1, . . . ,Nv + 1.
Similarly, we define vk and vl for k, l = 1,Nv + 1.

Let f jkl = f jkl(t, x) = f (t, x, v j, vk, vl) and fi jkl = fi jkl(t) = f (t, xi, v j, vk, vl). The evolution equation
of f jkl(t, x) along the characteristics between time steps n and n + 1, i.e., for t ∈ [tn, tn+1], is calculated
from the Lagrangian form of the discrete-velocity BGK model

d f jkl

dt
=

1
τ

(M jkl[ f ] − f jkl) (3.1)

dx
dt

= v j, (3.2)

dy
dt

= vk, (3.3)

with final conditions
(x, y)(tn) = (x̃, ỹ), f jkl(tn) = f n

jkl(x̃, ỹ) = f̃ n
jkl (3.4)

together with appropriate boundary conditions for f jkl at boundary points.
Here M jkl[ f ] is still the local Maxwellian having the moments of f jkl.
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We consider the implicit Euler scheme for the above equations, which reads

f n+1
i jkl = f̃ n

i jkl +
∆t
τ

(Mn+1
i jkl [ f ] − f n+1

i jkl ), (3.5)

and
xn+1

i = x̃ + v j∆t, yn+1
i = ỹ + vk∆t (3.6)

for j, k, l = 1 . . . ,Nv + 1 and all active interior points.
The semi-Lagrangian method now consists of three steps:
(i) First, we determine x̃ and ỹ from the backward characteristics x̃ = xn+1

i − v j∆t, ỹ = yn+1
i − vk∆t.

Then reconstruct the function f̃ n
jkl at (x̃, ỹ). At tn all values f n

i jkl are known for all active points and
boundary points. At (x̃, ỹ) we have to interpolate f̃ n

i jkl. One can use any interpolation formula. In this
paper we use a least squares approximation for the reconstruction. This is presented in the next section.

(ii) In the second step we obtain Mn+1
i jkl . Since Mn+1

i and f n+1
i give the same conservative moments,

we multiply the above discrete equation by the collisional invariants φ(v) and sum over all velocities.
We get

ρn+1
i =

Nv+1∑
j,k,l=1

f̃ n
i jkl∆v3, (ρiUi)n+1 =

Nv+1∑
j,k,l=1

v j f̃ n
i jkl∆v3, (3.7)

En+1
i =

1
2

Nv+1∑
j,k,l=1

(v2
j + v2

k + v2
l ) f̃ n

i j∆v3. (3.8)

Once the moments are known, we can compute the Maxwellian at the new time.
(iii) Finally, we update the density function by

f n+1
i jkl =

τ f̃ n
i jkl + ∆tMn+1

i jkl

τ + ∆t
. (3.9)

3.2. Time integration for the Newton-Euler equations

We solve the Newton-Euler equations by the explicit Euler method in time. The time step is the
same as the time step of the BGK model. This means in particular, that the time step in the BGK model
is chosen according to the stability requirements for the explicit Euler scheme for the Newton-Euler
equations.

3.3. Moving least squares approximation

In this subsection we describe the least squares approximation of a function in a two-dimensional
computational domain Ω ∪ Γ ∈ R2, where Γ is the boundary. As described above, we distinguish
between the grid points on the boundary Γ and the interior grid points in Ω. The interior and boundary
grid points are distinguished by assigning different flags, see Figure 1. Consider first the interior grid
points (xi, yi) in Ω with average spacing ∆x. They are chosen at the beginning of the calculation and are
not moved. Those grid points overlapping with the moving body are non-active, the others are active.

Let f (x, y) be a scalar function and fi its values at (xi, yi). We consider the problem of approximating
the function f̃ = f (x̃, ỹ) at (x̃, ỹ) from the values of its neighboring points. We associate a weight

Mathematics in Engineering Volume 2, Issue 2, 203–229.



209

function such that nearby particles have more and far away particles have less influence. Therefore,
one can choose any distance function as a weight function which decays as the distance goes to infinity.
In this paper we have considered a Gaussian function, but other choices are possible (see for example
[26, 33] for other classes of weight functions). In order to limit the number of neighboring points
we consider only the neighbors inside a circle of radius h with center (x̃, ỹ). We choose as radius h
some factor of the average spacing ∆x, such that we have at least a minimum number of neighbors for
the least-squares approximation, even next to the boundary. In case of regular grid and far from the
boundary, one might consider using smaller values of h. Such adaptive choice of h has been considered,
for example, in [17]. For the sake of simplicity, we have chosen a constant h = 3.1 ∆x in this paper,
which gives a sufficiently large number of neighbours even near concave boundaries (as is the case of
the Example 6 in the last section). The use of adaptive values of h is left to future investigation. We
sort the neighboring points from 1 to m with respect to distance, such that the neighbour index 1 is
the nearest neighbor of (x̃, ỹ). With a slight abuse of notation, let P(x̃, ỹ; h) = {(x j, y j), j = 1, . . . ,m(h)}
denote the set of neighbor points of (x̃, ỹ) inside the disc of radius h. We note that the number m
of nighbours depends on (x̃, ỹ) and h. In all calculations we have considered the following truncated
Gaussian weight function

w(xi − x̃, yi − ỹ; h) =

 exp(−α (xi−x̃)2+(yi−ỹ)2

h2 ), if
√

(xi−x̃)2+(yi−ỹ)2

h ≤ 1
0, else,

with α a user defined positive constant, chosen here as α = 6, so that the the influence of far neighbor
grid points is negligible. This choice has been suggested from previous experience [17, 28]. It would
be interesting to investigate what is the optimal choice of the parameters, or even to adopt a different
class of weight functions. This is left to future investigation.

In order to approximate the function we consider the m Taylor’s expansions of f (x j, y j) around (x̃, ỹ)

f (x j, y j) = f (x̃, ỹ) +
∂

∂x
f (x̃, ỹ)(x j − x̃) +

∂

∂y
f (x̃, ỹ)(y j − ỹ) + e j, (3.10)

for j = 1, . . . ,m, where e j is the error in the Taylor’s expansion. We first assume that f̃ approximates
the nearest point f1. In other words e1 = 0. The unknowns f̃ , ∂ f̃

∂x ,
∂ f̃
∂y are computed by minimizing

the error e j for j = 2, . . . ,m and setting the constraint e1 = 0. To solve this constraint least-squares
problem, we use the constraint to rewrite the equations in the form

f2 − f1 =
∂ f̃
∂x

(x2 − x1) +
∂ f̃
∂y

(y2 − y1) + e2

... =
... (3.11)

fm − f1 =
∂ f̃
∂x

(xm − x1) +
∂ f̃
∂y

(ym − y1) + em

The system of equations can be written in matrix form as

e = b − Ma, (3.12)
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where e = [e2, . . . , em]T , a = [∂ f̃
∂x ,

∂ f̃
∂y ]T ,b = [ f2 − f1, . . . , fm − f1]T and

M =


x2 − x1 y2 − y1

...
...

xm − x1 ym − y1

 .
For m > 3, this system of equations is over-determined for two unknowns [∂ f̃

∂x ,
∂ f̃
∂y ]T . The unknowns a

are obtained from the weighted least squares method by minimizing the quadratic form

J =

m∑
j=2

w je2
j = (Ma − b)T W(Ma − b), (3.13)

where W = w jδ jk, k = 2, . . . ,m is the diagonal matrix. The minimization of J yields

a = (MT WM)−1(MT W)b. (3.14)

Now from Eq. (3.10) with e1 = 0 for the closest point x1 we can compute the value of f (x̃, ỹ) at (x̃, ỹ)
as

f (x̃, ỹ) = f (x1, y1) −
∂ f̃
∂x

(x1 − x̃) −
∂ f̃
∂y

(y1 − ỹ) (3.15)

since ∂ f̃
∂x and ∂ f̃

∂y are now known. We note that higher order approximations are obtained by using higher
order Taylor’s expansion in (3.10). We refer to [28] for details.

In the above least-squares approximation a function is approximated at an arbitrary point from its
neighboring points and the distribution of these points can be arbitrary. Such a straightforward least-
squares approximation leads to a central difference scheme. In case of discontinuities in the solution,
this will lead to numerical oscillations and one has to introduce additional numerical viscosity. This
can be done in the least squares framework by adopting a suitably modified version of that approach
using an upwind reconstruction.

Moreover, we note that for the stabalization of higher order approximations a WENO-type
reconstruction can be used, see e.g., [1, 32, 33], where WENO approximations with least squares
approaches have been developed for regular and irregular grids.

3.4. Activating/deactivating grid points

For the simulation of the interaction of the rigid body motion with the gas, we overlap the region
defined by the rigid body and the region where the BGK model is computed. Those grid points in the
gas phase which are overlapped by the rigid body during the motion are assigned as non-active grids
and the others as active grids. The non-active grids are taken out of the numerical process and sorted
out from the neighboring lists in the least-squares approximations. After the rigid body movement,
some of the active grids will be overlapped by the rigid body and then redefined as non-active grids.
In turn, some of non-active grids will be out of the overlapping zone of the rigid body and will be
reactivated again for the numerical process. During this process we need to update the distribution
function f (t, x, v) on the newly activated grid. This can be obtained from its neighboring active grid
points using the least squares method from above.
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3.5. Boundary conditions

On the solid boundary as well as on the moving rigid object boundaries we apply diffuse reflection
boundary conditions. The boundary particles are sitting on the boundaries and all boundary points
having contact with the gas phase are defined as active points. The boundary particles move with
the boundary velocities. The boundary conditions are applied on the boundaries of the computational
domain as well as on the surface of rigid body. Let ρw,Tw,Uw and n be the density, temperature,
velocity and n unit normal of the wall and the surface of the rigid body. The wall normal vector n
points towards the gas domain.

For (v−Uw) ·n < 0 we obtain the distribution function on the wall f n+1
w from the evolution equation.

For (v −Uw) · n > 0 the distribution function is the Maxwellian with parameters ρw,Tw and Uw, which
is given by

Mn+1
w =

ρw

(2πRTw)3/2 exp
(
−
|v − Uw|

2

2RTw

)
. (3.16)

We note that the density ρw is not known and is determined by assuming the net flux across the wall or
surface is zero. This means, we have∫

R3,(v−Uw)·n>0
(v − Uw) · n Mn+1

w dv +

∫
R3,(v−Uw)·n<0

(v − Uw) · n f n+1
w dv = 0. (3.17)

Hence, from (3.16) and (3.17) we obtain

ρw = −

∫
R3,(v−Uw)·n<0

(v − Uw) · n f n+1
w dv∫

R3,(v−Uw)·n>0
(v − Uw) · n 1

(2πRTw)3/2 exp
(
−
|v−Uw |2

2RTw

)
dv
. (3.18)

3.6. Coupling rigid body motion and the rarefied gas

After calculation of the new density function f n+1
j we first compute the pressure tensor (2.7) on

all boundary points of the rigid body. Then we approximate the force and torque on the rigid body
according to (2.6). We obtain the translational and rotational velocities and then move the boundary
points and the center of mass accordingly. Finally, we update the normal vector n. The new velocity
Uw is used to apply the boundary conditions for solving the BGK model. In summary, we use the
following coupling algorithm:

(i) Generate initial grid points with flags as interior and boundary grids and prescribe the initial
conditions in the gas as well as in the solid phases.

(ii) Determine the active and non-active grids in the gas phase.
(iii) Update newly activated grid points in the gas phase with the help of interpolations from its active

neighbors.
(iv) Solve the BGK model equation in the active grid points and apply boundary conditions on all

boundary points.
(v) Compute the force and torque on the boundary points of the rigid body.

(vi) Solve the Euler-Newton equations and then get new positions, velocity and the unit normal of the
boundary points of the rigid body.

(vii) Goto (ii) and repeat until the final time is reached.
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4. Numerical results

In the following we consider numerical examples in one and two space dimensions and three
velocity dimensions. The test cases are given in dimensionless form but can be interpreted in SI-units.

4.1. Example 1: 1D moving piston, one way coupling

This problem has been considered in [10, 22] in a larger domain. We consider the one-dimensional
spatial domain Ω = [0, 3 × 10−3]. Initially the piston is positioned at x = 1.5 × 10−4. We considered
the total number Nx = 300 grid points in physical space and in Nv = 30 grid points in every direction
of velocity space. The left boundary moves with velocity

up = 10 ∗ sin(
t

10−6 ).

This is a one way coupling, since the motion of the piston is prescribed. We note that initially, some
grid points less than x = 1.5 × 10−4 are overlapped by the piston. They are non-active points and the
piston position and the right boundary points are the active grid points, see Figure 2 for physical setup
of the problem.

Moving piston position xp(t)

Gas

wall

Figure 2. Geometrical set up for moving piston problem. The black circles are active grid
points, grey circles are non-active grid points and red circles are boundary points.

When the piston starts to move in time the process of activating and deactivating of grid points
continues throughout the simulation. We have considered the final time t f inal = 4× 10−6. The time step
is ∆t = 10−9. The minimum and maximum limit of the velocity are vmin = −1200 and vmax = 1200. We
have considered the Argon gas with diameter d = 0.368×10−9, Boltzmann constant kb = 1.3806×10−23

and the universal gas constant R = 208. The initial temperature T0 = 270, initial density ρ0 = 0.00018
and the initial mean velocity U0 = 0. The corresponding Knudsen number is Kn = λ/L = 0.215, based
on the characteristic length L = 3 × 10−3 − 1.5 × 10−4, where λ is the mean free path defined by

λ =
kb√

2πρ0Rd2
. (4.1)

To validate the numerical results of the semi-Lagrangian scheme for the BGK model, we compare it
with the results of a numerical solution of the full Boltzmann equation via the DSMC method [3,5,19].
For a proper comparison of the BGK model and the DSMC code for the Boltzmann equation we have
to relate the relaxation time τ and the mean free path, see [7], as

τ =
4λ
πC̄

, (4.2)
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where C̄ =

√
8RT0
π

. The corresponding relaxation time τ = 2.0634 × 10−6. Nevertheless, by DSMC we
solve the full Boltzmann equation, therefore differences in results may be due partially to the different
models, and partially to the different numerical techniques adopted in the two cases.

Initially, the piston and the gas are at rest. The piston starts oscillating in time and disturbs the
gas phase. A wave is formed which eventually creates a shock. The flow is a low Mach number
flow and the DSMC results show strong fluctuations. Since the flow is unsteady one cannot take time
averages of the DSMC simulations. Therefore, one has to perform several independent runs. In the
DSMC simulations we have considered the same number of cells as in the BGK model. To reduce
the statistical noise, we have considered 10.000 gas molecules per cells initially. Moreover, we have
performed 500 independent runs. In Figures 3–6 we have plotted the density, temperature and velocity
of the gas determined from both numerical methods. We can observe that the BGK and the DSMC
solutions have very good agreements at all times. We note, that the statistical noise for the DSMC
simulations is still observed even after 500 independent runs.
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Figure 3. Comparison of BGK and DSMC at time t = 1 × 10−6.
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Figure 4. Comparison of BGK and DSMC at time t = 2 × 10−6.
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Figure 5. Comparison of BGK and DSMC at time t = 3 × 10−6.
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Figure 6. Comparison of BGK and DSMC at time t = 4 × 10−6.

In both methods we apply diffuse reflection boundary conditions on the piston with moving frame
of reference Uw = (up, 0, 0), where up is the velocity of the piston, and the wall temperature Tw =

T0. Similarly, we apply diffuse reflection boundary conditions with zero wall velocity and a wall
temperature equal to the initial temperature on the right boundary.

4.2. Example 2: 1D moving plate, two way coupling

In Example 1, the gas flow was influenced by the motion of the piston, but there was no any influence
of the gas flow on the motion of the piston. In this example, we consider a two way coupling of both
phases. The force exerted on the rigid body from the surrounding gas influences the motion of the
rigid body and vice versa. We again consider a one dimensional physical space and three dimensional
velocity space. We consider the physical domain [−(L + l), (L + l)] as described in Figure 7 with L = 1
and l = 0.1, where 2l is the thickness of a plate which is driven by the pressure difference at its edges.

Gas Gas

2l

−(L + l) (L + l)0

Moving plate

T0 T0 Tw Tw

Figure 7. Schematic view of a plate separating to subdomains with different temperature.
Like in the piston problem, the black circles are active grids, the grey circles are non-active
grids and the red circles are boundary points.

Initially the plate is located at (−0.1, 0.1) with center of mass Xc = 0, where the gas and the plate
are at rest. This problem has been studied in [10] . We reconsider it as a benchmark problem since
an analytical solution is available for the equilibrium state. We again consider a monatomic gas with
parameters given in Example 1. The initial temperature is T0 = 270 and the initial pressures P0 are
the same on both sides of the plate and are equal to 0.0386. The initial density ρ0 is obtained from
the equation of state. The initial Knudsen number is 0.08 based on the characteristic length 2L and the
relaxation time τ = 5.398 × 10−4. Moreover, we have considered different density ratios of the gas and
the plate. The other parameters are the same as in the Example 1. We prescribe a higher temperature
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Tw = 330 on the right side of plate and on the right boundary of the computational domain. On the
left boundary of the plate and on the left boundary of the computational domain the temperature is
kept to T0. Due to the high temperature on the right walls, the pressure on the right hand side starts to
increase and the plate starts to move to the left hand side. The motion of the plate is computed from the
Euler-Newton equations, where only a translational force is computed for the one dimensional case.
Since the plate has two opposite normals ±1, from Eq. (2.6) the total force is given as the difference of
pressure

F = (ϕleft − ϕright)A, (4.3)

where A is the area of plate. The plate starts oscillating and finally reaches the equilibrium position [10]

xequi = L
(T0 − Tw)
(T0 + Tw)

= −0.1. (4.4)

The domain is discretized with Nx = 300 cells. The velocity grid is given by Nv = 20 cells for the BGK
equations. The final time is 0.5. The time step is ∆t = 4 × 10−6. The other parameters are the same as
in Example 1. The explicit Euler method with the same time step as the time step for the BGK model
is used for time integration of the Newton-Euler equations.

In this test case we have simulated a wide range of density ratios of gas and plate ranging from 1 to
10 up to 1 to 1000. In Figures 8 we have plotted the velocity of the plate with respect to time together
with the exact equilibrium solution. One can observe, as expected, that a lower density plate reaches
the equilibrium position earlier than the heavier plates. We remark, however, that the change of density
ratio has been used just to change the mass of the plate. Indeed the dynamics depend only on the mass
of the plate, not on its density. We choose to change the density just to allow a finite size of the plate
(which is left unchanged in our simulations).
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Figure 8. Comparison of velocity vs time of plate for density ratios of gas and plate 1 to 10
(top left) and 1 to 100 (top right) and 1 to 1000 (bottom) for Nx = 500 and Nv = 20.

Additionally, we have performed a convergence study for the case of a density ratio 1 to 50. The
results for the plate position and velocity are reported in Figure 9. We note that for Nx = 300 we
obtain an accurate approximation of the equilibrium value for the velocity, whereas, the equilibrium
position still deviates from the analytical value. This is due to the first order error of the numerical
scheme and an accumulation of very small numerical errors in velocity during the integration process.
Increasing the number of grid points Nx in physical space, we obtain convergence towards the analytical
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equilibrium position. We remark that a velocity grid with Nv = 30 gives almost the same results,
see [27] for a numerical comparison.
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Figure 9. Comparison of position and velocity vs time of plate with the density ratio 1 to 50
for number of cells Nx = 300, 400 and 500 and Nv = 20.

We have further compared the solutions of the BGK model with the DSMC simulations for Nx =

500. In the case of the DSMC simulations we have again considered 400 gas molecules per cell initially.
The boundary conditions and other parameters are the same in both methods. We have performed 50
independent runs. In Figure 10 we have plotted the position of the center of mass and the velocity of
piston vs time. We note that the time evolution of the the DSMC solutions and the solutions obtained
from the BGK semi Lagrangian method are very close to each other.
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Figure 10. The solution for a Knudsen number of 0.08. Left: early-stage position of the
center of mass of piston vs time. Right: velocity of the plate vs time with the density ratio 1
to 50. The red solid line represents the exact equilibrium position and the blue line represents
the numerical values.

Furthermore, in Figure 11 we have plotted the temperature obtained from both methods for time
t = 0.1, 0.2 and 0.4. We see that at time t = 0.1 the temperature is not yet reaching equilibrium
state, but after t = 0.2 the temperature of the gas on the left reaches the left wall temperature and the
temperature of the gas on the right reaches the right wall temperature.

Similarly, we have plotted the velocity field of the gas on both sides of the plate in Figure 12 at
different times for both methods. Here, we also observe, that the DSMC solutions fluctuate around the
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BGK solutions.
Finally, in Figure 13, we have plotted the pressure obtained from the BGK model and the DSMC

simulations. In the beginning, the pressure on the right increases due to the increase of the temperature.
When it reaches t = 0.1 the pressure on the left is slightly larger than on the right side. At time t = 0.2
the pressure on the left is still larger, which is clearly visible in the figure. It fluctuates and finally
reaches the equilibrium state, where it is equal on both sides. The relative error of the computation
versus the analytical solution [10] is approximately 0.7% for pressure and 0.6% for density in the
stationary state for the finest discretization Nx = 500.
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Figure 11. Temperature plots at times 0.1, 0.2 and 0.4 for the density ratio 1 to 50.
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Figure 12. Velocity plots at times 0.1, 0.2 and 0.4 for the density ratio 1 to 50.
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Figure 13. Pressure plots at times 0.1, 0.2 and 0.4 for the density ratio 1 to 50.

4.3. Example 3: 2D driven cavity problem

Here,we consider a spatially 2-dimensional problem with three-dimensional velocity space. The
flow in a cavity driven by the velocity on the top is a widely used benchmark problem for testing and
comparing numerical methods. We consider a micron size square cavity. The top wall has velocity

Ux = uw, Uy = 0, (4.5)
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and on the other three walls we have Ux = Uy = 0. The temperature is kept constant at T0 = 270 on
all walls, the initial density is ρ0 = 1, the wall velocity uw = 1 and the gas constant is R = 208. The
gas is again monatomic with parameters given as in the Example 1. The Knudsen number Kn= 0.1 is
based on the characteristic length given by the size of the wall. Diffuse reflection boundary conditions
are applied on all walls. In Figure 14 we have plotted the regular and irregular gridpoints used for
the simulation. Figure 15 shows the velocity fields and the vorticity obtained from the BGK equation
for regular as well as irregular grid points. We use 50 × 50 gridpoints and approximately the same
number of irregular grid points is generated. The time step is chosen as 5 × 10−11. The simulation was
stopped after time t = 4×10−7. Moreover, Figure 16 compares the x- and y-velocity components along
the center lines in y- and x-direction, respectively. We observed that the solutions obtained from the
regular and irregular grids are almost the same.
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Figure 14. Regular grids ( left) and irregular grids (right) for solving BGK model.
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Figure 15. Velocity field and out-of-plane vorticity obtained from regular( left) and irregular
(right) grids from the BGK model.
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Figure 16. Comparison of the velocity components obtained in regular as well irregular grids
in the center of cavity. Left: x-component of velocity along the center line in y-direction.
Right: y-component of velocity along center line in x-direction for uw = 1.

Moreover, we compare the semi-Lagrangian scheme for the BGK model with DSMC simulations
for the Boltzmann equation for this example. The mean free path and the relaxation time are chosen
according to Eq. (4.2). First, we choose the velocity of the upper wall as uw = 1 in positive x-direction.
In the DSMC simulations we have taken the same time step and the same number of cells as in the
BGK model. For the DSMC simulations we have also applied diffuse reflection boundary conditions
on all walls. The time steps and the gas parameters are the same as in the BGK model. In this case
we look at the steady state solution. Therefore, unlike in the earlier two examples, we do not perform
independent runs, but time averages.

In Figure 17 on the left we have run the DSMC simulation up to 105 time steps, where the last
9 × 104 time steps are used for the averaging over the samples. In this case the fluctuations dominate
the flow field. In Figure 17 on the right 3 × 106 time steps are used for the averaging over the samples.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−6

Figure 17. DSMC simulations with 9 × 104 samples (left) and with 3 × 106 samples (right)
for uw = 1.
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In Figure 18 we have plotted the x-velocity component Ux along the central vertical line as well as
the y-velocity component Uy along the central horizontal line for the case with 9 × 104 samples. We
observe again the highly oscillating DSMC results compared to the BGK solutions.
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Figure 18. Left: x-component of velocity along the center line in y-direction and Right:
y-component of velocity along center line in x-direction with 9 × 104 sampling for uw = 1.

Similarly, in Figure 19 we have plotted the x-velocity component Ux along the central vertical line
as well as y-velocity component Uy along the central horizontal line for 3 × 106 samples. The DSMC
results are improving, but still fluctuating around the BGK solutions.
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Figure 19. Left: x-component of velocity along the center line in y-direction and Right:
y-component of velocity along center line in x-direction with 3 × 106 sampling for uw = 1.
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4.4. Example 4: Moving a 2d rigid body in rarefied gas

This example is the direct extension of Example 1 into two space dimensions. Here we have used
a Chu reduction [9, 14] to reduce the dimension of the velocity space from three to two. We have
taken this problem from the paper by Frangi et al. [13], where the authors have studied the biaxial
accelerometer produced by STMicroelectronics with a surface micro-machining process. The authors
have analysed the problem by considering a two-dimensional simplification. In Figure 20 we have
sketched the computational domain in details. The shuttle lies initially in the middle of the domain. In
the rest of the domain a gas flow is taking place. The shuttle oscillates with the velocity cos(2π f0t),
where f0 is the frequency. The parameters mentioned in the Figure 20 are L1 = 19.2 × 10−6, d1 =

4.2×10−6, d2 = 2.6×10−6, d3 = 5×10−6, d4 = 3.9×10−6, d5 = 18.8×10−6. In [13] the frequency has
been taken f0 = 4400 Hz, but with this frequency, the shuttle crosses the upper and lower boundaries.
Therefore, we have chosen f0 = 40 × 4400 Hz such that the maximum amplitude of the shuttle is
half of the distance d2. The initial pressure of the gas is equal to 0.1 bar, which corresponds to initial
density ρ0 = 0.1641. The initial distribution f0 of the gas is the Maxwellian with zero mean velocity,
initial temperature T0 = 293 and initial density ρ0. The diffuse reflection boundary condition with
wall temperature T0 is applied on the solid lines and a far field boundary condition f0 is applied on the
dotted lines. We note that here, we solve the real motion of the shuttle, while in [13] the authors solve
the stationary equations with assigned non zero velocity on the boundary.

Shuttled1

L1

d2

d2

d3

d4

d4

d5

Figure 20. Geometry setup for moving 2D shuttle.

In Figure 21 we have plotted the velocity vector fields as well as x- and y- components of the
velocity at times t = 1.2 × 10−6 and t = 3.6 × 10−6.
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Figure 21. First row: velocity fields at time t = 1.2 × 10−6 and t = 3 × 10−6. Second row: x-
and y- velocity components at time t = 1.2× 10−6. Third row: x- and y- velocity components
at time t = 3.6 × 10−6.
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4.4.1. Convergence study

In Figure 22 we have plotted the normal stress tensor on the top wall of the shuttle at time t =

1.2 × 10−6. As a reference solution we consider the one obtained at the finest resolution with cell
size 4.84 × 10−8, which corresponds to 111.709 grid points including boundary points. The time step
∆t = 3.20 × 10−11, which corresponds the CFL number equal to 0.92. For the convergence study we
have considered the other coarser grids with sizes 7.5625 × 10−8, 1.5125 × 10−7, 3.025 × 10−7 and
6.050 × 10−7 and changed the time steps keeping the constant CFL number equal to 0.92.

In Figure 22 we have plotted the normal stress tensor on the top of the shuttle at time t = 1.2× 10−6

for different resolutions. In order to estimate the error, we have generated the fixed number of points
with N = 100 in equal distance. On this grid points we have interpolated the stress tensors from
different resolutions including the reference solutions and then defined the relative errors as

Lrel
error =

∑N
i=1 |φ

re f
yy,i − φ

∆x
yy,i|∑N

i=1 φ
re f
yy,i

. (4.6)

We note that φre f
yy,i is the interpolated reference solution and φ∆x

yy,i is the interpolated solution for grid size
∆x. In Table 1 we have presented the relative error of the normal stress tensor ϕyy at the same time.
The errors in the table show the first order convergence of the scheme.
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Figure 22. The normal stress tensor on the top wall of the shuttle at t = 1.2 × 10−6 for
different cell sizes.

Table 1. Convergence study of the two dimensional moving shuttle at the time t = 1.2×10−6.

∆x Relative error
6.025 × 10−7 9.3806 × 10−3

3.025 × 10−7 3.3410 × 10−3

1.5125 × 10−7 1.7921 × 10−3

7.5625 × 10−8 6.5300 × 10−4
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4.5. Example 5: Circular body motion in a driven cavity

Consider a circle immersed in a monoatomic gas in a micro square. We consider a 2D spatial and
3D velocity domain. Like in Example 3, the top wall has constant velocity in the positive x-direction.
The initial and boundary conditions are the same as in Example 3. Initially, gas and rigid body are at
rest. The rigid body is located at the center of the cavity.

We proceed as in Example 2. The force and the torque are computed according to Eq. (2.6).
The density of the rigid body is 10 times larger than the density of gas. We have performed the
simulations for different density ratios. We experienced that if the density of the rigid body is at
least ten times smaller than the density of the gas, instabilities occur in the present set up. A more
quantitative comparison of the trajectories for objects with different densities requires a more accurate
scheme, and will be performed in a future paper. Again, we use the explicit Euler scheme for the time
discretization of the Euler-Newton equations and the same time step for the BGK model. The upper
wall moves with velocity uw = 30. We simulate up to the final time t f inal = 4.4× 10−7. In Figure 23 we
have plotted the path of the center of mass of the body and its positions at different times.
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Figure 23. Positions of circular particle at time t = 0, 5 × 10−8, 1 × 10−7, 1.5 × 10−7, 2 × 10−7

and 2.5 × 10−7 (clockwise direction) together with the trajectory of the center of mass.

Since there are no analytical or experimental results to validate the numerical solutions, we
validate our solutions with DSMC simulations for the Boltzmann equation. We use the same initial
and boundary conditions and the same parameters for both schemes. First, we consider uw = 10, 20
and 30 for the DSMC simulation. As we have seen in earlier examples, the DSMC results are
dominated from the statistical noise for smaller Mach number flows. In Figure 24 we have compared
the trajectories of the center of mass obtained from both methods. We observe that increasing the wall
velocity uw gives a better agreement between the numerical solution of the BGK model and the
DSMC solution. In Figure 24 we have plotted the center of mass obtained from the BGK model and
DSMC simulations. In the case of DSMC simulations 10 independent runs are carried out. For larger
uw the BGK solutions and DSMC solutions are getting closer.
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Figure 24. Comparison of the trajectories of the center of mass obtained from the BGK
model and DSMC simulations for u = 10 ( left), 20 ( middle) and 30 (right).

4.6. Example 6: Rigid body with arbitrary shapes in a driven cavity

To show that the scheme is able to simulate the interaction of the gas with an arbitrary shaped
rigid body, we have considered a 2D spatial and 2D velocity domain and three different types of
bodies, which are triangular, L-shaped and chiral particles. For these three shapes, rotational effects
are clearly observed. The initial and boundary conditions are as in Example 5. The density of the
rigid bodies is again 10 times larger than the density of the gas. The upper wall has velocity uw = 30
and the simulations are stopped after time 4.4 × 10−7 for all cases. All rigid bodies are initialised at
the center of the cavity. In Figures 25–27 we have plotted the positions at different times together
with the trajectories of triangle, L-shaped and chiral particles, respectively. In all cases we see that the
rigid bodies follow the flow path. We mention here that in [24] a general method for the simulation
of arbitrary shaped object in a rarefied gas has been presented. In that paper the gas satisfies the
Boltzmann transport equation, which is effectively solved by DSMC.
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Figure 25. Positions of triangular particle at time t = 0, 5 × 10−8, 1 × 10−7, 1.5 × 10−7, 2 ×
10−7, 2 × 10−7 and 3 × 10−7 (clockwise direction) together with the trajectory of center of
mass.
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Figure 26. Positions of L-shaped particle at time t = 0, 5 × 10−8, 1 × 10−7 and 2.5 × 10−7

(clockwise direction) together with the trajectory of center of mass.
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Figure 27. Positions of chiral particle at time t = 0, 5×10−8, 2×10−7 and 3.5×10−7 together
with the trajectory of center of mass.

5. Conclusions and Outlook

In this paper, we have presented a mesh free method for the simulation of moving rigid bodies
immersed in a rarefied gas flow. The motion of the rigid body is obtained by solving the Newton-
Euler equations. The force and the torque are computed from the surrounding gas. The Newton-Euler
equations are solved by an explicit Euler method. The rarefied gas is simulated by solving the BGK
model of the Boltzmann equation. A semi-Lagrangian method is used to solve the BGK model, where
a first order least squares approximation is used for the interpolation scheme. Several numerical tests
are performed in order to validate the method, both in one and two space dimensions. In particular, in
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1D we consider the case of a moving plate immersed in a rarefied gas. In a first test we assume the
motion of the plate is prescribed (one way coupling), while in a second test the motion of the plate is
computed from Newton’s equations (two way coupling). In both cases we compared the results with
those obtained by DSMC solution of the Boltzmann equation. Notice that DSMC results required to
take the average of a lot of runs in order to decrease statistical fluctuations. In two space dimensions
we considered several test problems: some in which the motion of the object is prescribed, such as
the classical driven cavity (and compared the results with DSMC) and the motion of the shuttle in a
2D model of a Micro Electro Mechanical System (and results are compared with others available in
the literature [13]). Finally, some tests are performed with a rigid body of arbitrary shape immersed in
a gas and driven by the flow (two way coupling). In some cases the results are compared with those
obtained by DSMC. In the regimes we investigated there is a good qualitative agreement between
the solutions obtained by BGK and by the full Boltzmann equation simulated by DSMC. Of course
accurate DSMC solutions require a computational time which is several orders of magnitude higher
than the one needed by the numerical solution of the BGK model.

In this paper we consider a one way heat exchange: the temperature of the rigid body is assumed to
be constant in space and time, which is equivalent to suppose that the heat capacity of the rigid body
is much larger than the one of the gas. In future work we shall remove such an approximation and
consider finite heat capacity of the rigid body. As a first step in this direction we assume a rigid body
with infinite conductivity, which will make the temperature of the body constant in space. Later on we
shall model heat diffusion in the solid as well.

Moreover, the scheme will be extended to the case of gas-mixtures [15] and to three space
dimensions. An interesting application of the method will include the treatment of several bodies
immersed in a rarefied gas. In this way it will be possible to model a collection mesoscopic particles
dispersed in a rarefied gas, thus providing a quantitative tool that can be used to validate homogenised
macroscopic models of suspensions.

From the methodological point of view, further research directions will include the use of on non-
oscillatory higher order methods in space and time based on least squares approaches, see [1] for
a combination of WENO and least squares approaches for fluid dynamic equations and high order
approximation of boundary conditions.
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