Citation: Juan Palomares-Ruiz, Efrén Ruelas, Flavio Muñoz, José Castro, Angel Rodríguez. A fractional approach to 3D artery simulation under a regular pulse load[J]. Mathematical Biosciences and Engineering, 2020, 17(3): 2516-2529. doi: 10.3934/mbe.2020138
[1] | Y. Fung, Biomechanics: Mechanical properties of living tissues, 2nd edition, Springer-Verlag, New York, 1981. |
[2] | Y. Fung, Biomechanics: Motion, Flow, Stress, and Growth, 2nd edition, Springer-Verlag, New York, 1990. |
[3] | Y. Fung, K. Fronek, P. Patitucci, Pseudoelasticity of arteries and the choice of its mathematical expression, Am. J. Physiol., 237 (1979), H620-631. |
[4] | G. Holzapfel, T. Gasser, R. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elast., 61 (2000), 1-48. |
[5] | R. Ogden, Non-linear Elastic Deformations, 1st edition, Dover Publications, 1997. |
[6] | G. Holzapfel, R. Ogden, Constitutive modelling of arteries, Proceed. Royal Soc. A, 466 (2010), 1551-1597. |
[7] | J. Humphrey, G. Holzapfel, Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms, J. Biomechan., 45 (2012), 805-814. |
[8] | T. Gasser, M. Auer, F. Labruto, J. Swedenborg, J. Roy, Biomechanical rupture risk assessment of abdominal aortic aneurysms: Model complexity versus predictability of finite element simulations, European J. Vascul. Endovascul. Surg., 40 (2010), 176-185. |
[9] | G. Holzapfel, R. Ogden, Modelling the layer-specific 3D residual stresses in arteries, with an application to the human aorta, J. Royal Soc. Interf., 7 (2010), 787-799. |
[10] | D. Balzani, S. Brinkhues, G. Holzapfel, Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls, Comput. Methods Appl. Mechan. Eng., 11 (2012), 139-151. |
[11] | A. Gholipour, M. Ghayesh, A. Zander, R. Mahajan, Three-dimensional biomechanics of coronary arteries, Int. J. Eng. Sci., 130 (2018), 93-114. |
[12] | A. Gholipour, M. Ghayesh, A. Zander, Nonlinear biomechanics of bifurcated atherosclerotic coronary arteries, Int. J. Eng. Sci., 133 (2018), 60-83. |
[13] | F. Meral, T. Royston, R. Magin, Fractional calculus in viscoelasticity: An experimental study, Commun. Nonlinear Sci. Numer. Simulat., 4 (2010), 939-945. |
[14] | J. Mauro, Y. Mauro, On the Prony series representation of stretched exponential relaxation, Physica A Statist. Mechan. Appl., 506 (2018), 75-87. |
[15] | A. Tayeb, A. Makrem, Z. Abdelmalek, H. Adel, B. Jalel, M. Ichchou, On the nonlinear viscoelastic behavior of rubber-like materials: Constitutive description and identification, Int. J. Mechan. Sci., 130 (2017), 437-447. |
[16] | K. Adolfsson, M. Enelund, P. Olsson, On the fractional order model of viscoelasticity, Mechan. Time-Depend. Mater., 9 (2005), 15-34. |
[17] | R. Bagley, P. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27 (1983), 201-210. |
[18] | Y. Peng, J. Zhao, Y. Li, A wellbore creep model based on the fractional viscoelastic constitutive equation, Petrol. Explor. Development, 44 (2017), 1038-1044. |
[19] | D. Nagehan, T. Ergin, Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation, Acta Bioeng. Biomech., 16 (2014), 13-21. |
[20] | R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Mathemat. Appl., 12 (2010), 1586-1593. |
[21] | C. Wex, C. Bruns, A. Stoll, Fractional Kelvin-Voight Model for Liver Tissue in the Frequency and Time Domain, Scottish J. Arts Soc. Sci. Scient. Studies, 11 (2014), 69-78. |
[22] | C. Wex, M. Fröhlich, K. Brandstädter, C. Bruns, A. Stoll, Experimental analysis of the mechanical behavior of the viscoelastic porcine pancreas and preliminary case study on the human pancreas, J. Mechan. Behav. Biomed. Mater., 41 (2015), 199-207. |
[23] | P. Smyth, I. Green, Fractional calculus model of articular cartilage based on experimental stressrelaxation, Mechan. Time-Depend. Mater., 19 (2015), 209-228. |
[24] | A. Freed, K. Diethelm, Fractional calculus in biomechanics: A 3D viscoelastic model using regularized fractional derivative kernels with application to the human calcaneal fat pad, Biomechan. Model. Mechanobiol., 5 (2006), 203-215. |
[25] | G. Davis, M. Kohandel, S. Sivaloganathan, G. Tenti, The constitutive properties of the brain paraenchyma: Part 2. Fractional derivative approach, Biomechan. Model. Mechanobiol., 28 (2006), 455-459. |
[26] | D. Craiem, F. Rojo, J. Atienza, G. Guinea, R. Armentano, Fractional calculus applied to model arterial viscoelasticity, Latin Am. Appl. Res., 38 (2008), 141-145. |
[27] | D. Craiem, F. Rojo, J. Atienza, R. Armentano, G. Guinea, Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries, Phys. Med. Biol., 53 (2008), 4543. |
[28] | D. Craiem, R. Armentano, A fractional derivative model to describe arterial viscoelasticity, Biorheology, 44 (2007), 251-263. |
[29] | S. Müller, M. Kästner, J. Brummund, V. Ulbricht, On the numerical handling of fractional viscoelastic material models in a FE analysis, Computat. Mechan., 51 (2013), 999-1012. |
[30] | O. Agrawal, A general finite element formulation for fractional variational problems, J. Math. Analy. Appl., 12 (2008), 1-12. |
[31] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, 1st edition, Academic Press, 1998. |
[32] | C. Martin, W. Sun, T. Pham, J. Elefteriades, Predictive biomechanical analysis of ascending aortic aneurysm rupture, Acta Biomater., 9 (2013), 9392-9400. |
[33] | A. Tsamis, J. Krawiec, D. Vorp, Elastin and collagen fibre microstructure of the human aorta in ageing and disease: A review, J. Royal Soc. Interf., 10 (2013), 20121004. |
[34] | J. Palomares-Ruiz, M. Rodriguez, J. Castro, A. Rodriguez, Fractional viscoelastic models applied to biomechanical constitutive equations, Rev. Mex. Fis., 61 (2015), 261-267. |
[35] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel Progr. Fract. Differ. Appl., 1 (2015), 1-13. |
[36] | B. Xu, H. Li, Y. Zhang, A new definition of fractional derivative without singular kernel J. Biomechan. Eng., 135 (2013), 054501. |
[37] | J. Palomares, M. Rodriguez, J. Castro, Determinación del orden fraccional en el modelo Zener para caracterizar los efectos biomecánicos ocasionados por el flujo sanguíneo Rev. Int. Metod. Numer. Dis., 33 (2017), 10-17. |
[38] | K. Volokh, Challenge of biomechanics, Molecul. Cellul. Biomechan., 10 (2013), 107-135. |
[39] | J. Navarro, D. Sánchez, L. Quijano, J. Briceño, Un sistema presión-volumen para la medición de propiedades mecánicas de vasos cardíacos menores, Revista de ingeniería, 37 (2012), 31-37. |
[40] | P. Richardson, Biomechanics of plaque rupture: Progress, problems, and new frontiers, Ann. Biomed. Eng., 30 (2002), 524-536. |
[41] | G. Sommer, G. Holzapfel, 3D constitutive modeling of the biaxial mechanical response of intact and layer-dissected human carotid arteries, J. Mechan. Behav. Biomed. Mater., 5 (2012), 116-128. |