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1 Tecnológico Nacional de México/ITS de Cajeme, subdirección de posgrado e investigación,
Carretera internacional a Nogales Km. 2 S/N, Ciudad Obregón, Sonora, México.
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Abstract: For the diagnosis and treatment of many pathologies related to arteries, it is necessary
to known their mechanical behavior. Previous investigation implement multi-layer structural models
for arterial walls based on a Fung model, which can be problematic with the material stability in the
convergence sense for finite element methods, issue avoided with a large number of terms in the prony
series and the inclusion of relaxation function. On the other hand, this solution increase significantly
the computer cost for the solution finding. In this research was implement a 3D simulation of the aorta
artery, composed of three different layers that allow identifying how are distributed the stress-strain
state caused by the flow pressure. A vectorized geometry was created based on medical tomography
images and a fractional linear-standard viscoelastic constitutive model for solids was developed and
validated. For the model adjustment was used creep-relaxation experiment data and a set of parameters,
in the frequency domain, from a previous calculated complex modulus. The mechanical simulated
behavior of the artery section proof that the fractional model showns an accurate representation of the
simulated phenomenon, and a lower convergence time.
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1. Introduction

The biomechanical characterization of biological soft tissues was initially developed by Y.C. Fung
on his classical biomechanical treatments [1, 2]. He was one of the firsts, together with Fronek, to
used a “new kind” of elasticity to describe the mechanical behavior of the soft tissues [3], they called
this new behavior as pseudo-elasticity. A few years later a new generation of researchers continued
on this sense, one of the most know is Holzapfel that together with Gasser and Ogden proposed a
new constitutive framework for arterial wall mechanics behavior [4], basically based in a non linear
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elastic theory introduced by Ogden [5]. In 2004 this group of research realized a comparison of a
multi-layer structural model for arterial walls applying a Fung type model, i.e. viscoelasticity. They
explored the problematic that emerge on the material stability, in the convergence sense and others
problems relatives to the viscoelastic formulation, then in 2010 Holzapfel and Ogden proposed a con-
stitutive modeling of arteries [6] that originated a whole new constitutive frame, named hyperelasticity.
Based on strain-energy functions and that represents a huge step on the task of arteries biomechanical
characterization, and a great variety of progress was developed and published, like the modeling of
biomechanical effects originated by an aneurysm [7, 8], the 3D modelling of the human aorta [9, 10] or
the visco/hyperelastic model that simulate the nonlinear dynamics of atherosclerotic coronary arteries
used to predict the initiation of heart attack [11, 12].

No often it is not the original Fung’s propose for modeling arteries biomechanical behavior, he
originally describe the mechanical behavior of the artery as a viscoelastic material. In general, this
behavior may be imagined as a spectrum with elastic deformation in one limit case and viscous flow in
the other, with varying combinations of the two spread over the range between. Thus, valid constitutive
equations for viscoelastic behavior embody elastic deformation and viscous flow as special cases and at
the same time provide for response patterns that characterize behavior blends of the two. Intrinsically,
such equations will involve not only stress and strain, but time-rates of both stress and strain as well
[13]. As mentioned before this kind of materials models, has a great inconvenient related with the
convergence on the finite element method software, frequently used to solve this mathematical models
[8, 6, 14, 15]. To avoid this situation we can use a prony series and the relaxation function, but again
to obtain an accurate solution we need to use a large number of prony series that elevates the computer
time on the task of solution finding.

At recent times the fractional calculus theory has been used to modeling viscoelastic materials
[16, 17, 18], consequently some researchers used to model biological soft tissues [19, 20], like the use
of Kelvin-Voigt fractional viscoelastic model employed to determinate the biomechanical properties of
the human liver tissue or the pancreas by Wex [21, 22], using stress relaxation test to articular cartilage
[23], and even the human calcaneal fat pad [24] using fractional derivatives kernels. Recently this
material models are used to estimate the biological changes of the mechanical behavior due to the
presence of tumors [25]. Craiem et al [26, 27, 28] use a fractional viscoelastic constitutive model to
describe the arterial biomechanics response, using uniaxial relaxation test.

One of the greatest advantages consist on that many of the basic viscoelastic ideas can be introduce
within the context of a one-dimensional state of stress. Once the relaxation modulus, the creep compli-
ance and the complex modulus are obtained, its functions can be included by a subroutine on a FEM
software, with the necessary geometry restrictions [29] and the viscoelastic relaxation modifications,
or by an finite element model specially develop for fractional differential and integral operators [30].

Viscoelastic fractional models have taken a recent boom in the task of modeling the mechanical
behaviour of polymers and soft tissues. Due to the fact that the definition of the fractional derivative
provide a new formulation to describe the mechanical behaviour of a material that exhibits a behavior
that oscillates between the hooke solids model and the Newtonian fluids [31]. That is one of the
principal characteristics of the soft tissues.
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2. Materials and method

2.1. The circulatory system

The circulatory system is basically composed of the heart and blood vessel system. At the time, the
blood vessel system are composing of arteries, arterioles and veins. Arteries are basically conform of
three internal layers, known as Tunica Intima, Tunica Media and Tunica Externa or Adventicia, with
a semi-cylindrical form and mainly compose of collagen, elastin and muscular fibers [32]. In young
humans, the intima is an extremely thin layer (80nm) like a membrane separate to the media for a lay
of elastin, the media are form of soft muscular cells merge on a collagen and elastin cellular matrix,
finally the externa is the thick layer compose of collagen and fibroblasts [33].

This particular conformation brings the artery a mixed mechanical material behavior know as vis-
coelasticity [1]. In general, viscoelastic behavior may be imagined as a spectrum with elastic defor-
mation as one limiting case and viscous flow the other extreme case, with varying combinations of the
two spread over the range between. Thus, valid constitutive equations for viscoelastic behavior em-
body elastic deformation and viscous flow as special cases and at the same time provide for response
patterns that characterize behavior blends of the two.

Intrinsically, such equations will involve not only stress and strain, but time-rates of both stress and
strain as well [13].

2.2. Mechanical background

We first develop the mathematical and mechanical background that support the present research,
with the finality that those readers interested on the topics be familiarized with the basic concepts.

2.2.1. Linear viscoelasticity

Linear viscoelasticity is a common theory to approximate the time-dependent behaviour of poly-
mers, and materials that exhibit similar characteristics at relatively low temperatures and stress.

The development of the mathematical theory of linear viscoelasticity is based on the principle that
the mechanical stress on a certain period of time is directly proportional to the strain rate. In that way,
if we have that stress and stress rate are infinitesimal and the stress-strain relation depend on time, that
relationship can be expressed by a differential equation with constant coefficients.

The stress-strain relationship can be described, assuming that the Maxwell-Boltzmann principle are
satisfied, by the constitutive equation:

σ(t) =

t∫
−∞

G(t − ξ)
dε(ξ)

dξ
dξ (2.1)

or

ε(t) =

t∫
−∞

J(t − ξ)
dσ(ξ)

dξ
dξ (2.2)

were G(t) and J(t) are the stress relaxation modulus and the creep compliance respectively. These
important functions are commonly employing on material characterization, and are describing above.
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2.2.2. Creep compliance and stress relaxation tests

The creep test consists of instantaneously subjecting the material to a simple shear stress of magni-
tude σ0 and maintaining that stress constant thereafter while measuring the shear strain as a function
of time. The resulting strain is called the creep. In the stress relaxation test, and instantaneous shear
strain of magnitude ε0 is imposed on the material sample and maintained at the value while the result-
ing stress, is recorded as a function of time. The decrease in the stress values over the duration of the
test is referred to as the stress relaxation.

2.2.3. Oscillatory experiments

The behavior of viscoelastic materials when are subject to harmonic stress or strain is an important
part of the theory of viscoelasticity and sustains a fundamental part of the research. Cyclic experiments
are used to identify the mechanical behavior of the material and to determine the values of the elastic
and viscous plots of this, maintaining a balance between complexity and simulation capacity of the
phenomena. Data processing could be carried out in the same way for a non-cyclic signal, but it would
have to be extensive in time to have enough information to fit the model and its processing would be
complex.

Consider the response of the material, when is applying a harmonic shear strain of frequency ω as:

ε(t) = ε0 sin (ωt) (2.3)

At the same time the strain rate changes with the same frequency ω with a translation φ with respect
to the stress,

σ(t) = σ0 sin (ωt + φ) (2.4)

replacing equation 2.4 on equation 2.1, will be able to obtain the constitutive equation:

σ(t) = ε0
(
G′ sin (ωt) + G′′ cos (ωt)

)
(2.5)

with

G′ (ω) = ω

∫ ∞

0
G(t − ξ) sin (ω (t − ξ)) d (t − ξ) (2.6)

and

G′′ (ω) = ω

∫ ∞

0
G(t − ξ) cos (ω (t − ξ)) d (t − ξ) (2.7)

where G′(ω), G′′(ω) are known as the storage and loss modulus respectively. Expressing the har-
monic functions on the complex plane we have

σ∗

ε∗
= G∗ = G′ + iG′′ (2.8)

where G∗ are define as the complex modulus, and is simply the norm of the loss and storage modulus
contributions.

Mathematical Biosciences and Engineering Volume 17, Issue 3, 2516–2529.



2520

2.3. Fractional viscoelastic model

At recent times the fractional calculus theory, has used to formulate a wide range of new models
on the biomechanics and mechanobiology field [20], the fractional differential and integral equations
have a great development specially in the task of characterize the mechanical behavior of soft tissues
[19] like the brain [25], liver [21], arteries [27, 28, 34] and even the human calcaneal fat pad [24].

We now consider the fractional generalization of the Standard Linear Solid (FSLS), show on Figure
1. For this purpose, is sufficient to replace the first order derivative with the fractional Caputo [35]
derivative of order ν ∈ (0, 1) in their constitutive equations. We obtain the following stress-strain
relationship and the corresponding material functions are described latter.

Figure 1. Graphical representation of the fractional standard linear solid, can be observe that
the basic idea consist in to replace the dash-pot for a new element know as spring-pot, that is
an element between the spring and the dash-pot.

The equation 2.9 is basically the same that in integer order, but here we replace the first derivative
with the Caputo fractional differential operator

∗
0Dν

tσ(t) +
e2

η
σ(t) = (e1 + e2) ∗0Dν

tε(t) +
e1e2

η
ε(t) (2.9)

applying the Laplace transform to both sides of the equation 2.9 we obtain,[
sν +

e2

η

]
σ̄(s) =

[
(e1 + e2)sν +

(
e1e2

η

)]
ε̄(s) (2.10)

solving for ε̄(s)

ε̄(s) =
sν + α

(e1 + e2)sν + β
σ̄(s) (2.11)

where α = e2
η

and β = e1e2
η

, applying the Laplace inverse transform and the convolution law, we have
the analytical solution for FSLS model,

ε(t) =

 δ(t)
e1 + e2

+
1

(e1 + e2)t

∞∑
n=1

(−ζtν)n

Γ(nν)
+

αtν−1

e1 + e2

∞∑
n=0

(−ζtν)n

Γ(ν(n + 1))

 ∗ σ(t) (2.12)

where δ(t) is the traditional Dirac’s delta, ∗ is a convolution and ζ =
β

e1
.
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3. Results

Now we proceed to the implementation of the FSLS to the artery modeling process, first we de-
scribe the relaxation modulus, the creep compliance and the complex modulus, all necessary for the
mechanical one dimensional characterization on the material [36]. Next we briefly shown the process
to the creation of the vectorized image and the exportation to CAD software that aloud to be treating
like a solid with the mechanical properties and restrictions.

3.1. Artery characterization

The values of the constants used on the research are taking for experimental creep relaxation test
realized on [27] and are e1 = 0.68, e2 = 0.39, η = 2.14 and ν = 0.23. Now we describe the material
model functions like the relaxation modulus, creep compliance and complex modulus. The relaxation
modulus for the FSLS has the form,

G(t) = e1 + e2 · Eν

[
−

(
e2

η
tν
)]

(3.1)

where

Eν,ϕ

[(
−

e2

η
tν
)]

=

∞∑
n=0

(
−

e2

η
tν
)n

Γ(νn + ϕ)
(3.2)

is the Mittag-Lleffler function [20] with ν, ϕ ∈ R+ and
e1

η
∈ R. On Figure 2 are plot the relaxation

modulus function for four fractional order values, and the constants value mentioned before.

In the same way, we obtain and plot the creep compliance function, for different fractional values
ν, the creep compliance function J(t) have the form:

J(t) = µ +

(
1
e1
− µ

) [
1 − Eν

[
−

(
e1e2µ

η
tν
)]]

(3.3)

where µ =
1

e1 + e2
.

The complex modulus, present on Figure 2, complete the set of basic functions required for the
mechanical characterization.
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Figure 2. The stress relaxation modulus are plotted on the top-left for four different ν values,
including the one resulting from the experimental adjust. On the top-right can see the creep
compliance, note that for values nearest to one, i.e. ν = 0.9, the functions is almost lineal, that
is the expected when the model has the integer order form. For last, on bottom the complex
modulus is plotted for the classic standard linear solid and the FSLS.

3.2. Three-dimensional construction

The axial dicom images are used to obtain a 2D geometry for every one of the slices, taking care on
identify properly witch points generate each one of the segments, to do that its necessary to establish
a consistent metric respect the patient’s measure and an appropriate Hounsfield scale. The coordinates
are localized and saved on a csv file. Now a spline curve can be generated through the geometric
pattern, this way the cloud of points on each slice are limit by a close contour. This processes are
repeat for the creation of each one of the slices and each one of the respective segments of the artery,
the intima, the media and the adventicia. This procedure is illustrated in the left side of Figure 3.
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Figure 3. On the left side are plotted the graphical resume of the process necessary to obtain
the vectorized representation of the aorta artery with the three constitutive layers. On the
right side of the image we can see the vectorized image exported to finite element method
software, where the mesh process is done.

Once the geometric patterns are due in all the set of axial images. Again a spline is applied to the
set of slices, now to generate the 3D artery segment representation. Therefore this geometry is save on
.iges format and export to CAD software, for the three layer solid representation. Now this is able to
function properly in finite element method analysis software as see on the right side of Figure 3.

Like in all the others numerical methods, the precision of the method consist basically on the size of
the step. If the element is the sufficient small the method converge to the require solution with minimal
error. For that reason we need to do the finest mesh that can be possible in function that the processor
is able to work.

The artery have a total volume of 0.2865 cm3 and are meshed with 654,977 eight node brick el-
ements, i.e. the mesh consist on 2,000,000 element for cubic centimeter. This size of the mesh it’s
necessary to are secure that the finite element method converge to the require solution, because in
other way the software can enter on a infinity loop or brings an non sense solution, from this number
of elements the convergence is the same. The mechanical properties of the three segments are shown
in table 1.

Mathematical Biosciences and Engineering Volume 17, Issue 3, 2516–2529.
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Table 1. Complex modulus values.

Omega g∗ Omega g∗ Omega k∗ Omega k∗ Frecuency
real imag real imag Hz

2.02E-11 4.32E-06 2.18E-11 3.94E-06 0.001
2.02E-09 4.32E-05 2.18E-09 0.000038 0.01
2.02E-07 0.000432 2.18E-07 0.000389 0.1
2.01E-05 0.004323 2.17E-05 0.003897 1.0

-0.056137 0.166779 0.116504 -0.018474 23.0
0.113203 0.267329 0.313763 0.479758 100.0
0.989947 0.032453 0.514424 -0.426401 350.0

The finite element method software are configured to realize the viscoelastic material routine by
the property implementation of the frequency data test. Once the data are introduced on the software,
we need to apply a load on the internal intima surface, simulating the pressure caused by a blood flow
rate of 120/80 mmHg as shown on Figure 4 [37], and a constant load pressure on the exterior externa
surface due to muscular compression originated by the muscles that round the artery, the temperature
of the body will be consider constant, the extremes of the aorta are fixed by a constraint option and for
last the interaction between the layers is set as a tie restriction.

Blood flow pressure

Numerical approximation
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Figure 4. Numerical aproximation of one singular pulse of blood preassure.

The result of the solid’s deformation is shown on top of Figure 5, where the simulation exhibit a
tendency or pattern of the deformation route and not necessarily the real deformation, the behavior
showed by the artery concord with those founded and predicted previously by [24, 19].

In Figure 5 the efforts of von Mises also known as equivalent efforts are show since these are
obtained from a relationship that combines the main efforts in an equivalent effort that can be used
to compare with the effort of transfer of the analyzed material. The values of the von Mises stress
obtained in this research are consistent with previously developed investigations in the experimental
field where values of 0.213 MPa for blood pressure of 120mmHg are reported, which coincides with
the results obtained by simulation using the viscoelastic fractional method.
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In previous research it is founded that the area where the maximum stress values are presented, is
distributed in the intimate layer of the artery and is located in the place where it changes its geometry,
that is, where there is a change in artery curvature [40].

Figure 5. On top we show the deformation pattern of the aorta artery due to a single blood
flow pulse of 120/80 mm/Hg. On the bottom the Von Misses distribution are show, we can
see that the highest values are localized were the artery it’s subject to compression, also we
can see that the stress is basically distributed on the first and third layer, note that the media
is almost on blue color.

Finally, Figure 6 shows the distribution of internal pressure caused by blood flow where 0.03MPa
pressure zones are identified in general and some 0.098MP maximum pressure zones, which is consis-
tent with the results previously published by Holzapfel [41]

Figure 6. Pressure distribution in the artery segment, caused by the blood pulse.

The results obtained were compared with experiments carried out in 2014, where fractional models
have been used to characterize various soft tissues, showing that the parameters determined in the
research are within the range of those previously found [24, 25, 19].
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The stress distribution and the maximum values funded in the research concords with those previ-
ously reported by Holzapfel [40, 41], using an hyperelastic model with prony series.

4. Conclusion

First we obtained the reconstruction of a segment of the aortic artery based on medical images
obtained from a computerized axial tomography scanner, using the Hounsfield scale we could identify
each of its three constituent layers (intima, media and adventitia). In addition, the process of exporting
the medical image in a vectorized geometry was carried out with which it was possible to export to a
solid form, that could be manipulated in a finite element software.

Compared with previous works where simulations of the biomechanical effects of the artery were
performed using geometric idealizations, considering the layers of the artery as perfect cylinders, it
was observed that when doing this what is had for the state of stress consists of a distribution perfectly
symmetrical of the stresses, and in the case of the state of deformations in the same way there is a
constant deformation in all directions of the solid. However, the geometry of the artery does not consist
of a series of cylinders, so it was found in the development of the investigation that the distribution of
stress has its local maximum, speaking of von Mises stress, at the point where the artery presents a
change in curvature that generates a great deformation at that point, unlike to a uniform deformation,
will end up affecting more to one end of the artery.

In this paper we shown that viscoelastic fractional models represents properly the mechanical be-
havior of the aortic artery, based on a uniaxial simple model.

In addition, it has been proven that with the viscoelastic fractional model, values similar to those
previously provided in the literature are obtained without the use of prony series, which considerably
reduces the computation time required.
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para caracterizar los efectos biomecánicos ocasionados por el flujo sanguı́neo Rev. Int. Metod.
Numer. Dis., 33 (2017), 10–17.

Mathematical Biosciences and Engineering Volume 17, Issue 3, 2516–2529.



2529

38. K. Volokh, Challenge of biomechanics, Molecul. Cellul. Biomechan., 10 (2013), 107–135.

39. J. Navarro, D. Sánchez, L. Quijano, J. Briceño, Un sistema presión-volumen para la medición de
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