Citation: Diane Denny. Existence of a unique solution to an elliptic partial differential equation when the average value is known[J]. AIMS Mathematics, 2021, 6(1): 518-531. doi: 10.3934/math.2021031
[1] |
D. Denny, Existence of a unique solution to a quasilinear elliptic equation, J. Math. Anal. Appl., 380 (2011), 653-668. doi: 10.1016/j.jmaa.2011.03.046
![]() |
[2] |
P. Embid, On the Reactive and Non-diffusive Equations for Zero Mach Number Flow, Commun. Part. Differ. Eq., 14 (1989), 1249-1281. doi: 10.1080/03605308908820652
![]() |
[3] | L. Evans, Partial Differential Equations, Graduate Studies in Mathematics 19, American Mathematical Society, Providence, Rhode Island, 1998. |
[4] | D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, SpringerVerlag, Berlin, 1983. |
[5] |
S. Klainerman, A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math., 34 (1981), 481-524. doi: 10.1002/cpa.3160340405
![]() |
[6] | A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag: New York, 1984. |
[7] | J. Moser, A rapidly convergent iteration method and non-linear differential equations, Ann. Scuola Norm. Sup., Pisa, 20 (1966), 265-315. |