Research article

Almost multi-quadratic mappings in non-Archimedean spaces

  • Received: 16 March 2020 Accepted: 08 June 2020 Published: 17 June 2020
  • MSC : 39B52, 39B82, 47H10

  • In this article, we introduce the generalized multi-quadratic mappings and then describe them as a equation. As a special case of such mappings, we study the Hyers-Ulam stability of multi-quadratic mappings in non-Archimedean spaces by applying a fixed point theorem. Moreover, we prove that such mappings can be hyperstable.

    Citation: Abasalt Bodaghi, Choonkil Park, Sungsik Yun. Almost multi-quadratic mappings in non-Archimedean spaces[J]. AIMS Mathematics, 2020, 5(5): 5230-5239. doi: 10.3934/math.2020336

    Related Papers:

  • In this article, we introduce the generalized multi-quadratic mappings and then describe them as a equation. As a special case of such mappings, we study the Hyers-Ulam stability of multi-quadratic mappings in non-Archimedean spaces by applying a fixed point theorem. Moreover, we prove that such mappings can be hyperstable.


    加载中


    [1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Jpn., 2 (1950), 64-66. doi: 10.2969/jmsj/00210064
    [2] A. Bahyrycz, K. Cieplinski, J. Olko, On Hyers-Ulam stability of two functional equations in nonArchimedean spaces, J. Fix. Point Theory A., 18 (2016), 433-444. doi: 10.1007/s11784-016-0288-x
    [3] L. C. Becker, T. A. Burton, I. K. Purnaras, Integral and fractional equations, positive solutions, and Schaefer's fixed point theorem, Opuscula Math., 36 (2016), 431-458. doi: 10.7494/OpMath.2016.36.4.431
    [4] A. Bodaghi, Intuitionistic fuzzy stability of the generalized forms of cubic and quartic functional equations, J. Intell. Fuzzy Syst., 30 (2016), 2309-2317. doi: 10.3233/IFS-152001
    [5] A. Bodaghi, I. A. Alias, Approximate ternary quadratic derivations on ternary Banach algebras and C*-ternary rings, Adv. Differ. Equ., 2012 (2012), 11.
    [6] A. Bodaghi, I. A. Alias, M. H. Ghahramani, Ulam stability of a quartic functional equation, Abstr. Appl. Anal., 2012 (2012), 232630.
    [7] A. Bodaghi, I. A. Alias, M. H. Ghahramani, Approximately cubic functional equations and cubic multipliers, J. Inequal. Appl., 2011 (2011), 53.
    [8] A. Bodaghi, C. Park, O. T. Mewomo, Multiquartic functional equations, Adv. Differ. Equ., 2019 (2019), 312.
    [9] A. Bodaghi, Th. M. Rassias, A. Zivari-Kazempour, A fixed point approach to the stability of additive-quadratic-quartic functional equations, Int. J. Nonlinear Anal. Appl., 11 (2020), 17-28.
    [10] A. Bodaghi, B. Shojaee, On an equation characterizing multi-cubic mappings and its stability and hyperstability, Fixed Point Theory, arXiv:1907.09378v2.
    [11] J. Brzdȩk, K. Ciepliński, A fixed point approach to the stability of functional equations in nonArchimedean metric spaces, Nonlinear Anal-Theor., 74 (2011), 6861-6867. doi: 10.1016/j.na.2011.06.050
    [12] T. A. Burton, A note on existence and uniqueness for integral equations with sum of two operators: progressive contractions, Fixed Point Theory, 20 (2019), 107-111. doi: 10.24193/fpt-ro.2019.1.06
    [13] T. A. Burton, I. K. Purnaras, Equivalence of differential, fractional differential, and integral equations:Fixed points by open mappings, MESA., 8 (2017), 293-305.
    [14] K. Ciepliński, On the generalized Hyers-Ulam stability of multi-quadratic mappings, Comput. Math. Appl., 62 (2011), 3418-3426. doi: 10.1016/j.camwa.2011.08.057
    [15] K. Ciepliński, Generalized stability of multi-additive mappings, Appl. Math. Lett., 23 (2010), 1291-1294. doi: 10.1016/j.aml.2010.06.015
    [16] M. E. Gordji, A. Bodaghi, C. Park, A fixed point approach to the stability of double Jordan centralizers and Jordan multipliers on Banach algebras, U. Politeh. Buch. Ser. A., 73 (2011), 65-73.
    [17] K. Hensel, Uber eine neue Begrndung der Theorie der algebraischen Zahlen, Jahresbericht der Deutschen Mathematiker-Vereinigung, 6 (1897), 83-88.
    [18] D. H. Hyers, On the stability of the linear functional equation, P. Natl. Acad. Sci. USA., 27 (1941), 222-224. doi: 10.1073/pnas.27.4.222
    [19] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities: Cauchy's Equation and Jensen's Inequality, Springer Science & Business Media, 2009.
    [20] C. Park, A. Bodaghi, Two multi-cubic functional equations and some results on the stability in modular spaces, J. Inequal. Appl., 2020 (2020), 1-16. doi: 10.1186/s13660-019-2265-6
    [21] T. M. Rassias, On the stability of the linear mapping in Banach spaces, P. Am. Math. Soc., 72 (1978), 297-300. doi: 10.1090/S0002-9939-1978-0507327-1
    [22] E. Ramzanpour, A. Bodaghi, Approximate multi-Jensen-cubic mappings and a fixed point theorem, Ann. Univ. Paedagog. Crac. Stud. Math., 19 (2020), 141-154.
    [23] J. M. Rassias, M. Arunkumar, E. Satya, Non-stabilities of mixed type Euler-Lagrange k-cubicquartic functional equation in various normed spaces, Math. Anal. Contemp. Appl., 1 (2019), 1-42. doi: 10.37256/cm.11201976.1-11
    [24] S. Salimi, A. Bodaghi, A fixed point application for the stability and hyperstability of multi-Jensenquadratic mappings, J. Fix. Point Theory A., 22 (2020), 9.
    [25] S. Salimi, A. Bodaghi, Hyperstability of multi-mixed additive-quadratic Jensen type mappings, U. nP. B. Sci. Bull., Series A, 82 (2020), 55-66.
    [26] S. M. Ulam, Problems in Modern Mathematic, John Wiley & Sons, Inc., New York, 1964.
    [27] X. Zhao, X. Yang, C. T. Pang, Solution and stability of the multiquadratic functional equation, Abstr. Appl. Anal., 2013 (2013), 1-8.
    [28] A. Zivari-Kazempour, Stability of cosine type functional equations on module extension Banach algebras, Math. Anal. Contemp. Appl., 1 (2019), 44-49.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3442) PDF downloads(271) Cited by(11)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog