Citation: Wei Zhao, Lei Liu, Yan-Jun Liu. Adaptive neural network control for nonlinear state constrained systems with unknown dead-zones input[J]. AIMS Mathematics, 2020, 5(5): 4065-4084. doi: 10.3934/math.2020261
[1] | S. C. Tong, X. Min, Y. X. Li, Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions, IEEE Trans. Cybernetics, DOI:10.1109/TCYB.2020.2977175, 2020. |
[2] | M. Krstic, I. Kanellakopoulos, P. V. Kokotovic, Nonlinear and Adaptive Control Design. Hoboken, NJ, USA: Wiley, 1995. |
[3] | D. P. Li, Y. J. Liu, S. C. Tong, et al. Neural networks-based adaptive control for nonlinear state constrained systems with input delay, IEEE Trans. Cybernetics, 49 (2019), 1249-1258. doi: 10.1109/TCYB.2018.2799683 |
[4] | C. L. P. Chen, Y. H. Pao, An integration of neural network and rule-based systems for design and planning of mechanical assemblies, IEEE Trans. Syst. Man, Cybernetics, 23 (1993), 1359-1371. |
[5] | D. P. Li, L. Liu, Y. J. Liu, et al. Adaptive NN control without feasibility conditions for nonlinear state constrained stochastic systems with unknown time delays, IEEE Trans. Cybernetics, 49 (2019), 4485-4494. doi: 10.1109/TCYB.2019.2903869 |
[6] | S. C. Tong, Y. Li, Y. M. Li, et al. Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems, IEEE Trans. Syst., Man Cybernetics, Part B, 41 (2011), 1693-1704. doi: 10.1109/TSMCB.2011.2159264 |
[7] | Y. J. Liu, Q. Zeng, S. C. Tong, et al. Adaptive neural network control for active suspension systems with time-varying vertical displacement and speed constraints, IEEE Trans. Ind. Electron., 66 (2019), 9458-9466. doi: 10.1109/TIE.2019.2893847 |
[8] | L. Liu, Y. J. Liu, S. C. Tong, et al. Integral Barrier Lyapunov function based adaptive fuzzy control for switched nonlinear systems, Sci. China Infor. Sci., DOI: 10.1007/s11432-019-2714-7, 2019. |
[9] | S. C. Tong, Y. M. Li, G. Feng, et al. Observer-based adaptive fuzzy backstepping dynamic surface control for a class of MIMO nonlinear systems, IEEE Trans. Syst., Man Cybernetics, Part B, 41 (2011), 1124-1135. doi: 10.1109/TSMCB.2011.2108283 |
[10] | Z. Yao, J. Yao, W. Sun, Adaptive RISE control of hydraulic systems with multilayer neural networks. IEEE Trans. Ind. Electron., 66 (2018), 8638-8647. |
[11] | Z. Liu, G. Lai, Y. Zhang, et al. Adaptive neural output feedback control of output-constrained nonlinear systems with unknown output nonlinearity, IEEE Trans. Neural Networks Learn. Syst., 26 (2015), 1789-1802. doi: 10.1109/TNNLS.2015.2420661 |
[12] | T. Zhang, M. Xia, Y. Yi, Adaptive neural dynamic surface control of strict-feedback nonlinear systems with full state constraints and unmodeled dynamics, Automatica, 81 (2017), 232-239. doi: 10.1016/j.automatica.2017.03.033 |
[13] | T. T. Gao, Y. J. Liu, L Liu, et al. Adaptive neural network-based control for a class of nonlinear pure-feedback systems with time-varying full state constraints, IEEE/CAA J. Automatica Sinica, 5 (2018), 923-933. doi: 10.1109/JAS.2018.7511195 |
[14] | D. P. Li, L. Liu, Y. J. Liu, et al. Fuzzy approximation-based adaptive control of nonlinear uncertain state constrained systems with time-varying delays, IEEE Trans. Fuzzy Systems, DOI: 10.1109/TFUZZ.2019.2919490, 2019. |
[15] | Y. D. Song, S. Zhou, Tracking control of uncertain nonlinear systems with deferred asymmetric time-varying full state constraints, Automatica, 98 (2018), 314-322. doi: 10.1016/j.automatica.2018.09.032 |
[16] | K. Zhao, Y. D. Song, Removing the feasibility conditions imposed on tracking control designs for state-constrained strict-feedback systems, IEEE Trans. Automatic Control, 64 (2018), 1265-1272. |
[17] | Y. Li, C. Yang, S. S. Ge, et al. Adaptive output feedback NN control of a class of discrete-time MIMO nonlinear systems with unknown control directions, IEEE Trans. Syst., Man Cybernetics, Part B (Cybernetics), 41 (2011), 507-517. doi: 10.1109/TSMCB.2010.2065223 |
[18] | M. Roopaei, M. Z. Jahromi, R. John, et al. Unknown nonlinear chaotic gyros synchronization using adaptive fuzzy sliding mode control with unknown dead-zone input, Comm. Nonlinear Sci. Numer. Simul., 15 (2010), 2536-2545. doi: 10.1016/j.cnsns.2009.09.022 |
[19] | L. Liu, Y. J. Liu, D. P. Li, et al. Barrier Lyapunov function based adaptive fuzzy FTC for switched systems and its applications to resistance inductance capacitance circuit system, IEEE Trans. Cybern., DOI: 10.1109/TCYB.2019. 2931770, 2019. |
[20] | C. L. P. Chen, L. Liu, L. Chen, et al. Weighted couple sparse representation with classified regularization for impulse noise removal, IEEE Trans. Image Process., 24 (2015), 4014-4026. doi: 10.1109/TIP.2015.2456432 |
[21] | S. C. Tong, C. L. Liu, Y. M. Li, Fuzzy-adaptive decentralized output-feedback control for large-scale nonlinear systems with dynamical uncertainties, IEEE Trans. Fuzzy Syst., 18 (2010), 845-861. doi: 10.1109/TFUZZ.2010.2050326 |
[22] | D. Yang, X. D. Li, J. L. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Anal.: Hybrid Syst., 32 (2019), 294-305. doi: 10.1016/j.nahs.2019.01.006 |
[23] | S. J. Dyke, B. F. Spencer, P. Quast, et al. Role of control-structure interaction in protective system, Design. J. Eng. Mech., 121 (1995), 322-338. |
[24] | A. P. Darby, M. S. Williams, A. Blakeborough, Stability and delay compensation for real-time substructure testing. J. Eng. Mech., 128 (2002), 1276-1284. |
[25] | X. D. Li, X. Y. Yang, T. W. Huang, Persistence of delayed cooperative models: Impulsive control method, Appl. Math. Comput., 342 (2019), 130-146. |
[26] | Y. Qian, G. Ou, A. Maghareh, et al. Parametric identification of a servohydraulic actuator for real-time hybrid simulation, Mech. Syst. Signal Process., 48 (2014), 260-273. doi: 10.1016/j.ymssp.2014.03.001 |
[27] | Y. Ouyang, W. Shi, J. Shan, et al. Backstepping adaptive control for realtime hybrid simulation including servo-hydraulic dynamics. Mech. Syst. Signal Process., 130 (2019), 732-754. |
[28] | K. P. Tee, B. Ren, S. S. Ge, Control of nonlinear systems with time-varying output constraints, Automatica, 47 (2011), 2511-2516. doi: 10.1016/j.automatica.2011.08.044 |
[29] | T. M. Athira1, S. J. John, H. Garg, A novel entropy measure of Pythagorean fuzzy soft sets, AIMS Mathematics, 5 (2020), 1050-1061. doi: 10.3934/math.20200073 |
[30] | T. Godoy, A. Guerin, Multiple finite-energy positive weak solutions to singular elliptic problems with a parameter. AIMS Math., 3 (2018), 233-252. |