
AIMS Mathematics, 5(5): 4065–4084. 

DOI: 10.3934/math.2020261 

Received: 11 January 2020 

Accepted: 27 March 2020  

Published: 27 April 2020 

http://www.aimspress.com/journal/Math 

 

Research article 

Adaptive neural network control for nonlinear state constrained 

systems with unknown dead-zones input 

Wei Zhao
1
, Lei Liu

2,
* and Yan-Jun Liu

2
 

1 
College of Electrical Engineering, Liaoning University of Technology-121001 Jinzhou, China 

2 
College of Science, Liaoning University of Technology-121001 Jinzhou, China 

* Correspondence: Email: liuleill@live.cn; Tel: +864164198716. 

Abstract: In this paper, an adaptive neural network tracking control problem for a class of strict 

feedback systems is disposed. The neural network adaptive control method is introduced in this 

paper to simplify the controller design. The difficulty in this article is the constraint problem and how 

to resolve dead-zones in the system. In order to overcome these difficulties, the Barrier Lyapunov 

functions (BLF) and backstepping process are introduced to ensure that the full state constraint is 

implemented, meanwhile, keep the system output as close as possible to trace the desired trajectory. 

Dead-zone compensation method is also plays an important role in controller design. Delay 

constraint is introduced to solve the problem of uncertain initial state. In the end, the stability of the 

closed-loop system is proved. Simulation results show that the developed method is effective. 
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1. Introduction  

In the last few years, the uncertainties general consist in the nonlinear systems, the most 

important is that it is also widely applied in constraint. By taking adaptive control [1], the parametric 

uncertainty of nonlinear system is presented in [2]. In the actual systems, out of the realistic need as 

well as the difficulty of operations, the unknown continuous functions are approximated, which is 

based on fuzzy logic systems (FLSs) or neural networks (NNs) in [3–7]. On the basis of NNs or 

FLSs, adaptive control algorithm comes up for nonlinear single-input single-output (SISO) systems [8]. 

As same as for MIMO nonlinear systems [9] with unknown functions and discrete-time systems, the 
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above method also applies. Besides, a multilayer NNs estimator was first developed in [10] to 

improve the compensation accuracy of model-based feedforward control terms. However, the 

aforementioned results do not refer to constraint. 

As one of the most important factors restricting the system performance, constraints extensive 

exist in actual systems, such as robotic manipulator system, nonuniform gantry crane and so on. 

Constraint cannot be omitted, otherwise it may have an impact on the equipment and something 

unexpected, thus, constraint control has become a significant portion of nonlinear control. As we all 

know, the Barrier Lyapunov function (BLF) is the significant tool to dispose constrained problem. So 

far it widespread application in nonlinear systems with output constraint in [11] and full state 

constraints in [12–13], and its effectiveness is also verified. The NNs or FLSs is used to design 

adaptive controllers for nonlinear systems using neural networks with constant constraint in [5]. 

Nevertheless, none of the above methods mention time-varying constraints in [14]. In this article, the 

time-varying with full state constraints are further studied. Adaptive controllers are designed for 

time-varying output constraints and time-varying full-state constraints [15], respectively. However, 

the above backstepping recursion method ignore the feasibility conditions of virtual controllers, 

namely, the virtual controller is within the given constraint bounded. In [16], a new coordinate 

transformation is introduced to completely remove this limitation. 

The constraints of the above research are all direct constraints on the states, whether full state 

constraints or other types of constraints. Subsequent some studies are not limited to state constraints. 

At present, the state transfer function is introduced for coordinate transformation in [17] indirect 

processing constraint such as constrain the error. Compared with the above-mentioned research 

methods, the advantage of this approach is not only independent of initial tracking condition, but also 

suitable for asymmetric time-varying constraints, which is studied in [15]. However, in any of these 

cases, the effect of dead-zone on constraint is omitted. 

Mention nonlinear input, the most common are dead-zones, saturation, time-delay, and so on. 

An innovative approach is to propose a dead-zone compensation in motion control systems using 

adaptive fuzzy logic control. In this paper, the dead-zone nonlinear input is our focus. The existing 

dead-zones prevent us from getting the desired control results, and the problem caused by it is 

serious. For instance, if the robot servo system has nonlinear links such as friction and unknown dead 

zone, it not only reduces the efficiency of the control system, but also lead to the instability of the 

system. In recent years, the study of dead-zone has become the focus of control research. In [18], for 

discrete-time plants with unknown dead-zone, a new control structure with adaptive dead region 

inverse is put forward. To this purpose, some adaptive control method is proposed, such as neural 

network control and adaptive fuzzy sliding mode control. Adaptive tracking of asymmetric 

dead-zone input nonlinear systems with uncertain parameters is proposed. As is well-known, for 

dead-zone in multi-input multi-output nonlinear system, which has lower triangular structure and 

asymmetric structure, a new control method is proposed. To eliminate dead-zone effects, the 

dead-zones compensation control is implemented for precision instrument control. 

In this paper, the adaptive neural network control method is proposed, it is the realization of the 

control target. The design of the controller is beneficial. After comprehension of above achievements, 

the control scheme has the following advantages. 

1) Compared with previous adaptive neural network control methods, this article takes into account 

more complex case. The effects of delay constraints and dead-zones on system performance are 

considered, which is more practical in line with the needs of the actual system. 
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2) State transition function is introduced; the appropriate time node is selected to ensure that the 

states are in the constraint bounds. Namely, the initial state is out of bounds, and then in the bounds. 

There is no mention of delay constraints in [16], the problem of delay constraints is considered in 

this paper. It provides convenience for error tracking that not widely involved in the previous 

research for nonlinear adaptive control. 

3) In this paper, based on the introduction of BLF, potential dead-zones in the system is resolved, 

which affects the stability of the system and increases steady state error. Manipulative know m  and 

unknown d , the difficult problem of controller design is solved. 

2. Problem formulation and preliminaries  

Consider a class of nonlinear strict-feedback systems with dead-zones as following: 

   

      

1

1

, 1,..., 1i i i i i i

n n n n n

x g x x f x i n

x g x D u t f x

y x

   


 




     (2.1) 

 

where 1[ , , ]T

nx x x R   with 1[ , , ]T

i jx x x  1, ,j n  , ,ix R    D u t R  and y R  

are the state variables, the input and the output of the systems, respectively,  i ig x  are unknown 

control coefficients and  i if x  are unknown smooth functions.     ,i ci cix k t k t  , 
ix  is 

unconstrained when  0,t T . Nevertheless, when [ , )t T  , 
ix  are within the given bound. So as 

to ensure the validity of the constraint, the value of T  is crucial. Let      ci i cik t x t k t   , where 

 cik t  and  cik t  are given. 

Remark 1: There are many factors that affect system performance, but one of the most 

significant is constraint. In order to ensure that constraint is not violated in the control process, the 

work that needs attention in the adaptive control strategy is proposed in [19–30]. In this paper, to 

make sure constraints are not violated, the transfer function is introduced for coordinate 

transformation. Constraints appear some time later, the system stability is improved.  

The delay constraint means that the constraint occurs over a period of time, which does not have 

to constrain the signal all the time. By designing the appropriate controller, the signal satisfies the 

constraint condition after a certain time. 

 

Figure 1. The structure diagram of dead zone. 
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All of state variables in the system (2.1) are constrained in the compact set.   D u t  is a 

dead-zone defined as: 

  

    

 

    

,

0,

,

r r r

l

l l l

m u t b u t b

D u t b u t b

m u t b u t b

  


   


  

     (2.2) 

where  u t  is the dead-zone input, 
rm  and 

lm  respectively stand for dead-zone right slope and 

left slope, 
rb  and 

lb represent the right and left cut point of the input nonlinearity. The detailed 

structure diagram of dead zone is given in Figure 1. 

The aforementioned model can be transformed into the following form: 

        D u t m t u t b t         (2.3) 

where 

 
 

 

, 0

, 0

r

l

m u t
m t

m u t


 



 

and 

 

 

     

 

,

,

,

r r r

l r

l l l

m b u t b

b t m t u t b u t b

m b u t b

 


    


 

 

Assumption 1. The function  m t  is known,  b t  is unknown and its up bound is  b t , 

namely,    b t b t . 

3. Control objective 

The task is to design an adaptive controller u , such that the system output y  tracks a desired 

trajectory  dy t . All the signals in the closed-loop system are bounded, meanwhile the full state 

constraints are not violated. It holds that      d d dy t y t y t   , where  dy t  and  dy t  are 

continuous positive functions, with    1c dk t y t  and    1c dk t y t . 

In this paper, on account of radial basis function neural networks (RBFNNs) approximate ability, 

it is chosen to approximate unknown and continuous function. 

Consider a continuous function  h z :
qR R , the following form can be obtained: 

   *T

nnh z S z
        (3.1) 

where the input variable q

zz R  , desired weight matrix *

1 2[ , , ]T l

l R     , 1l   is the 

NN node number. In addition,      1 , ,
T

lS z s z s z    , it is often expressed by Gaussian function, 

which has the following form: 
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 
   

2
exp , 1,2, ,

T

i i

i

i

z z
s z i l

 



   
  

    

where 1 2, , ,i i i iq        is the center of NNs and 
i  is the width of the Gaussian function. 

According to the character of NNs, with regard to any continuous unknown function, it can be 

represented as 

     *Th z S z z  
        (3.2) 

where  z  is alluded to as the least approximate error and  z   with 0   for any 

zz . The weight matrix 
*  has the following representation 

   * arg min sup
l

z

T

R Z

h z S z


 
 

 
 

  

Assumption 2. The function  i ig x  is unknown, time-varying, and bounded away from zero, 

respectively. Its upper bound and lower bound are 
ig  and ig , They are also unknown continuous 

function, such that  0 i i i ig g x g   , n

ix R  . 

A new asymmetric Barrier Lyapunov function is introduced 

 

         

2

1 2

t
V

F t t F t t



 


 
       (3.3) 

where  1F t  and  2F t  are positive functions,  t  will be defined later. Note that V  is valid 

in the interval      1 2F t t F t   . 

Then, the transfer function is introduced to better constrain the states. The function is defined as  

     

 

 

0, 0

, 0 1,...,

,

i i

i

t

t t z t t T i n

t Tz t

 

 


   




   (3.4) 

where 

 

2

1 , 0

1,

n
T t

t T
t T

t T



  
       


      (3.5) 

The effect of (3.4) is to solve the problem of uncertain initial conditions. In the meantime, ( )t  

is a continuous and differentiable function. 

Remark 2: The T  is a time node. There exist two crucial features for ( )t , (0) 0   and 

( ) 1t   for t T . These two properties have important applications in the conversion of initial 

values, that is to transform a non-zero initial value into a zero initial value. In the end, their values 
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will converge to a finite bounded. 

4. Adaptive neural controller design and stability analysis 

In the following study, adaptive control method and backstepping recursive are used to design 

virtual controllers 
i , actual controller u  and adaptive laws ˆ

iw . Adaptive control process has a 

total of n  steps, the coordinate transformation is introduced as  

 1 2,...,i i iz x i n          (4.1) 

In the step 1 , virtual controller 
1  and adaptive law 

1ŵ  are defined as follows: 

1 1 1 1 1 1
ˆk z w P            (4.2) 

1 1 1 1 1 1 1
ˆ ˆw G P w            (4.3) 

where 
1k  is a positive constant,

 1 0   is a constant, 
1 0 

 
is a constant, 

1ŵ  stands for adaptive 

parameter. In addition, 
1 , 

1P , and 
1G  will be defined later. 

In the step  2 1i i n   , virtual controller 
i  and adaptive law ˆ

iw  are defined as follows: 

ˆ
i i i i i ik z w P             (4.4) 

ˆ ˆ
i i i i i i iw G P w             (4.5) 

where 
ik  is a positive constant,

 
0i   is a constant,

 
0i 

 
is a constant, ˆ

iw  stands for adaptive 

parameter. In addition, 
i , 

iP , and 
iG  will be defined later. 

In the last step, actual controller u  and adaptive law for ˆ
nw  are defined as follows: 

 
1

ˆ
n n n n nu k z w P

m
          (4.6) 

ˆ ˆ
n n n n n n nw G P w            (4.7) 

where 
nk  is a positive constant, 0n   is a constant,

 
0n 

 
is a constant, ˆ

nw  stands for 

adaptive parameter. In addition, 
n , 

nP , and 
nG  will be defined later. 

Let us consider tracking error 
1 1 dz x y  . From the first Eq (2.1), we get the derivation of 

1z  

 1 1 2 1 1 2 1 1d dz g x f y g z f y           (4.8) 

From (3.4), we obtain  

     1 1 1 2 1 1 1 1 1 2 1 1d dz g z f y g g z f y                   

Remark 3: We just think about 0 t T  , so let      i it t z t  . States are constrained 

indirectly through constraints on transition functions, this will be discussed below. 

From  1 1,...,i i iz x i n    , then we get 
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 

   

1 1

1
1

1 1 1

1

1
1

1 1 1

1

i i i i i

i
i

i i i j j j i

j j

i
i

i i i i j j j i

j j

z g x f

g x f g x f
x

g z f g x f
x







 

 




  






  



  


    




     







    (4.9) 

where 

 
1

1
1 1 1

1

i
i

i j j j i

j j

g x f
x


 




  




   


      (4.10) 

with 

 

 

 

 

 

 

 

 1 1 1 11 1 1 11 1 1 1
1 2 10 1 0 0 1 0

2 1

i i i j i i i jj k j ki i i i
i d j jj k j kj j k j j k

d j j

y F F
y F F

   
 



           
      

   
    

   
       

From (3.4), we obtain the following dynamics 

   

 

1
1

1 1 1

1

1
1

1 1 1

1

i
i

i i i i i i j j j i

j j

i
i

i i i i i i j j j i

j j

z g z f g x f
x

z g g f g x f
x


     


    




  






  



 
         

 
         




 

Substituting (2.3) into 
1n n nz x    , one deduces that 

   
1

1
1 1

1

n
n

n n n j j j n

j j

z g mu b f g x f
x







 




     


    (4.11) 

where 

 
1

1
1 1 1

1

n
n

n j j j n

j j

g x f
x


 




  




   


      (4.12) 

with 

 

 

 

 

 

 

 

 1 1 1 11 1 1 11 1 1 1
1 2 10 1 0 1 0 0

2 1

n n n j n n j nj k k jn n n n
n d j jj k k jj j k j k j

d j j

y F F
y F F

   
 



           
      

   
    

   
       

then, we obtain the following dynamics 

   
1

1
1 1

1

n
n

n n n j j j n n

j j

z f g x f g mu b
x


    




 



 
         

  
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Please see the appendix for the specific derivation process 

Theorem 1: Consider a class of nonlinear system (2.1) with a dead-zone (2.2) under 

Assumptions 1–2, virtual controllers are designed in (4.2) and (4.4), and the actual controller is 

designed in (4.6). Meanwhile the adaption laws are constructed in (4.3), (4.5) and (4.7). If the design 

parameters are chosen appropriately, it ensures that all signals in the closed-loop system are UUB 

and bounded. The system output y  tracks a desired trajectory  dy t . 

Proof. It is obvious that  
2 2

ˆ
2 2

j j

j j j j j

w w
w w w w w      we can derive that  

  

2

1 2 1 2 1 2 1 2

1 2

2

0

j j j j j j j j j j j j j

j j j j

F F F F F F F F

F F

    

 

     

   
     (4.13) 

Then, we get 

     

2

1 2 1 22 2

2

1 2 1 2

2

[ ]

j j j j j j j

j j j

j j j j j j j j

F F F F
G

F F F F

  
 

   

 
 

   
   (4.14)

   1 2 1 2 1 22 / 1j j j j j j j j j jF F F F F F              (4.15) 

Hence, we have the following inequality: 

  

2

2 2

1 1 1 11 2
2 2

n n n n
j j j jj

n j j j j j

j j j jj jj j j j

n

g g
V k g w w

F F

V c

 

  



   

     
 

  

   
  (4.16) 

where  min , 0j j jk g   , 2

1 12

n n
j j

j j

j jj

g
c w



 

     

Besides, from (4.16), we get 

    0 0 t

n nV t c V c e           (4.17) 

Hence, we obtain that  nV t l , it implies that 
1ŵ l  and  0iV t l . The upper of  i t  

is  1iF t  and lower is  2iF t , so      1 2i i iF t t F t   . Based on the shifting function  t , 

when [0, )t T ,  t  is strictly increasing. And  0 0  , when and only when 0t  , then, 

     0 0 0 0i iz   . We get      1 20 0 0i i iF F   . When 0 t T  ,  t  is not zero. From 

(4.8),    i iz t t  t ,  iz t  is bounded because  i t
 
is bounded. When t T ,   1t  , 

then we can get    i iz t t , so      1 2i i iF t z t F t   . In conclusion,  iz t  is bounded anyway. 

According to the definition of 
11F  and 

12F , thus 
11F , 

12F , 11F  and 12F  are bounded. From 

1 1 dz x y  , 
1z  is bounded and 

1x  is also bounded. Because
11F , 

12F , 11F , 12F , 
1ŵ , 

dy , 
dy , 

 
and

 
  are bounded, it follows that virtual controller 

1  and adaptive law 1ŵ  are bounded. Then 

follow the definition of 
21F  and 

22F , thus 
21F , 

22F , 21F  and 22F  are bounded. From 

2 2 1z x   , 
2z  is bounded and 

2x  is also bounded. In the similar way, 
2  and 2ŵ  can also be 

bounded. Continue this derivation, we can obtain that  3, ,ix i n ,  3, , 1i i n   , 

 ˆ 3, ,iw i n  and control input u  are bounded. In a word, all signals in closed-loop systems are 
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bounded. The proof is completed. 

5. Simulation example 

In this paper, to prove the effectiveness of this method, the simulation experiment is given. 

Consider the following nonlinear systems 

  
1 2

1 2
2

1

sin( )

2

x x

D u tmgl x Bx
x

M M M

y x





  




      (5.1) 

where y  and u  are the outputs and inputs of the system. Meanwhile,   D u t  is the output of 

the dead zone, described as 

  
0.2( -0.3), 0.3

0, 0.3 0.3

0.3( +0.3), 0.3

u u

D u t u

u u




   
  

    (5.2) 

and the states 
1x  and 

2x  are constrained by      1 1 1c ck t x t k t    and      2 2 2c ck t x t k t    

with  1 0.07 0.01sin(2 )ck t t  ,  1 0.11+0.05sin(4 )ck t t ,  2 0.3sin(3 )+0.6ck t t , 

 2 0.4sin(2 )+0.72ck t t . The ideal trajectory 
dy  is chosen as y =0.05cos(6 )d t . The initial states 

are chosen as  1 0 0.16x  ,  2 0 0.001x  ,  1
ˆ 0 0.6w  , 

2
ˆ (0) 0.279w  . The controllers and 

adaptive laws of simulation system are chosen as follow: 

   

    

1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1

2 2 2 2 2 2 2

ˆ

1
ˆ

ˆ ˆ

ˆ ˆ

T

T

k z G w G S z S z

u k z G w G S z S z
m

w G P w

w G P w

    

   

   

   

   

   

 

 

 

In the simulation, the first NN includes 10 nodes with the center 
1  evenly spaced on 

     1,1 1,1 1,1      with width 
1 1  , the second NN includes 16 nodes with the center 

2  

evenly spaced on          3,3 3,3 3,3 3,3 3,3          with width 
2 1  . The parameters in the 

simulation system are given as 1m kg , 29.8 /g m s , 1l m , 20.5 .M kg m , 1 . .B N m s . The 

control parameters are selected as 
1 29k  , 

2 44k  , 
1 0.01  , 

2 0.01  , 
1 0.1  , 

2 0.5  . 

Delay constraint time 1T  , 
1x  and 

2x  are out of bounds, when  0,1t  and while 1T  , 
1x  

and 
2x  are expected completely within the bounds. The selection of the delay constraint time is 

based on the minimum tracking error and the best tracking performance. Besides, according to the 

desired trajectory, we obtain that 
11 0.01sin(2 ) 1.93F t   and 

12 0.05sin(4 ) 1.89F t  , 

21=0.222+0.1sin(5 )F t  and 
22 =0.25+0.05sin(10 )F t . 
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The simulation results are given in Figures 2–7. Figure 2 shows the trajectory 
dy , output y  

and constrained intervals with a good tracking performance. Figure 3 shows the trajectory of error 

1z . The trajectory of the dead-zone  D u  is given in Figure 4. The trajectory of state 
2x  is 

displayed in Figure 5. The trajectory of error 
2z  and adaptive laws are shown in Figure 6 and 

Figure 7, respectively. Simulation results prove that all signals are bounded. 

 

Figure 2. The trajectory 
dy , output y  and constrained intervals. 

 

Figure 3. The trajectory of error 
1z . 
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Figure 4. The trajectory of the dead-zone  D u . 

 

Figure 5. The trajectory of state 2x . 
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Figure 6. The trajectory of error 
2z  and constrained intervals.

 

Figure 7. The trajectories of 1ŵ  and 2ŵ . 

6. Conclusions 

An adaptive neural network tracking control method is introduced for the strict feedback 

nonlinear systems with unknown dead-zones and full state constraints. The parameters of the 

dead-zones are unknown but bounded. Combining backsteping technique with neural network, it 

ensures that the state constraints are not violated. The feasibility of the control algorithm is proved. 

In the meantime, all signals in the closed-loop system are UUB. In this paper, delay constraint and 

BLF are combined. In other words, the constraint occurs after a period of time, it is not constrained 

from the beginning. Furthermore, the tracking error converges to a small area away from zero. In the 

end, simulation results verify the effectiveness of the design. We will further investigate the control 

performance by setting different delay times such as time-varying delay, which will enrich the 

applied range of the proposed control method. Besides, since the reliability is an interested topic and 
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has been well discussed in [23–27], it will be taken into account in our future work. 

7. Appendix 

Step  1: In order to achieve the desired control objective, the following Barrier Lyapunov 

function is chosen 

 

         

2

1

10

11 1 12 1

t
V

F t t F t t



 


 
 

where  11F t  and  12F t  are time varying continuous functions. Its definition will be given later. 

For  1 t , its scope is      11 1 12F t t F t  . The time-varying functions  11F t  and  12F t  are 

chosen such that 

       11 1 12 1,c d c dF t k t ny F t k t ny     

where n  is a positive constant. 

Consider the Barrier Lyapunov function as 

1 2

10 1

12

g
V V w


          (7.1) 

where 
1 0   is a constant,  2

*

1 1maxk K Kw  , 
1 1 1

ˆw w w   stands for the estimation error, with 

1ŵ
 
being the estimation of 

1w . Based on (3.4), we get the time derivative of 
1V  

 

 

1

1 1 1 1 1 1 1 1

1

1

1 1 1 1 1 2 1 1 1 1 1 1

1

ˆ

ˆ[ ]d

g
V G N w w

g
G g g z f y N w w

  


     


  

      

   (7.2) 

where 

  
11 12 11 1 12 1

1 2

11 1 12 1

2F F F F
G

F F

 

 

 


   

 

and  

 11 12 11 12 11 12 1

1

11 12 11 1 12 12

F F F F F F
N

F F F F



 

   


 
. 

In this way, the design of controller and adaptive law are simplified. 

Combining the Assumption 2, on the basis of Young’s inequality, we get  
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2
2 2 2 1

1 1 1 2 2 1 1 2

24

g
G g g G

g
             (7.3) 

2 2 2 2

1 1 1 1 1 1 1

1

1

4
G z g G z

g
             (7.4) 

2 2 4 2

1 1 1 1 1 1 1

1

1

4
G N g G N

g
           (7.5) 

Substituting (7.3), (7.4) and (7.5) into (7.2) leads to 

2
12 3 2 2 2 2 2 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1

1 2 1

1
ˆ( )

4 2
d

g g
V G g g G z g G N z f y g G w w

g g
      


           (7.6) 

Let 

2 3 2 2

1 1 1 1 1 1 1 1 1 1 1( ) dh z g G z g G N z f y          (7.7) 

The unknown continuous function 
1 1( )h z  can be approximated by an RBF NN as 

   *

1 1 1 1 1 1 1( ) Th z S z z           (7.8) 

Substituting (7.7) and (7.8) into (7.6) and using Young’s inequality, one gets 

 
2

2 2 2 1
1 1 1 1 1 1 1

14
G z g G

g


             (7.9) 

     * 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1

1

1

4

T TG S z g G w S z S z
g

         (7.10) 

Then, we obtain  

12 2 2

1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1

1

ˆ( )
g

V G g g g w P g G w w     


        (7.11) 

with 

   1 1 1 1 1 1 1

TP G S z S z   

1 1 1G    
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2 2

1 1
1

2 1 1

3

4 4 4

g

g g g


     

From Assumption 2, we get 

2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2

1 1 1 1 1 1 1 1 1 1 1 1 1

ˆ

ˆ

g G k g G g G g G w P

k g G g G g G w P

      

    

   

   
 

then 

12 2 2 2

1 1 1 1 1 2 1 1 2 1 1 1 1

1

ˆ
g

V k g G g G w w   


         (7.12) 

Step  i   2,..., 1i n  : The following Barrier Lyapunov function is chosen as 

 

         

2

0

1 2

i

i

i i i i

t
V

F t t F t t



 


 
 

Consider the BLF as 

2

1 0
2

i

i i i i

i

g
V V V w


            (7.13) 

where 0i 
 
is a constant,  2

*maxi k K Kiw  , ˆ
i i iw w w   stands for the estimation error, with

ˆ
iw
 
being the estimating of 

iw , Based on (3.4), we get the time derivative of 
iV
 

 
1 1 1

2 2 2 2

1 1

1 1 1

1 1 1
2

1 1 1

2 2

1 1

1

ˆ ˆ

ˆ ˆ

i i i
j i

i j j j j i i i i j j j j i i i i i i i

j j jj i

i i i
j i

j j j j j j j j i i

j j jj i

i i i i

i i i i i i i i i

i

g g
V k g G g G w w G N w w

g g
k g G w w w w

g G
G N g g z

G

      
 

 
 

 
    

  

 

  

  

  

 



        

     


    



  

  

 
1

1
1 1

1

i
i

i i i j j j i

j j

G f g x f
x


  




 







 
      



(7.14) 

where 

  
1 2 1 2

2

1 2

2 i i i i i i
i

i i i i

F F F F
G

F F

 

 

 


   
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and 

 1 2 1 2 1 2

1 2 1 22

i i i i i i i

i

i i i i i i

F F F F F F
N

F F F F



 

   


 
 

According to the Young’s inequality, it yields 

2
2 2 2

1 1 1

14

i
i i i i i i i i

i

g
G g g G

g
     



         (7.15)                             

2 2 2 2 1

4
i i i i i i i

i

G z g G z
g

             (7.16) 

2 2 4 2 1

4
i i i i i i i

i

G N g G N
g

           (7.17) 

Let  
2 21

1 12 3 2 21
1 1

1

( )
i

i i i ii
i i i j j j i i i i i i i i i

j j i

g G z
h z f g x f g G z g G N z

x G


  


 

 




      


  (7.18) 

The unknown continuous function ( )i ih z  can be approximated by an RBF NN as 

   *( ) T

i i i i i i ih z S z z           (7.19) 

Substituting (7.18) and (7.19) into (7.14) and using Young’s inequality, one gets 

2
2 2 2

4

i
i i i i i i

i

G g G
g


              (7.20) 

     * 2 2 2 1

4

T T

i i i i i i i i i i i i i

i

G S z g G w S z S z
g

        (7.21) 

Then, we obtain 

 

1 1
2 2 2 2

1 1

1 1

1

1

ˆ

ˆ

i i
j

i j j j j j j j i i i i

j j j

i
i

i i i i i i i i i i i j

ji

g
V k g G w w g G

g
G g g g w P w w

   


   


 

 

 





   

     

 

    (7.22)

 

with 

   T

i i i i i i iP G S z S z   

i i iG    
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2 2

1

3

4 4 4

i i
i

i i i

g

g g g





   

 

Let 

2 2ˆ ˆ
i i i i i i i i i i i i i i i i i i i i i i i i i i i i i ig G g k G g G g G w P g k G g G g G w P                   

Then, we get 

2 2 2 2

1 1

1 1 1

ˆ
i i i

j

i j j j j j j j j i i i i

j j jj

g
V k g G w w g G   


 

  

           (7.23) 

Step  n : Because nV  is similar to iV , we can figure out the following formula 

 

 

2 2 1 1
1 1 2

1 1

1 1
21

1 1

1 1

ˆ ˆ
n n

n n n n n j

n n n n n n n n n n j j j j

j jn n j

n n
n

n n n j j j n j j j j

j jj

g G g g
V G g mu b z G N w w w w

G

G f g x f k g G
x

 
    

 


   

 
 

 

 


 

 

 
          

 

 
       

 

 
(7.24)

 

Since b  is bounded, one obtains / /b m b m   where   is a constant. Using Young’s 

inequality get the following formula: 

 
2 2

2 2 2

4

n
n n n n n n n n n n n n n n

m gb
G g mu b G g mu G g m G g mu G m

m


               (7.25) 

According to the Young’s inequality, it causes 

2 2 2 2 1

4
n n n n n n n

n

G z g G z
g

            (7.26) 

2 2 4 2 1

4
n n n n n n n

n

G N g G N
g

          (7.27) 

Denote 

 
2 21

1 12 3 2 21
1 1

1

( )
n

n n n nn
n n n j j j n n n n n n n n n n n

j j n

g G z
h z f g x f G m g G z g G N z

x G


    


 

 




       


 (7.28)

The unknown continuous function ( )n nh z  can be approximated by an RBF NN as 

   *( ) T

n n n n n n nh z S z z         (7.29) 
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Substituting (7.28) and (7.29) into Error! Reference source not found., and using the Young’s 

inequality, it yields 

2
2 2 2

4

n
n n n n n n

n

G g G
g


            (7.30) 

     * 2 2 2 1

4

T T

n n n n n n n n n n n n n

n

G S z g G w S z S z
g

        (7.31) 

Then, using the above inequalities we get  

 
1 1 1

2

1 1 1

ˆ ˆ
n n n

j n

n j j j j j j j j n n n n n n n n n n

j j jj n

g g
V k g G w w G g mu g g w P w w    

 

  

  

            (7.32) 

where 

   T

n n n n n n nP G S z S z   

n n nG    

2 2 2
3

4 4 4

n n
n

n n

m g

g g

 
   

 

with 

2 2ˆ ˆ
n n n n n n n n n n n n n n n n n n n n n n n n n n n n nG g mu k g G g G g G w k g G g G g G w                      

Then, we get 

2

1 1 1

ˆ
n n n

j

n j j j j j j j j

j j jj

g
V k g G w w 

  

           (7.33) 
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