Research article

On GT-convexity and related integral inequalities

  • Received: 23 March 2020 Accepted: 21 April 2020 Published: 26 April 2020
  • MSC : 26A51, 26B12, 41A55

  • In the paper, the authors introduce a new class of convex functions, GT-convex functions, establish some integral inequalities for GT-convex functions and for the product of two GT-convex functions, and give some applications to classical special means.

    Citation: Shu-Hong Wang, Xiao-Wei Sun, Bai-Ni Guo. On GT-convexity and related integral inequalities[J]. AIMS Mathematics, 2020, 5(4): 3952-3965. doi: 10.3934/math.2020255

    Related Papers:

  • In the paper, the authors introduce a new class of convex functions, GT-convex functions, establish some integral inequalities for GT-convex functions and for the product of two GT-convex functions, and give some applications to classical special means.


    加载中


    [1] G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335 (2007), 1294-1308. doi: 10.1016/j.jmaa.2007.02.016
    [2] Y. M. Chu, M. A. Khan, T. U. Khan, et al. Generalizations of Hermite-Hadamard type inequalities for MT-convex functions, J. Nonlinear Sci. Appl., 9 (2016), 4305-4316. doi: 10.22436/jnsa.009.06.72
    [3] W. Liu, Ostrowski type fractional integral inequalities for MT-convex functions, Miskolc Math. Notes, 16 (2015), 249-256. doi: 10.18514/MMN.2015.1131
    [4] W. Liu, W. Wen, J. Park, Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9 (2016), 766-777. doi: 10.22436/jnsa.009.03.05
    [5] M. A. Noor, K. I. Noor, M. U. Awan, Some inequalities for geometrically-arithmetically h-convex functions, Creat. Math. Inform., 23 (2014), 91-98. doi: 10.37193/CMI.2014.01.14
    [6] J. Park, Hermite-Hadamard-like type inequalities for twice differentiable MT-convex functions, Appl. Math. Sci., 9 (2015), 5235-5250.
    [7] M. Tunç, Y. Subas, I. Karabayir, On some Hadamard type inequalities for MT-convex functions, Int. J. Open Problems Compt. Math., 6 (2013), 101-113.
    [8] S. H. Wang, Hermite-Hadamard type inequalities for operator convex functions on the coordinates, J. Nonlinear Sci. Appl., 10 (2017), 1116-1125. doi: 10.22436/jnsa.010.03.22
    [9] S. H. Wang, F. Qi, Inequalities of Hermite-Hadamard type for convex functions which are n-times differentiable, Math. Inequal. Appl., 16 (2013), 1269-1278.
    [10] B. Y. Xi, F. Qi, Hermite-Hadamard type inequalities for geometrically r-convex functions, Studia Sci. Math. Hungar., 51 (2014), 530-546.
    [11] B. Y. Xi, F. Qi, Inequalities of Hermite-Hadamard type for extended s-convex functions and applications to means, J. Nonlinear Convex Anal., 16 (2015), 873-890.
    [12] X. M. Zhang, Y. M. Chu, X. H. Zhang, The Hermite-Hadamard type inequality of GA-convex functions and its application, J. Inequal. Appl., 2010, Art. ID 507560, 11 pages, Available from: https://doi.org/10.1155/2010/507560.
    [13] T. H. Zhao, Y. M. Chu, Y. P. Jiang, Monotonic and logarithmically convex properties of a function involving gamma functions, J. Inequal. Appl., 2009, Art. ID 728612, 13 pages, Available from: http://dx.doi.org/10.1155/2009/728612.
    [14] B. G. Pachpatte, On some inequalities for convex functions, RGMIA Res. Rep. Coll., 6 (2003), Suppl., Art. 1, Available from: http://rgmia.org/v6(E).php.
    [15] Y. Wu, F. Qi, D. W. Niu, Integral inequalities of Hermite-Hadamard type for the product of strongly logarithmically convex and other convex functions, Maejo Int. J. Sci. Technol., 9 (2015), 394-402.
    [16] H. P. Yin, F. Qi, Hermite-Hadamard type inequalities for the product of (α, m)-convex functions, J. Nonlinear Sci. Appl., 8 (2015), 231-236. doi: 10.22436/jnsa.008.03.07
    [17] H. P. Yin, F. Qi, Hermite-Hadamard type inequalities for the product of (α, m)-convex functions, Missouri J. Math. Sci., 27 (2015), 71-79. doi: 10.35834/mjms/1449161369
    [18] J. Q. Wang, B. N. Guo, F. Qi, Generalizations and applications of Young's integral inequality by higher order derivatives, J. Inequal. Appl., 2019, Paper No. 243, 18 pages, Available from: https://doi.org/10.1186/s13660-019-2196-2.
    [19] M. Tunç, H. Yildirim, On MT-convexity, arXiv preprint (2012), Available from: https://arxiv.org/abs/1205.5453.
    [20] C. P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl., 3 (2000), 155-167.
    [21] C. P. Niculescu, Convexity according to means, Math. Inequal. Appl., 6 (2003), 571-579.
    [22] T. Y. Zhang, A. P. Ji, F. Qi, Some inequalities of Hermite-Hadamard type for GA-convex functions with applications to means, Matematiche (Catania), 68 (2013), 229-239.
    [23] S. S. Dragomir., Inequalities of Hermite-Hadamard type for GA-convex functions, Ann. Math. Sil., 32 (2018), 145-168.
    [24] H. J. Skala, On the characterization of certain similarly ordered super-additive functionals, Proc. Amer. Math. Soc., 126 (1998), 1349-1353. doi: 10.1090/S0002-9939-98-04702-9
    [25] B. Y. Xi, D. D. Gao, T. Zhang, et al. Shannon type inequalities for Kapur's entropy, Mathematics, 7 (2019), no. 1, Article 22, 8 pages, Available from: https://doi.org/10.3390/math7010022.
    [26] B. Y. Xi, Y. Wu, H. N. Shi, et al. Generalizations of several inequalities related to multivariate geometric means, Mathematics, 7 (2019), no. 6, Article 552, 15 pages, Available from: https://doi.org/10.3390/math7060552.
    [27] I. A. Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Spaces, 2020, Art. ID 3075390, 7 pages; Available from: https://doi.org/10.1155/2020/3075390.
    [28] M. A. Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Difference Equ., 2020, Paper No. 99, 20 pages, Available from: https://doi.org/10.1186/s13662-020-02559-3.
    [29] A. Iqbal, M. A. Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Spaces, 2020, Art. ID 9845407, 18 pages, Available from: https://doi.org/10.1155/2020/9845407.
    [30] M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for coordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019, Paper No. 317, 33 pages, Available from: https://doi.org/10.1186/s13660-019-2272-7.
    [31] T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 114 (2020), no. 2, Article ID 96, 14 pages, Available from: https://doi.org/10.1007/s13398-020-00825-3.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3516) PDF downloads(309) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog