Citation: Xiaoxiao Zheng, Jie Xin, Yongyi Gu. Orbital stability of solitary waves to the coupled compound KdV and MKdV equations with two components[J]. AIMS Mathematics, 2020, 5(4): 3298-3320. doi: 10.3934/math.2020212
[1] | R. Hirota, J. Satsuma, Soliton solutions of a coupled Korteweg-de Vries equation, Phys. Lett. A, 85 (1981), 407-408. doi: 10.1016/0375-9601(81)90423-0 |
[2] | A. R. Chowdhury, R. Mukherjee, On the complete integrability of the Hirota-Satsuma system, J. Phys. A Math. Gen., 17 (1984), 231-234. doi: 10.1088/0305-4470/17/5/002 |
[3] | B. L. Guo, L. Chen, Orbital stability of solitary waves of coupled KdV equations, Differ. Integral Equ., 12 (1999), 295-308. |
[4] | J. Angulo, Stability of cnoidal waves to Hirota-Satsuma systems, Mat. Contemp., 27 (2004), 189-223. |
[5] | J. Angulo, Stability of and instability to Hirota-Satsuma system, Differ. Integral Equ., 18 (2005), 611-645. |
[6] | V. Narayanamurti, C. M. Varma, Nonlinear propagation of heat pulses in solids, Phys. Rev. Lett., 25 (1970), 1105-1108. doi: 10.1103/PhysRevLett.25.1105 |
[7] | M. Toda, Waves in nonlinear lattice, Prog. Theor. Phys. Supp., 45 (1970), 174-200. doi: 10.1143/PTPS.45.174 |
[8] | S. Q. Dai, Solitary wave at the interface of a two-layer fluid, Appl. Math. Mech., 3 (1982), 771-788. |
[9] | M. Wadati, Wave propagation in nonlinear lattice Ⅰ, Ⅱ, J. Phys. Soc. JPN, 38 (1975), 673-686. doi: 10.1143/JPSJ.38.673 |
[10] | S. Q. Dai, G. F. Sigalov, A. V. Diogenov, Approximate analytical solutions for some strong nonlinear problems, Sci. China Ser. A, 33 (1990), 843-853. |
[11] | X. D. Pan, Solitary wave and similarity solutions of the combined KdV equation, Appl. Math. Mech., 9 (1988), 311-316. doi: 10.1007/BF02456144 |
[12] | S. Y. Lou, L. L. Chen, Solitary wave solutions and cnoidal wave solutions to the combined KdV and MKdV equation, Math. Meth. Appl. Sci., 17 (1994), 339-347. doi: 10.1002/mma.1670170503 |
[13] | W. P. Hong, New types of solitary-wave solutions from the combined KdV-mKdV equation, Nuovo Cimento Soc. Ital. Fis. B., 115 (2000), 117-118. |
[14] | D. J. Huang, H. Q. Zhang, New exact travelling waves solutions to the combined KdV-MKdV and generalized Zakharov equations, Rep. Math. Phys., 57 (2006), 257-269. doi: 10.1016/S0034-4877(06)80020-0 |
[15] | W. G. Zhang, G. L. Shi, Y. H. Qin, et al. Orbital stability of solitary waves for the compound KdV equation, Nonlinear Anal. Real., 12 (2011), 1627-1639. doi: 10.1016/j.nonrwa.2010.10.017 |
[16] | M. Grillakis, J. Shatah, W. Straussr, Stability theory of solitary waves in the presence of symmetry Ⅰ, J. Funct. Anal., 74 (1987), 160-197. doi: 10.1016/0022-1236(87)90044-9 |
[17] | M. Grillakis, J. Shatah, W. Straussr, Stability theory of solitary waves in the presence of symmetry Ⅱ, J. Funct. Anal., 94 (1990), 308-348. doi: 10.1016/0022-1236(90)90016-E |
[18] | M. A. Alejo, Well-posedness and stability results for the Gardner equation, NODEA-Nonlinear Differ., 19 (2012), 503-520. doi: 10.1007/s00030-011-0140-3 |
[19] | P. E. Zhidkov, KortewegCde Vries and Nonlinear Schrödinger Equations: Qualitative Theory, Springer, Berlin, 2011. |
[20] | C. Muñoz, The Gardner equation and the stability of multi-kink solutions of the mKdV equation, Discrete Contin. Dyn. Syst., 36 (2016), 3811-3843. doi: 10.3934/dcds.2016.36.3811 |
[21] | T. P. de Andrade, A. Pastor, Orbital stability of one-parameter periodic traveling waves for dispersive equations and applications, J. Math. Anal. Appl., 475 (2019), 1242-1275. doi: 10.1016/j.jmaa.2019.03.011 |
[22] | G. Alves, F. Natali, A. Pastor, Sufficient conditions for orbital stability of periodic traveling waves, J. Differ. Equations, 267 (2019), 879-901. doi: 10.1016/j.jde.2019.01.029 |
[23] | C. Guha-Roy, Solitary wave solutions of a system of coupued nonlinear equation, J. Math. Phys., 28 (1987), 2087-2088. doi: 10.1063/1.527419 |
[24] | C. Guha-Roy, Exact solutions to a coupled nonlinear equation, Int. J. Theor. Phys., 27 (1988), 447-450. doi: 10.1007/BF00669393 |
[25] | C. Guha-Roy, On explicit solutions of a coupled KdV-mKdV equation, Int. J. Modern Phys. B, 3 (1989), 871-875. doi: 10.1142/S0217979289000646 |
[26] | T. Kato, On the Korteweg-de-Vries equation, Manuscripta Math., 28 (1979), 89-99. doi: 10.1007/BF01647967 |
[27] | B. L. Guo, S. B. Tan, Global smooth solution for coupled nonlinear wave equations, Math. Meth. Appl. Sci., 14 (1991), 419-425. doi: 10.1002/mma.1670140606 |
[28] | J. P. Albert, J. L. Bona, Total positivity and the stability of internal waves in stratified fluids of finite depth, IMA J. Appl. Math., 46 (1991), 1-19. doi: 10.1093/imamat/46.1-2.1 |