Research article

A nonparametric copula distribution framework for bivariate joint distribution analysis of flood characteristics for the Kelantan River basin in Malaysia

  • Received: 23 March 2020 Accepted: 11 May 2020 Published: 19 May 2020
  • The joint distribution analysis of multidimensional flood characteristics i.e., flood peak flow, volume and duration, often facilitates a comprehensive understanding in the hydrologic risk assessments. Copula-based methodology are frequently incorporated via parametric approach to model dependence structure of parametric based univariate marginal distributions. But, if the targeted copulas and univariate marginal distributions belongs to some specific parametric families, it might be problematic, if the underlying assumption are violated. Also, no universal rules and literatures are imposed to model any hydrologic vectors and their joint dependence structure through any fixed or pre-defined distributions. In this literature, a nonparametric copula simulation are incorporated and applied as a case study for 50 years annual maximum flood samples of the Kelantan River basin at the Gulliemard bridge station in Malaysia. In this study, a combination of both parametric and nonparametric marginal distribution separately conjoined by a nonparametric copulas framework, which is based on the Beta kernel function. The Beta kernel copula function are incorporated to estimate bivariate copula density which further used to derived joint cumulative density of flood peak-volume, volume-duration and peak-duration pairs and their associated joint as well as conditional return periods.

    Citation: Shahid Latif, Firuza Mustafa. A nonparametric copula distribution framework for bivariate joint distribution analysis of flood characteristics for the Kelantan River basin in Malaysia[J]. AIMS Geosciences, 2020, 6(2): 171-198. doi: 10.3934/geosci.2020012

    Related Papers:

  • The joint distribution analysis of multidimensional flood characteristics i.e., flood peak flow, volume and duration, often facilitates a comprehensive understanding in the hydrologic risk assessments. Copula-based methodology are frequently incorporated via parametric approach to model dependence structure of parametric based univariate marginal distributions. But, if the targeted copulas and univariate marginal distributions belongs to some specific parametric families, it might be problematic, if the underlying assumption are violated. Also, no universal rules and literatures are imposed to model any hydrologic vectors and their joint dependence structure through any fixed or pre-defined distributions. In this literature, a nonparametric copula simulation are incorporated and applied as a case study for 50 years annual maximum flood samples of the Kelantan River basin at the Gulliemard bridge station in Malaysia. In this study, a combination of both parametric and nonparametric marginal distribution separately conjoined by a nonparametric copulas framework, which is based on the Beta kernel function. The Beta kernel copula function are incorporated to estimate bivariate copula density which further used to derived joint cumulative density of flood peak-volume, volume-duration and peak-duration pairs and their associated joint as well as conditional return periods.


    加载中


    [1] Drainage and Irrigation Department Malaysia (2004) Annual flood report of DID for Peninsular Malaysia. DID: Kuala Lumpur. Available from: http://www.statistics.gov.my/eng/images/stories/files/journalDOSM/V104ArticleJamaliah.pdf.
    [2] Malaysian Meteorological Department (2007) Report on Heavy Rainfall that Caused Floods in Kelantan and Terengganu. MMD: Kuala Lumpur. Available from: https://reliefweb.int/sites/reliefweb.int/files/resources/EE19DAFDE99078B649257266001FED46-Full_Report.pdf.
    [3] Adnan NA, Atkinson PM (2011) Exploring the impact of climate and land use changes on streamflow trends in a monsoon catchment. Int J Clim 31: 815-831. doi: 10.1002/joc.2112
    [4] Chan NW (1997) Institutional arrangement of flood hazard management in Malaysia: an evaluation using criteria approach. Disasters 21: 206-222. doi: 10.1111/1467-7717.00057
    [5] Hussain STPR, Ismail H (2013) Flood frequency analysis of Kelantan River Basin, Malaysia. World Appl Sci J 28: 1989-1995.
    [6] Nashwan MS, Ismail T, Ahmed K (2018) Flood susceptibility assessment in Kelantan river basin using copula. Int J Eng Technol 7: 584-590. doi: 10.14419/ijet.v7i2.10447
    [7] Zhang L, Singh VP (2006) Bivariate flood frequency analysis using copula method. J Hydrol Eng 11: 150-164. doi: 10.1061/(ASCE)1084-0699(2006)11:2(150)
    [8] Zhang L (2005) Multivariate hydrological frequency analysis and risk mapping. Doctoral dissertation, Beijing Normal University.
    [9] Reddy MJ, Ganguli P (2012) Bivariate Flood Frequency Analysis of Upper Godavari River Flows Using Archimedean Copulas. Water Resour Manage 26: 3995-4018. doi: 10.1007/s11269-012-0124-z
    [10] Bobee B, Rasmussen PF (1994) Statistical analysis of annual flood series, In: Menon J (Ed.). Trend in Hydrology, 1. Council of Scientific Research Integration, India, 117-135.
    [11] Krstanovic PF, Singh VP (1987) A multivariate stochastic flood analysis using entropy. In: Singh VP (Ed.). Hydrologic Frequency Modelling, Reidel, Dordrecht, 515-539. doi: 10.1007/978-94-009-3953-0_37
    [12] Yue S (2000) The bivariate lognormal distribution to model a multivariate flood episode. Hydrol Process 14: 2575-2588. doi: 10.1002/1099-1085(20001015)14:14<2575::AID-HYP115>3.0.CO;2-L
    [13] Sandoval CE, Raynal-Villasenor J (2008) Trivariate generalized extreme value distribution in flood frequency analysis. Hydrol Sci J 53: 550-567. doi: 10.1623/hysj.53.3.550
    [14] Song S, Singh VP (2010) Metaelliptical copulas for drought frequency analysis of periodic hydrologic data. Stoch Environ Res Risk Assess 24: 425-444. doi: 10.1007/s00477-009-0331-1
    [15] De Michele C, Salvadori G (2003) A generalized Pareto intensity-duration model of storm rainfall exploiting 2-copulas. J Geophys Res 108: 4067. doi: 10.1029/2002JD002534
    [16] Saklar A (1959) Functions de repartition n dimensions et leurs marges. ublications de l'Institut Statistique de l'Université de Paris, 8: 229-231.
    [17] Nelsen RB (2006) An introduction to copulas. Springer, New York.
    [18] Salvadori G (2004) Bivariate return periods via-2 copulas. Stat Methodol 1:129-144. doi: 10.1016/j.stamet.2004.07.002
    [19] Salvadori G, De Michele C (2004) Frequency analysis via copulas: theoretical aspects and applications to hydrological events. Water Resour Res 40: W12511. doi: 10.1029/2004WR003133
    [20] Salvadori G, De Michele C (2006) Statistical characterization of temporal structure of storms. Adv Water Resour 29: 827-842. doi: 10.1016/j.advwatres.2005.07.013
    [21] Cong RG, Brady M (2011) The interdependence between Rainfall and Temperature: copula Analyses. Sci World J 2012: 405675.
    [22] Karmakar S, Simonovic SP (2008) Bivariate flood frequency analysis. Part 1: Determination of marginal by parametric and non-parametric techniques. J Flood Risk Manag 1: 190-200.
    [23] Adamowski K (1989) A monte Carlo comparison of parametric and nonparametric estimations of flood frequencies. J Hydrol 108: 295-308. doi: 10.1016/0022-1694(89)90290-4
    [24] Silverman BW (1986) Density Estimation for Statistics and Data Analysis, 1st edition. Chapman and Hall, London.
    [25] Kim KD, Heo JH (2002) Comparative study of flood quantiles estimation by nonparametric models. J Hydrol 260: 176-193. doi: 10.1016/S0022-1694(01)00613-8
    [26] Botev ZI, Grotowski JF, Kroese DP (2010) Kernel Density Estimation via Diffusion. Ann Stat 38: 2916-2957. doi: 10.1214/10-AOS799
    [27] Dooge JCE (1986) Looking for hydrologic laws. Water Resour Res 22: 46-58. doi: 10.1029/WR022i09Sp0046S
    [28] Bardsley WE (1988) Toward a General Procedure for Analysis of Extreme Random Events in the Earth Sciences. Math Geol 20: 513-528. doi: 10.1007/BF00890334
    [29] Lall U, Moon YI, Bosworth K (1993) kernel flood frequency estimators: Bandwidth selection and kernel choice. Water Resour Res 29: 1003-1015. doi: 10.1029/92WR02466
    [30] Santhosh D, Srinivas V (2013) Bivariate frequency analysis of flood using a diffusion kernel density estimators. Water Resour Res 49: 8328-8343. doi: 10.1002/2011WR010777
    [31] Moon YI, Lall U (1994) Kernel function estimator for flood frequency analysis. Water Resour Res 30: 3095-3103. doi: 10.1029/94WR01217
    [32] Lall U (1995) Nonparametric function estimation: recent hydrologic contributions, U.S. National Republic. International Union of Geodesy and Geophysics, 1991-1994. Rev Geophys 33: 1093-1099.
    [33] Karmakar S, Simonovic SP (2009) Bivariate flood frequency analysis. Part 2: A copula-based approach with mixed marginal distributions. J Flood Risk Manag 2: 32-44.
    [34] Chen SX, Huang TM (2007) Nonparametric estimation of copula functions for dependence modelling. Can J Stat 35: 265-282. doi: 10.1002/cjs.5550350205
    [35] Latif S, Mustafa F (2020) Trivariate distribution modelling of flood characteristics using copula function-A case study for Kelantan River basin in Malaysia. AIMS Geosci 6: 92-130. doi: 10.3934/geosci.2020007
    [36] Hosking JRM, Walis JR (1987) Parameter and quantile estimations for the generalized Pareto distributions. Technometrics 29: 339-349. doi: 10.1080/00401706.1987.10488243
    [37] Yue S, Rasmussen P (2002) Bivariate frequency analysis: discussion of some useful concepts in hydrological applications. Hydrol Process 16: 2881-2898. doi: 10.1002/hyp.1185
    [38] Rao AR, Hamed KH (2000) Flood frequency analysis. CRC Press, Boca Raton, Fla.
    [39] Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27: 832-837. doi: 10.1214/aoms/1177728190
    [40] Scott DW (1992) Multivariate Density estimation: Theory, Practice and Visualization. Wiley, New York.
    [41] Härdle W (1991) Smoothing Technique with Implementation in S. Springer, New York.
    [42] Kim KD, Heo JH (2002) Comparative study of flood quantiles estimation by nonparametric models. J Hydrol 260: 176-193. doi: 10.1016/S0022-1694(01)00613-8
    [43] Shabri A (2002) Nonparametric Kernel Estimation of Annual Maximum Stream Flow Quantiles, Matematika, 18: 99-107.
    [44] Miladinovic B (2008) Kernel density estimation of reliability with applications to extreme value distribution. Graduate Theses and Dissertations. Available from: https://scholarcommons.usf.edu/etd/408.
    [45] Azzalini A (1981) A note on the estimation of a distribution function and quantiles by a kernel method. Biometrika 68: 326-328. doi: 10.1093/biomet/68.1.326
    [46] Shiau JT (2006) Fitting drought duration and severity with two dimensional copulas. Water Resour Manag 20: 795-815. doi: 10.1007/s11269-005-9008-9
    [47] Harrell FE, Davis CE (1982) A new distribution-free quantile estimator. Biometrika 69: 635-640. doi: 10.1093/biomet/69.3.635
    [48] Brown BM, Chen SX (1999) Beta-bernstein smoothing for regression curves with compact support. Scand J Stat 26: 47-59. doi: 10.1111/1467-9469.00136
    [49] Chen SX (2000) Beta kernel estimators for density functions. Comput Stat Data Anal 31: 131-145. doi: 10.1016/S0167-9473(99)00010-9
    [50] Bounezmarni T, Rombouts JVK (2009) Nonparametric density estimation for positive time series. Comput Stat Data Anal 54: 245-261. doi: 10.1016/j.csda.2009.08.016
    [51] Charpentier A, Fermanian JD, Scaillet O (2006) The estimation of copulas: Theory and practice. In Rank J, editor. Copulas: From theory to application in finance. London: Risk Books, 35-64.
    [52] Kim TW, Valdés JB, Yoo C (2006) Nonparametric approach for bivariate drought characterisation using Palmer drought index. J Hydrol Eng 11: 134-143. doi: 10.1061/(ASCE)1084-0699(2006)11:2(134)
    [53] Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22: 79-86. doi: 10.1214/aoms/1177729694
    [54] Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19: 716-723. doi: 10.1109/TAC.1974.1100705
    [55] Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6: 461-464. doi: 10.1214/aos/1176344136
    [56] Hannan EJ, Quinn BG (1979) The Determination of the Order of an Autoregression. J R Stat Soc Ser B 41: 190-195.
    [57] Shiau JT (2003) Return period of bivariate distributed extreme hydrological events. Stoch Environ Res Risk Assess 17: 42-57. doi: 10.1007/s00477-003-0125-9
    [58] Brunner MI, Seibert J, Favre AC (2016) Bivariate return periods and their importance for flood peak and volume estimations. WIREs Water 3: 819-833. doi: 10.1002/wat2.1173
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3808) PDF downloads(337) Cited by(5)

Article outline

Figures and Tables

Figures(17)  /  Tables(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog