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Abstract: The joint distribution analysis of multidimensional flood characteristics i.e., flood peak 
flow, volume and duration, often facilitates a comprehensive understanding in the hydrologic risk 
assessments. Copula-based methodology are frequently incorporated via parametric approach to 
model dependence structure of parametric based univariate marginal distributions. But, if the 
targeted copulas and univariate marginal distributions belongs to some specific parametric families, 
it might be problematic, if the underlying assumption are violated. Also, no universal rules and 
literatures are imposed to model any hydrologic vectors and their joint dependence structure through 
any fixed or pre-defined distributions. In this literature, a nonparametric copula simulation are 
incorporated and applied as a case study for 50 years annual maximum flood samples of the 
Kelantan River basin at the Gulliemard bridge station in Malaysia. In this study, a combination of 
both parametric and nonparametric marginal distribution separately conjoined by a nonparametric 
copulas framework, which is based on the Beta kernel function. The Beta kernel copula function are 
incorporated to estimate bivariate copula density which further used to derived joint cumulative 
density of flood peak-volume, volume-duration and peak-duration pairs and their associated joint as 
well as conditional return periods. 
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1. Introduction 

The Kelantan River basin in Malaysia is often subjecting to most severe monsoonal flooding and 
perceiving for increasing in term of their frequency and magnitude [1–3]. The expectation of the 
occurrence of catastrophic flooding has increased from once in every 50 years to 15 years from 2004 
in the Kelantan region [1,3,4]. For example, the intense and prolonged precipitation in the year 2002 
caused flooding of a total area of 1640 km2 and affected the total of about 714,287 people or in the 
year December 2014, much heavy precipitation triggered the flood event in the several parts of the 
east coast of the Kelantan river basin and affected more than 200,000 people [3]. Hussain and Ismail 
(i.e., [5]), study revealed that the Gulliemard Bridge, Lebir and Galas gauge stations have highest in 
the flood frequency rather than Nenggiri station. Similarly, Nashwan et al. (i.e., [6]) literature 
pointed that the downstream area of this river basin is the highest risk of devastating flood events. 
The cause of frequent failure of hydrologic or flood defence infrastructure in Malaysia due to the 
impact of moderately severe of flood episodes might be attributed due to the lack of complete flood 
hydrograph or in other words, where only flood peak discharge samples often targeted in deriving 
the flood frequency curve during the structural development. 

Flood is a multidimensional stochastic consequence usually characterized completely through its 
trivariate interdependence vectors i.e., flood peak flow, volume and duration of flood hydrograph [7,8]. 
Flood frequency analysis (FFA) is an approach of establishing the relationship between flood design 
quantiles and their frequency of occurrence or non-exceedance probabilities by fitting probability 
distribution functions (PDFs) [9]. Earlier efforts frequently incorporated the univariate FFA (i.e., [10]) 
but the necessity of estimating flood design hydrograph instead of design quantiles derived from 
single variable flood episodes motivated numerous literatures towards the joint probability analysis 
of flood characteristics using different traditional multivariate functions i.e., Krstanovic and  
Singh [11], Yue [12] and Escalante and Raynal [13]. Such distribution-based modelling approaches 
often surrounded with several statistical constraints and limitations such as, (1) each flood vectors 
must assume to have normal distributions or either transformed to have normal distributions; (2) if 
the number of variables are increased then mathematical formulation becomes more complex and 
complicated; (3) statistical parameter of univariate marginal structure is often employed to model 
their joint dependence structure; (4) limited space are available to justify joint dependence structure 
etc, [7,8,14]. Hence to over the above challenges, De Michele and Salvadori (i.e., [15]), firstly 
incorporated copulas for establishing the joint dependence structure between storm intensity and 
duration. The copulas function segregated the modelling of individual univariate vectors and their 
joint structure separately into two distinct stages, thus attributed higher flexibility in the selection of 
best-fitted marginal distributions not necessary from the same family of probability distributions and 
also their joint structure to capture a wider extent of mutual concurrency and also, preservation in 
their joint association [16,17]. Numerous literatures incorporated bivariate or few trivariate copulas 
distribution as a model risk for tackling different hydrological extremes issues such as, flood 
modelling [18,19], drought modelling [14] rainfall or storm modelling [20] or either modelling of 
hydro-climatic extremes [21] etc. 

The multivariate FFA either with or without copulas has been applied frequently with parametric 
distributions where the parametric functions are often employed to modelled univariate marginal 
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distributions and the parametric copulas function for establishing their joint dependence structure. 
But, the parametric functions always imposed an assumption that the random samples are coming 
from the known populations whose PDF are pre-defined i.e., the marginal distribution is assumed to 
follow some specific family of parametric functions [22]. In actual, no universal rules and studies are 
imposed to model any hydrologic vectors through any fixed or pre-defined distribution functions, 
which would follow different distributions and desire to model separately or in other words, the  
best-fitted marginal distributions not be from the same probability distribution family [23–26]. Also, 
according to Dooge [27], it is already pointed out that no amount of statistical refinement can 
overcome the consequences due to lack of prior distribution information of the observed random 
samples also, it would be quite difficult to approximate distribution tail beyond largest values under 
the parametric framework [28]. Therefore, in the past few decades, an attempt via kernel density 
estimators or KDE recognized as a much flexible and stable non-parametric data smoothing 
procedure to inference about the populations based on the finite observational samples and thus 
motivated in the field of hydrologic or flood frequency analysis and which often yielding a bonafide 
density function [22,23,29,30]. Nonparametric framework didn’t require any prior distribution 
assumptions and will be directly retrieved from distributed series with a higher extent of flexibility in 
their univariate function as compared with parametric density estimators [23,31]. From the above 
review, it is also conclude that few work already performed the univariate nonparametric FFA i.e., 
Adamowski (i.e., [23]), Lall (i.e.,[32]), but only limited literature focused over the establishment of 
copula-based methodologies under nonparametric or semiparametric framework i.e., Karmakar and 
Siminovic [22,33] and Reddy and Ganguli [9], performed bivariate flood modelling using a mixed 
marginal distribution from the parametric and nonparametric families of probability distributions. In 
both cases, the parametric copulas are employed to modelled the joint distribution of flood 
characteristics. On other side, the Chen and Huang (i.e., [34]) study demonstrated a bivariate kernel 
copula framework for handling the problem of boundary bias. Actually, if the targeted copulas and 
univariate marginal distributions belongs to some specific parametric families, it might be 
problematic, if the underlying assumption are violated. Therefore, these nonparametric distribution 
framework can ameliorate these modelling issues and can be able to produce a significant outcomes 
without assuming a particular form for the univariate marginal or multivariate copula distributions. 

A study performed by Shahid and Firuza (i.e., [35]) over this river basin already demonstrated 
the modelling of trivariate joint distribution of flood characteristics by introducing the 3-D copula 
functions under the parametric settings and also pointed the importance of trivariate joint and 
conditional return periods. This literature introduced the concept and importance of nonparametric 
copula-based methodology in the establishment of multivariate FFA. In this study we demonstrated 
the efficacy of nonparametric copula distribution where both parametric and nonparametric marginal 
distribution functions are separately conjoined by a nonparametric copulas framework and applied as 
case study for the daily basis streamflow discharge records from period 1961–2016 for the Kelantan 
River Basin at the Gulliemard Bridge gauge station in Malaysia. This study pointed two different 
modelling approach for estimating the bivariate joint dependency. The first simulation approach 
comprises the modelling of nonparametric marginal distribution with a nonparametric copulas and 
the second approach consisting the modelling of parametric marginal distribution with a 
nonparametric copula. 
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2. Study area 

The Gulliemard bridge station is located at the downstream of Kelantan river near the Kuala 
Kari region. The geographical location of this river basin is Lat 4°30′ N to 6°15′ N and Long 101°E 
to 102°45′ E. It is the longest river of Kelantan state, which originating from the Tahan mountain 
range to the South China Sea in the north-eastern part of Peninsular Malaysia. The river is about 248 
km long with a drain area of 13,100 km2 and which occupying more than 85% of the state of 
Kelantan. The estimated runoff is about 500 m3sec−1 and the variations of annual precipitations for 
this region in between 0 mm (dry period)–1750 mm (wet or north-eastern monsoonal period)  
(i.e., [1]). The major land use of this area is agriculture (i.e., paddy, rubber and oil palm) for 
midstream and downstream and forest for upstream (i.e. near to Gua Musang). Few studies over this 
region such as Chan [4], Adnan and Atkinson [3], pointed that such extreme hydrologic 
consequences are mainly due to rapid human intervention from natural to land use activities in the 
form of deforestations or land clearance either for promoting the agricultural activities through palm 
oil and rubber plantations or either due to logging activities. 

3. Proposed methodology and data analysis 

3.1. Delineation of trivariate flood characteristics 

Annual (Maximum) series or AM also called block (annual) maxima and Peak over Threshold 
(or POT) are the two holistic technique widely accepted in the extreme probability simulations [36]. 
In this study we adopted the AM approach to extract the trivariate flood characteristics. Figure 1, 
illustrates a typical flood hydrograph showing the delineation of trivariate flood characteristics. The 
flood peak flow, P, values are estimated using the maximum streamflow discharge records at an 
annual scale using Eq 1, which indicated that for each year there is only one flood episodes at the 
targeted site (refer to Figure 1) [9,37]. Referred to same Figure 1, the flood duration (D) samples are 
estimated by recognizing the time of rise and fall of the flood hydrograph (i.e., points at Qis and Qie 
in the Figure 1) and volume (V) samples are obtained using Eqs 2 and 3 (i.e., [9,37]). 

 Pi = max�Qij, j = SDi + SDi + 1, … … . . , EDi� = Annual �lood peak series for the ith year  (1) 

 Vi = Vitotal − ViBase�low = ∑ Qij −ED
j=SDi  (1+Di)(Qis+Qie)

2
=  hydrograph volume series  (2) 

Di = EDi − SDi = Hydrograph durations for ith year    (3) 

where Qij = jth days streamflow magnitude for the ith year; Qis and Qie = streamflow magnitude for 
the start date SDi and end date EDi of the flood runoff. The descriptive statistics of the derived flood 
characteristics are listed in Table 1 and their visual interpretations, via the histogram plot and  
box-whisker plot are illustrated in the Figure 2. 
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Figure 1. A typical hydrograph showing flood characteristic (Source: Adapted from 
Latif and Mustafa [35]). 

 

Figure 2. Visualizing the annual flood characteristics using the histogram distribution 
and Box-whisker plot. 
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Table 1. Descriptive statistics of flood characteristics. 

Descriptive statistics P (m3/sec) V (m3) D (days) 

Sample Size 50 50 50 

Range 19670 71558 57 

Mean 6078 19122 19.04 

Variance 2.15E+07 2.14E+08 117.75 

Std. Deviation 4639 14623 10.851 

Coef. of Variation 0.76324 0.76473 0.56993 

Skewness (Pearson) 1.506 1.590 2.210 

Kurtosis (Pearson) 1.883 2.864 6.252 

Min 916.3 3182.3 7 

25% (Q1) 2671.8 8668.5 12 

50% (Median) 4961 15959 16 

75% (Q3) 7711.7 24476 25 

Max 20586 74740 64 

3.2. Univariate analysis 

3.2.1. Parametric marginal distribution analysis 

In this study, we introduced both the set of parametric and nonparametric distributions for 
characterizing the flood marginals. Several models often would fit the data equally well but, each 
would give different estimates of a given quantile especially in the tails of distribution [22]. A 
distinguish varieties of parametric functions are tested as a possible marginal distribution, referred to 
Table 2. The parameters of each fitted distributions are estimated using the maximum likelihood 
estimation (MLE) (i.e., [38]), method of moments (MOM) (i.e., [38]), least square method (LS), and 
L statistics-based method of L-moments (i.e., [36]). All the univariate fitting procedure are carried 
out using the Easyfit software (Mathwave Technologies 2004–2017). After that, the best-fitted 
distributions are selected for each individual flood characteristics using the different goodness-of-fit 
test statistics. 

The parametric functions always imposed an assumption that the random samples are coming 
from the known populations whose PDF are pre-defined (see section 1). In other words, the marginal 
distribution of flood characteristics is assumed to follow some specific family of parametric density 
functions [22]. But in actual, no universal rules and studies are imposed to model any hydrologic 
vectors through any fixed or pre-defined distribution functions, which would follow different 
distributions and desire to model separately. Therefore, analysis based on the parametric concept 
would might reveal for uncertainty in the estimated design quantiles because the parametric 
distributions do not always represent the characteristics of the data, appropriately. 
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Table 2. The mathematical expressions for probability density functions (PDF) of 
different parametric families functions. 

Parametric functions Probability density function (or PDF) Remarks 

Gamma (2P) & (3P) f(x) =  
(x − γ)α−1

βαΓ(α) e
−(x−γ)

β  & 𝑓(x) =  
xα−1

βαΓ(α) e
−x
β   α > 0,  𝛽 > 0,  𝛾 > 0 - shape, scale and 

locations parameter; γ ≡ 0 yield 2-parameter 

gamma structure 

GEV(3P) f(x) = 1
σ

e−(1+kz)−1 k⁄ (1+kz)−1−1 k ⁄ for k ≠ 0   
1
σ

e�−1−e(−z)� for k = 0  
k(shape),σ(scale), μ(location), such that, 
σ > 0 & z ≡ (x−μ)

σ
 

Domain: 1 + k (x − μ) σ⁄  for k ≠ 0 & −∞ <

𝑥 < +∞ 𝑓𝑜𝑟 𝑘 = 0 
Inv. Gaussian (2P) f(x) = � λ

2πx3
e−

λ(x−μ)2

2μ2(x)     λ > 0,  𝜇 > 0 (𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟,   
γ(location parameter) for γ < 𝑥 < +∞ 

Johnson SB(4P) f(x) =  δ
λ√2πz(1−z)

e−0.5�γ+δ ln z
1−z

�
2

  Domain: ξ ≤ x ≤ ξ + λ 

γ,  δ > 0 (shape);  λ
> 0 (scale);  ξ location parameter) 

Log-Gamma (2P) f(x) = (ln x)α−1

xβαΓ(α)
e−�

ln x
β

�  Domain: 0 < 𝑥 < +∞ 

α > 0 ,  𝛽 > 0 (𝑠ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)  
Log-Logistic (2P)  f(x) =  

α
β �

x
β�

α−1
�1 + �

x
β�

α
�
−2

 Domain: γ < 𝑥 < +∞ 

α > 0 (shape);  β > 0(scale) 
Lognormal (2P) 

f(x) =  
e−0.5�ln(x)− μ

σ �
2

(x)σ√2π
  

σ > 0 (shape parameter); 
μ (scale parameter) 

Weibull (2P)  f(x) =  α
β
�x
β
�
α−1

e−�
x
β
�
α

  Domain: α > 0 (shape),  β > 0 (scale)  

3.2.2. Nonparametric estimates of flood marginal distributions 

The concept and idea of kernel density estimators or KDE are firstly introduced by the 
Rosenblatt [39] and which recognized as one the most effective nonparametric procedure that 
incorporates a weighted moving average of the empirical frequency distribution of the samples [40]. 
It is a nonparametric approach to approximate PDF say f(x), of given random observations X. In this 
demonstration, the marginal PDFs for the observed flood characteristics are estimated using kernel 
density estimators. Mathematically, the univariate kernel functions are used to estimate the 
probability density of the random observations having the following statistical property as given 
below; 

∫ K(x)dx = 1+∞
−∞         (4) 

where K(x), defining univariate kernel function which can be used as a PDF [22]. The kernel 
functions can be approximated through a general equation as given below (i.e., [41]): 

Kh(x) = 1
h

K �x
h
�        (5) 
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where h is called the smoothing parameters also known as “bandwidth of kernel functions” that 
regulates level of smoothness and roughness in the shape of estimated PDF [31]. Mathematically, 
one can easily derive the univariate kernel estimates of a random observation say X1, X2, X3, … . Xn 
and having PDF f(x) by averaging the Eq 5 in the given random samples are as given below [42]; 

fh�(x) = 1
nh
∑ Kh �

x−Xi
h
�n

i=1        (6) 

where n = number of random observations; Xi = ith observations and fh�(x) is the kernel density 
estimates. The efficiency of estimated kernel density depends upon two factors: (1) an appropriate 
choice of the kernel bandwidth and (2) selection of kernel functions considered for estimations. After 
reviewing several literatures such as, Moon and Lall [31], Karmakar and Simonovic [22], five 
standard univariate kernel functions are selected and tested in this demonstration where the best-
fitted distribution are used to assign marginal distributions of each flood characteristics, as listed in 
the Table 3. 

Table 3. Some standard univariate Kernel density functions. 

Kernel function K(x) 

Epanechnikov = 0.75(1 − x2), |x| ≤ 1 
= 0, otherwise 

Triangular = 1 − |x|, |x| ≤ 1 
= 0, otherwise 

Bi-weight or Quartic = 0.9375(1 − x2)2, |x| ≤ 1 
= 0, otherwise  

Tri-weight = 1.09375(1 − x2)3, |x| ≤ 1 
= 0, otherwise 

Cosine =
π
4 cos

(πx 2⁄ ), |x| ≤ 1 

= 0, otherwise 

An appropriate choice of kernel smoothing parameter or bandwidth h is often an important 
concern that controls the shape of kernel density estimates [42]. The insufficient or either over 
smoothing would result for rough density or bypass away of the important feature [30]. The several 
bandwidth estimations procedures are solely based on minimizing the estimates of the Mean square 
error or MSE [43] which means it is usually estimated by reducing the gap between theoretical PDF 
and the actual one. The asymptotic mean integrated square error or AMISE depends kernel 
bandwidth, kernel function, sample observations size and targeted density functions [44]. Therefore, 
by selecting an appropriate kernel function and kernel bandwidth value it could be possible to 
minimize AMISE value. According to Silverman (i.e., [24]), the rule of thumb or ROT is proposed to 
minimize the asymptotic MISE value. Therefore, Azzalini (i.e., [45]) and Silverman (i.e., [24]) 
demonstrations estimated the optimal bandwidth h0, which is based on the fact that final distribution 
to be Gaussian or symmetrical and can be formulated as; 
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optimal bandwidth =  h0 = (1.587)σn−1 3⁄      (7) 

where, σ = minimum{Sample standard deviation, (Interquartile range or IQR/1.349)}. 

3.3. Concept of copula function 

The ideas of the copula function has been developed by Saklar (i.e., [16]). According to  
Nelsen [17] copulas connect multivariate probability distributions to their univariate marginal 
probability distribution functions. Mathematically, if (X,Y) be the bivariate random variables with 
continuous marginal distributions u = FX(x) = P(X ≤ x) and v =  FY(y) = P(Y ≤ y), then it can be 
characterized uniquely by its associated dependence function called Copula or C which can be 
defined on the unit square, can be expressed as [17]; 

HX,Y(x, y) = C[FX(x), FY(y)] = C(u, v)       (8) 

where, C is any type of bivariate copulas under consideration; FX(x) = FY(y), defines the cumulative 
distribution functions of univariate random variables X and Y; HX,Y(x, y)  is the bivariate joint 
distribution functions which can be expressed in terms of its univariate marginal functions and the 
associated dependence function C, as revealed from Eq 1. According to Shiau [46] and Zhang and 
Singh [7], the copula C must be unique if FX(x) and FY(y) are continuous and thus can easily 
capture the wider extent of dependencies among random variables. Conversely, if FX(x), FY(y) and 
the copula functions C[x, y] is given, then the above Eq 8 must defines the bivariate joint distribution 
functions with its marginal distributions FX(x)  and FY(y).  Similarly, if fX(x) and fY(y)  are the 
probability density function of variable X and Y, then the joint probability density of the two random 
variables can be expressed as; 

fX,Y(x, y) = c(FX(x), FY(y)) fX(x)fY(y)      (9) 

where, c is the density function of bivariate copula C, can be defined as; 

c(u, v) = ∂2c(u,v)
∂u∂v

        (10) 

for, u = FX(x) and v = FY(y). 
In this demonstrations, we implemented two different modelling approach to established the 

joint distribution analysis of annually basis flood characteristics. All such implemented models are 
discussed separately in the next section 3.4 and 3.5. 

3.4. Simulation of Model type-1 (i.e., nonparametric marginal distribution with nonparametric 
copula) 

In this model simulation, best-fitted marginal distributions are modelled with nonparametric 
kernel density estimation procedure (see, Eq 6 of section 3.3.2) and their joint dependence structure 
are modelled using the nonparametric copula framework which is based on the Beta kernel function 
(see Eq 13) as referred by literatures such as Harrell and Davis [47], Brown and Chen [48], Chen [49] 
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and Bounezmarni and Rombouts [50] (see Figure 3). The beta kernel estimators are free of boundary 
bias, non-negative and achieve the optimal rate of convergence for the mean integrated squared error. 
In other words, it can easily alleviate the severe boundary bias or can easily tackle the issue of 
boundary leakage problems which is often encountered in different standard kernel functions. 
Mathematically, if U1, U2, … … . . , Un be the nth set of uniform random observations with support in 
[0,1], then the univariate Beta kernel function can be defined as; 

b(u) = 1
n
∑ K �Ui,

u
h

+ 1, 1−u
h

+ 1�n
i=1       (11) 

where, h is the bandwidth of kernel function; K(. ,α,β) represents the Beta density function with 
parameters “α” and “β” and which can be mathematically formulated by; 

K(x,α,β) = Γ(α)Γ(β)
Γ(α+β)

x(α−1)(1 − x)β      (12) 

 

Figure 3. Operational flow diagram of Model type-1. 

According to Charpentier et al. [51], the Beta kernel copula can be incorporated to estimate 
bivariate copula density as defined by; 

ch(u, v) = 1
nh2

∑ K �Ui,
u
h

+ 1, 1−u
h

+ 1�n
i=1 × K �Vi,

v
h

+ 1, 1−v
h

+ 1�   (13) 

Therefore, for this model, using Eq 13 we can easily derive the joint PDFs and joint CDFs of 
the flood characteristics. 

3.5. Simulation of Model type-2 (parametric marginal distribution with nonparametric copula) 

In this simulation approach (see Figure 4), the marginal distributions of flood characteristics are 
modelled with parametric families based probability functions (see, section 3.2.1) but their joint 
structure are still modelled under nonparametric copula framework using the Beta kernel copula (see 
Eq 13). As mentioned in the section 3.2.1, a distinguish varieties of parametric families functions are 
introduced and tested to define best-fitted marginal distribution of flood characteristics. Again, using 
the Eq 13 of the Beta kernel copula framework, we can easily modelled the joint behaviour of 
nonparametric marginal distributions and to derived the joint CDFs of the flood characteristics. 

Flood 
characteristics (i.e., 

P, V and D) 

Nonparametric 
marginal 

distributions 
function 

Nonparametric 
copula (i.e., Beta 

kernel copula) 
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Figure 4. Operational flow diagram of Model type-2. 

4. Results and discussions 

4.1. Modelling of parametric and nonparametric marginal distributions 

Referred to section 3.2.1 and Table 2, a distinct variety of parametric functions are introduced 
as a candidate models and their parameters are estimated using the MLE, MOM, LS and L-moments 
algorithms and their estimated values are listed in Table 4. All the univariate distribution fitting 
procedures are carried out using the Easyfit-distribution fitting software. On the otherside, referred to 
section 3.2.2 and Table 3, five standard univariate kernel density functions are selected under 
nonparametric approximation and their bandwidth are estimated using the optimal bandwidth 
algorithm of Eq 7 and which is further employed for estimating the PDFs of individual flood 
characteristics. According to Kim et al. [52], the nonparametric density approximations didn’t 
facilitate any closed form of the PDF and CDF thus, CDFs are estimated through the empirical 
procedure which is based on the numerical integration [25]. 

Table 4. Estimated parameters of fitted probability distributions. 

Kernel function K(x) 

Parametric Functions Peak (P) Volume (V) Durations (D) 

Gamma (2P) a = 1.7166, b = 3540.6 a = 1.71, b = 11183.0 a = 3.0786, b = 6.1845 

Gamma(3P) a = 1.2106, b =4290, g = 884.47 a = 1.0848, b = 14723.0,  

g = 3150.8 

a = 1.4696, b = 8.3319,  

g = 6.7958 

GEV(3P) k = 0.22596, s = 2683.6,  

m = 3765.6 

k = 0.20446, s = 8736.0,  

m = 11890.0 

k = 0.20682, s = 6.0766,  

m = 13.987 

Log-Gamma(2P) a = 129.15, b = 0.06544 a = 164.32, b = 0.05839 a = 35.165, b = 0.08037 

Log-Logistic (2P) a = 2.2801, b = 4541.7 a = 2.2731, b = 14202.0 a = 3.6928, b = 16.426 

Log-Normal (2P) s = 0.7362, m = 8.4513 s = 0.74093, m = 9.5943 s = 0.47178, m = 2.826 

Weibull (2P) a = 1.599, b = 6398.7 a = 1.5993, b = 20008.0 a = 2.5437, b = 20.375 

Inverse. Gaussian (2P) l = 10434.0, m = 6078.0 l = 32699.0, m = 19122.0 l = 58.617, m = 19.04 

Johnson SB (4P) g = 1.5161, d = 0.74495 

l = 27319.0, x = 1304.2 

g = 2.2027, d = 1.0357,  

l = 1.3052E+5, x = 961.8 

g = 2.5314, d = 0.92215, 

l = 118.81, x = 8.2791 

The theoretical CDFs of each flood characteristics which are estimated through both parametric 
and nonparametric distribution framework are compared against empirical non-exceedance 
probabilities using the goodness-of fit test statistics (GOF), for outlining the data reproducing 



182 

AIMS Geosciences   Volume 6, Issue 2, 171–198. 

capabilities and fitness consistency level with the observational samples. The empirical observations 
are estimated using the Gringorten plotting position formulae (i.e., [7]) as given below; 

Pi =  i−1
N+0.12

        (14) 

where, “i” represents the smallest observations within the data sets of N observations when the data 
are arranged in ascending order. Several GOF test statistics are incorporated to measure the fitness 
level such as, error indices statistics called Mean square error (MSE) and Root mean square error 
(RMSE) (i.e., [22]), Kullback- Leibler information measures i.e., Kullback-Leibler (i.e., [53]) based 
information criteria statistics called the Akaike information criteria (AIC) (i.e., [54]), Schwartz’s 
Bayesian information criteria (BIC) (i.e., [55]) and Hannan-Quinn Information criteria (HQC)  
(i.e., [56]), where the best-fitted univariate functions often signify for the minimum value of RMSE, 
MSE, AIC, BIC and HQC statistics, see Table 5a,b. Based on parametric modelling investigation, it 
reveals that the Lognormal-2P distribution are much satisfactory for flood peak samples, the Johnson 
SB (4P) for volume and Gamma(4P) distribution for duration series because these distribution 
possess minimum test statistics values such as for the flood peak series (AIC = −379.344,  
BIC = −375.52, HQC = −377.89, MSE = 0.00046 and RMSE = 0.02163 for the Lognormal (2P) 
distribution), for volume series (AIC = −381.821, BIC = −374.173, HQC = −378.9, MSE = 0.00041 
and RMSE = 0.02028 for the Johnson SB (4P) distribution) and for duration series (AIC = −343.62, 
BIC = −337.88, HQC = −341.438, MSE = 0.000918 and RMSE = 0.030312 for the Gamma (3P) 
distribution) (referred to Table 5a,b). Similarly, for the nonparametric kernel density estimation 
procedure, the performance of Triweight kernel density function is much satisfactory for all the three 
flood characteristics i.e., flood peak, volume and duration series, as referred to Table 6 (indicated by 
bold letter ). Overall, it is conclude that Lognormal (2P), Johnson SB (4P) and Gamma (3P) 
distribution are recognized as most justifiable for describing marginal distribution of flood peak, 
volume and duration series under parametric distribution framework on the otherside, the Triweight 
kernel function is recognized as most parsimonious for all the three flood characteristics. 
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Table 5a. Performance measures based on (a) Information criteria statistics such as AIC, BIC & HQC. 

Functions 

Peak Volume Duration 

AIC BIC HQC AIC BIC HQC AIC BIC HQC 

GEV(3P) –374.335 –368.599 –372.15 –268.985 –263.249 –266.8 –336.32 –330.583 –334.135 

Log-Gamma (2P) –370.146 –366.322 –368.69 –359.914 –356.09 –358.46 –340.53 –336.709 –339.077 

Log-Logistic (2P) –360.392 –356.568 –358.94 –294.927 –291.103 –293.47 –321.32 –317.493 –319.861 

Gamma (2P) –335.861 –332.037 –334.4 –360.025 –356.201 –358.57 –260.55 –256.722 –259.089 

Gamma (3P)  –216.301 –210.565 –214.12 –210.107 –204.371 –207.92 –343.62 –337.88 –341.438 

Log-Normal (2P)  –379.344 –375.52 –377.89 –371.028 –367.204 –369.57 –327.46 –323.633 –326.001 

Weibull (2P) –329.681 –325.857 –328.23 –342.868 –339.044 –341.41 –292.91 –289.085 –291.453 

Inv. Gaussian (2P) –362.489 –358.665 –361.03 –344.722 –340.898 –343.27 –325.76 –321.938 –324.306 

Johnson SB(4P)  –340.899 –333.251 –337.99 –381.821 –374.173 –378.91 –223.65 –216.006 –220.742 

Notes: AIC stands for Akaike information criteria; BIC stands for Bayesian information criteria; HQIC or HQC stands for Hannan-Quinn information criteria. 

Table 5b. Performance measures based on error indices statistics such as MSE and RMSE. 

 Peak Volume Duration 

Functions MSE RMSE MSE RMSE MSE RMSE 

GEV(3P) 0.00049 0.02229 0.00409 0.06394 0.00106 0.03261 

Log-Gamma(2P) 0.00056 0.02372 0.00069 0.02627 0.0010172 0.031894 

Log-Logistic(2P) 0.00068 0.02615 0.00253 0.05032 0.00149 0.03865 

Gamma(2P)  0.00111 0.03341 0.00068 0.02624 0.005037 0.070973 

Gamma(3P)  0.01173 0.10882 0.01327 0.11520 0.000918 0.030312 

Log-Normal(2P)  0.00046 0.02163 0.00055 0.02351 0.001321 0.03635 

Weibull(2P) 0.00126 0.03555 0.00097 0.03115 0.002637 0.05135 

Inv. Gaussian(2P) 0.00066 0.02561 0.00094 0.03059 0.00137 0.03697 

Johnson SB (4P)  0.00093 0.03053 0.00041 0.02028 0.00972 0.09861 

Notes. MSE stands for Mean square error; RMSE stands for Root mean square error. 
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Table 6. Performance measures of the fitted nonparametric kernel functions. 

Flood 

characteristics F(X) 

Error indices statistics Information criteria statistics 

MSE (or 

Mean square 

error) 

RMSE (or Root 

mean square 

error) 

AIC (or Akaike 

information 

criteria) 

BIC (or 

Bayesian 

information 

criteria) 

HQC (or 

Hannan-Quinn 

Information 

criteria) 

P Epanechnikov 0.00038 0.01957 −391.37 −389.45 −390.64 

Bi-weight or quartic 0.00026 0.01620 −410.25 −408.34 −409.52 

Triweight 0.00022 0.01483 −419.07 −417.16 −418.34 

Triangular 0.00028 0.01686 −406.26 −404.35 −405.54 

Cosine 0.00032 0.01800 −399.98 −398.07 −399.25 

V Epanechnikov 0.00093 0.03060 −346.66 −344.75 −345.93 

Bi-weight or quartic 0.00018 0.01350 −428.44 −426.53 −427.71 

Triweight 0.00016 0.01287 −433.27 −431.36 −432.55 

Triangular 0.00020 0.01426 −423.01 −421.10 −422.29 

Cosine 0.00022 0.01514 −417.02 −415.11 −416.30 

D Epanechnikov 0.00059 0.02430 −369.69 −367.77 −368.96 

Bi-weight or quartic 0.00051 0.02265 −376.71 −374.80 −375.99 

Triweight 0.00048 0.02208 −379.27 −377.36 −378.54 

Triangular 0.00055 0.02357 −372.74 −370.83 −372.01 

Cosine 0.00062 0.02496 −367.03 −365.12 −366.30 

4.2. Analysis of Model type-1 and Model type-2 

In the simulation of Model type-1, the best-fitted marginal distributions which are selected 
under the nonparametric distribution framework (see, section 4.1) i.e., the Triweight kernel density 
function for the each individual flood characteristics are introduced into the nonparametric copula 
framework called the Beta kernel copula density (see section 3.4) and using Eq 13 with the uniform 
variables generated using the Triweight kernel functions, we estimated the bivariate copula density 
and joint cumulative distribution function (or JCDFs) for flood peak-volume, volume-duration and 
peak-duration pairs. Figures 5–7 illustrated the bivariate beta copula density function of flood peak-
volume, volume-duration and peak-duration pairs also, Figure 8, represents the comparison between 
simulated (indicated by black colour) flood samples deriving from the beta kernel copula density and 
the observed (indicated by red colour) flood characteristics. 
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Figure 5. Bivariate beta copula density of flood peak-volume series using Model type-1. 

 

Figure 6. Bivariate beta copula density of flood volume-duration pair using Model type-1. 

 

Figure 7. Bivariate beta copula density of flood peak-duration pair using Model type-1. 
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Figure 8. Comparison between the simulated (black colour) flood samples derived from 
beta copula density using Model type-1 and observed (red colour) flood samples. 

Similarly, for the Model type-2, the bivariate beta kernel copula densities for flood 
characteristics are estimated using the same Eq 13 with the uniform flood variables which are 
generated using the Lognormal (2P) and Johnson SB (4P) for flood peak-volume pair, the Johnson 
SB (4P) and Gamma (3P) for flood volume-duration pair and the Lognormal (2P) and Gamma (3P) 
distributions for flood peak-duration pair. Figures 9–11, illustrated the bivariate beta copula density 
function with parametric marginal distribution of the flood peak-volume, volume-duration and  
peak-duration pairs also, Figure 12 represented the comparison between simulated (indicated by 
black colour) flood samples derived from the beta kernel copula density and the observed (indicated 
by red colour) flood characteristics. 
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Figure 9. Bivariate beta copula density of flood peak-volume pair using Model type-2. 

 

Figure 10. Bivariate beta copula density of flood volume and duration series using Model type-2. 
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Figure 11. Bivariate beta copula density of flood peak-duration pair using Model type-2 

 

Figure 12. Comparison between simulated (black colour) samples derived from beta 
copula density function using Model 2 and observed (red colour) flood samples 
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4.3. Estimation of return periods 

4.3.1. Univariate return periods 

In hydrological planning and design, the hydrologist or water practioner are often interested in 
the evaluation of the mean inter-arrival period between two design events which usually defined in a 
year called the return period [18,57]. The basic concept of return periods are thoroughly discussed by 
Yue and Rasmussen (i.e., [37]) and Salvadori and De Michele (i.e., [19]). Mathematically, the 
univariate return period of the targeted flood characteristics that occurs once in a year are estimated 
from the univariate cumulative distribution function or CDF of flood characteristics (say “X”) as 
given below: 

TUnivariate = μ
total no.of �lood per year

= 1
P(X≥x)

= 1
(1−F(x))

= 1
1−CDF(y)

   (15) 

where μ is the mean inter-arrival time between two consecutive flood episodes and that could be 
equal to unity (i.e., μ  = 1) for annual maxima based flood modelling (i.e., [37]). Figure 13 
represented the univariate return periods derived from the best-fitted parametric and nonparametric 
marginal distribution functions of the flood characteristics. 

 

Figure 13. Univariate return periods derived from the best-fitted parametric (red colour) 
and nonparametric (black colour) marginal distribution of flood characteristics. 



190 

AIMS Geosciences          Volume 6, Issue 2, 171–198. 

4.3.2. Bivariate joint return periods 

An effective risk analysis often demands the accountability of multiple potential flood 
characteristics based on joint probability density function or JPDF and joint cumulative distribution 
functions or JCDF [18,19,58]. Actually, the selection of return periods is depending upon the 
importance of undertaken structure as well as its consequences of failure where, their appropriate 
selection often attributed an impact over the strength of design variables quantiles [58]. The joint 
probability distribution can be describe through two different approach such that in the first 
condition both the flood variables (say, P ≥ p AND V ≥ v) simultaneously exceed certain threshold 
during a flood events and their associated return period called AND joint period and it can be written 
in the form of; 

Tp,v
AND = 1

P (P≥p AND V≥v)
= 1

(1−F(p)−F(v)+H(p,v))
= 1

(1−F(p)−F(v)+C(F(p),F(v))
    (16) 

where H(p, v) is the JCDF between flood variable (say, P and V) that can be expressed in the context 
of bivariate Copula function C(F(p),F(v)); F(p) and F(v) best-fitted marginal distribution of the flood 
characteristics P and V. Similarly, in the second situation, the probability either the first or second 
flood variable (say, P ≥ p OR V ≥ v) exceed given threshold and thus their associated return period 
called OR joint return period and can be expressed as; 

TP,V
OR = 1

P (P≥p OR V≥v)
= 1

(1−H(p,v))
= 1

(1−C(F(p),F(v))
      (17) 

Therefore, using Eqs 16 and 17, the joint return periods between flood peak-volume, volume-
duration and peak-duration pairs for the “AND” and “OR” joint cases are estimated and their values 
for few flood combinations are listed in the Tables 7 and 8 . Figures 14 and 15 illustrated the 
estimated “OR” and “AND” joint return periods between peak-volume, volume-duration and peak-
duration for the Model type-1. Similarly, the graphical illustration of the “OR” and “AND” joint 
return periods for Model type-2 are presented in Figures 16 and 17. Based on the estimated joint 
return periods (referred to Tables 7 and 8), it is concluded that the OR-joint return period is smaller 
than AND-joint return periods for different possible combination of the flood characteristics i.e., 
TPVOR < TANDOR . For example, a flood episode, i.e., P = 10463.8 m3s−1, V = 17148 m3 and D = 29 days, 
the OR-joint return period between P-V, TOR

PV = 2.183323266 years, between P-D, TOR
PD = 

4.11086032 years, and between V-D is, TOR
VD = 2.03275 years, derived from Model type-1. 

Similarly, for the same flood combination and same Model type-1, the AND-joint return period is 
TAND

PV = 7.02902155 years, TAND
PD = 50.702086 years and TAND

VD = 24.4200621 years. Similarly, 
for the flood episodes P = 20586.4, m3s−1, V = 43273.2 m3 and D = 7 days, the OR-joint return 
period between P-V, TOR

PV = 11.100995 years, between P-D, TOR
PD = 1.00312117 years, and 

between V-D is, TOR
VD = 1.00290911 years based on the Model type-2. Also, for both the Model 

type-1 and Model type-2, for example from Table 7, the univariate return periods derived from flood 
peak flow, T(P) or volume series, T(V) produces high return periods than derived from their joint 
associations for “OR” cases i.e., T(P) > T(V) > TOR

PV. Similarly, the return periods derived from 
flood volume, T(V) and duration series, T(D) produces high return periods than derived from “OR” 
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joint cases between volume-duration pairs, i.e., T(V) > T(D) > TOR
VD. Also, the return periods 

derived from flood peak, T(P) and duration series, T(D) generated higher return periods than return 
periods for OR-joint cases, i.e., T(P) > T(D) > TOR

PD. Similarly, the same mathematical inequalities 
are exhibited between univariate and bivariate return periods derived from the Model type-2. 

 

Figure 14. OR-joint return periods derived from Model type-1(i.e., nonparametric 
marginal distribution modelled with nonparametric copula function called Beta kernel 
copula). 

 

Figure 15. AND-joint return periods derived from the Model type-1. 

Table 7. Univariate and Bivariate joint return derived from the Model type-1. 

P V D T(P) T(V) T(D) TOR
PV TOR

PD TOR
VD TAND

PV TAND
PD TAND

VD 

10436.8 17148 29 6.053 2.298 10.225 2.183 4.110 2.03 7.029 50.702 24.420 

20586.4 43273.2 7 100 13.765 1.0279 12.548 1.027 1.025 338.580 104.788 14.260 

11192.4 21994.2 30 8.118 3.347 12.610 3.079 5.270 2.805 10.294 78.495 46.272 

9929.3 9667.4 56 5.402 1.402 33.333 1.387 4.815 1.386 5.643 134.531 46.571 

7686.9 41309 19 4.031 9.445 2.456 3.533 1.763 2.094 14.111 11.360 28.132 

5052.6 19073.8 64 2.131 2.769 100 1.822 2.109 2.720 3.552 190.669 281.210 

18339.4 74740 16 21.428 100 1.980 18.361 1.886 1.959 453.389 46.333 224.181 
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Table 8. Univariate and Bivariate joint return periods derived from the Model type-2. 

P V D T(P) T(V) T(D) TOR
PV TOR

PD TOR
VD TAND

PV TAND
PD TAND

VD 

10436.8 17148 29 7.243 2.329 6.969 2.224 3.861 1.944 8.487 44.294 17.102 

20586.4 43273.2 7 45.206 13.394 1.003 11.100 1.003 1.002 149.285 45.491 13.457 

11192.4 21994.2 30 8.460 3.219 7.736 2.981 4.359 2.478 10.712 55.281 27.481 

9929.3 9667.4 56 6.513 1.424 131.578 1.408 6.268 1.420 6.871 625.302 187.388 

7686.9 41309 19 3.995 11.715 2.550 3.604 1.802 2.221 17.180 11.439 36.619 

5052.6 19073.8 64 2.180 2.649 322.580 1.812 2.172 2.635 3.514 627.012 911.610 

18339.4 74740 16 31.434 149.925 1.928 26.730 1.870 1.914 932.964 62.583 324.412 

 

Figure 16. OR-joint return periods derived from the Model type-2 (i.e., parametric 
marginal distribution modelled with nonparametric copula function called Beta kernel 
copula). 

 

Figure 17. AND-joint return periods derived from the Model type-2. 
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4.3.3. Conditional return periods 

In most of the hydrological design requirements, it is often an essential concern to demonstrate 
flood events through highlighting the priority of one over the another design variables. Thus, several 
literature pointed out the necessity of conditional distribution for defining the concept of conditional 
return periods such as Salvadori and De Michele [19], Shiau [46], Zhang and Singh [7], Brunner et 
al., [58]. The conditional return relies on the conditional relationship between flood characteristics 
given that some condition is fulfilled. Mathematically, the conditional return periods of flood peak 
given various percentile value of flood volume or vice-versa or in another words, where the flood 
peak “P” exceeds a threshold “p” given that the volume “V” exceeds a threshold “v” can be 
expressed as; 

 F(p\V ≤ v) = P(P≤p,V≤v)
P(V≤v)

= HP,V(p,v)
F(v)

= C(p,v)
F(v)

      (18)  

 T(P\V)(p\v) = T(p\V≤v) = 1
1−F(p\V≤v)

= F(v)
F(v)−C(F(p),F(v))

    (19) 

Overall, using the above Eq 19, the return periods of one variable conditioning to another 
variable for any possible combination of flood characteristics are estimated and their values for few 
combinations are listed in Tables 9 and 10, derived from the Model type-1 and Model type-2. For 
example, a flood episode with peak flow, P = 10463.8 m3s−1, volume, V = 17148 m3 and duration,  
D = 29 (days), the joint return period of, “P” conditional to “V” is T(p\V ≤ v) = 24.647 years; “P” 
conditioning to “D” is T(p\D ≤ d) = 6.202 years; and “V” conditioning to “D” is  T(v\D ≤ d) = 
2.289 years. On the other side, for the Model type-2, a flood episode characterized with peak flow,  
P = 10463.8 m3s−1, volume, V= 17148 m3 and duration, D = 29 (days), then the return period of ‘P’ 
conditioning to “V” is T(p\V ≤ v) = 28.195 years, “P” conditioning to “D” is T(p\D ≤ d) = 7.417 
years and “V” conditioning to “D” is T(v\D ≤ d) = 2.309 years. 

Table 9. Conditional joint return periods derived from the Model type-1. 

P V D T(P/V ≤ v) T(V/P ≤ p) T(P/D ≤ d) T(D/P ≤ p) T(V/D ≤ d) T(D/V ≤ v) 

10436.8 17148 29 24.647 2.850 6.202 10.692 2.289 9.937 

20586.4 43273.2 7 131.605 14.205 59.429 1.027 10.776 1.027 

11192.4 21994.2 30 26.938 4.349 8.337 13.173 3.322 12.156 

9929.3 9667.4 56 36.244 1.521 5.459 36.110 1.402 33.669 

7686.9 41309 19 5.047 21.478 3.705 2.356 8.429 2.406 

5052.6 19073.8 64 3.403 6.669 2.133 111.611 2.768 99.146 

18339.4 74740 16 22.266 122.310 19.738 1.972 89.385 1.978 
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Table 10. Conditional joint return periods derived from the Model type-2. 

P V D T(P/V ≤ v) T(V/P ≤ p) T(P/D ≤ d) T(D/P ≤ p) T(V/D ≤ d) T(D/V ≤ v) 

10436.8 17148 29 28.195 2.766 7.417 7.128 2.309 6.712 

20586.4 43273.2 7 60.001 14.388 23.458 1.003 9.303 1.003 

11192.4 21994.2 30 27.747 4.059 8.697 7.931 3.175 7.423 

9929.3 9667.4 56 37.203 1.521 6.531 141.059 1.424 131.699 

7686.9 41309 19 4.762 27.611 3.733 2.461 10.472 2.507 

5052.6 19073.8 64 3.574 5.824 2.180 359.637 2.648 310.782 

18339.4 74740 16 32.313 172.947 30.400 1.926 134.173 1.926 

5. Conclusions 

The joint distribution analysis between the multiple interacting flood characteristics is an 
essential concern for a better understanding of critical hydrologic behaviour of flood episodes. In this 
demonstration, a nonparametric copula-based multivariate flood distribution modelling are 
conducted and applied as a case study for the Kelantan River basin at Gulliemard bridge gauge 
station in Malaysia. In this experiment two different modelling framework are constructed such that 
in the Model-type-1, the best-fitted marginal distribution of each individual flood characteristics are 
modelled with nonparametric kernel density estimation procedure and their joint dependence 
structure are modelled using nonparametric copula which is based on the Beta kernel function where, 
the Beta kernel copula function is incorporated to estimate the bivariate copula density between 
flood peak-volume, volume-duration and peak-duration pairs. On the other side, in the construction 
of second Model type-2, the marginal distributions of the flood characteristics are modelled with 
parametric families based probability distribution functions and their joint structure are still modelled 
under nonparametric copula framework using the same Beta kernel copula. 

In the simulation of Model type-1, a set of five standard univariate kernel functions are 
introduced and their bandwidth are estimated using the optimal bandwidth algorithm. Based on 
several goodness-of-fit test statistics, referred to Table 6, the Triweight kernel function is recognized 
as most justifiable for describing marginal distribution of flood peak, volume and duration series 
under nonparametric distribution framework. Finally, the Beta kernel copula density are estimated 
using the Eq 13 with the uniform variables which are derived from the best-fitted flood marginal 
distribution (i.e., Triweight kernel density function) and to derived the joint CDFs of flood peak-
volume, volume-duration and peak-duration series. Similarly, for the Model type-2, an interactive 
sets of parametric families-based probability functions are introduced as a candidate models and their 
parameters are estimated using the maximum likelihood estimation (MLE), method of moments, 
least square method (LS), and L statistics-based method of L-moments. Based on several goodness-
of-fit test statistics i.e., MSE, RMSE, AIC, BIC and HQC statistics, the Lognormal (2P), Johnson SB 
(4P) and Gamma (3P) distribution are recognized as most justifiable for describing marginal 
distribution of flood peak, volume and duration series under parametric distribution framework. 
Finally, the Beta kernel copula density are estimated using the Eq 13 with the uniform variables 
which are derived from the best-fitted flood marginal distribution and to derived the joint CDFs of 
flood characteristics. The JCDF of flood peak-volume, volume-duration and peak-duration pairs are 
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employed to derived the joint and conditional return periods. Overall, based on the above simulations 
it could be concluded that the nonparametric distribution framework which are implemented in this 
literature could be applicable for analysing hydrologic behaviour i.e., flood modelling or rainfall 
modelling in most part of the world. 
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