Loading [MathJax]/jax/output/SVG/jax.js
Research article

Brain structure changes over time in normal and mildly impaired aged persons

  • Received: 29 January 2020 Accepted: 08 May 2020 Published: 20 May 2020
  • Structural brain changes in aging are known to occur even in the absence of dementia, but the magnitudes and regions involved vary between studies. To further characterize these changes, we analyzed paired MRI images acquired with identical protocols and scanner over a median 5.8-year interval. The normal study group comprised 78 elders (25M 53F, baseline age range 70–78 years) who underwent an annual standardized expert assessment of cognition and health and who maintained normal cognition for the duration of the study. We found a longitudinal grey matter (GM) loss rate of 2.56 ± 0.07 ml/year (0.20 ± 0.04%/year) and a cerebrospinal fluid (CSF) expansion rate of 2.97 ± 0.07 ml/year (0.22 ± 0.04%/year). Hippocampal volume loss rate was higher than the GM and CSF global rates, 0.0114 ± 0.0004 ml/year (0.49 ± 0.04%/year). Regions of greatest GM loss were posterior inferior frontal lobe, medial parietal lobe and dorsal cerebellum. Rates of GM loss and CSF expansion were on the low end of the range of other published values, perhaps due to the relatively good health of the elder volunteers in this study. An additional smaller group of 6 subjects diagnosed with MCI at baseline were followed as well, and comparisons were made with the normal group in terms of both global and regional GM loss and CSF expansion rates. An increased rate of GM loss was found in the hippocampus bilaterally for the MCI group.

    Citation: Charles D Smith, Linda J Van Eldik, Gregory A Jicha, Frederick A Schmitt, Peter T Nelson, Erin L Abner, Richard J Kryscio, Ronan R Murphy, Anders H Andersen. Brain structure changes over time in normal and mildly impaired aged persons[J]. AIMS Neuroscience, 2020, 7(2): 120-135. doi: 10.3934/Neuroscience.2020009

    Related Papers:

    [1] Harman Kaur, Meenakshi Rana . Congruences for sixth order mock theta functions λ(q) and ρ(q). Electronic Research Archive, 2021, 29(6): 4257-4268. doi: 10.3934/era.2021084
    [2] Meenakshi Rana, Shruti Sharma . Combinatorics of some fifth and sixth order mock theta functions. Electronic Research Archive, 2021, 29(1): 1803-1818. doi: 10.3934/era.2020092
    [3] Changjian Wang, Jiayue Zhu . Global dynamics to a quasilinear chemotaxis system under some critical parameter conditions. Electronic Research Archive, 2024, 32(3): 2180-2202. doi: 10.3934/era.2024099
    [4] Chang-Jian Wang, Yu-Tao Yang . Boundedness criteria for the quasilinear attraction-repulsion chemotaxis system with nonlinear signal production and logistic source. Electronic Research Archive, 2023, 31(1): 299-318. doi: 10.3934/era.2023015
    [5] Maoji Ri, Shuibo Huang, Canyun Huang . Non-existence of solutions to some degenerate coercivity elliptic equations involving measures data. Electronic Research Archive, 2020, 28(1): 165-182. doi: 10.3934/era.2020011
    [6] Nan Li . Summability in anisotropic mixed-norm Hardy spaces. Electronic Research Archive, 2022, 30(9): 3362-3376. doi: 10.3934/era.2022171
    [7] Lili Li, Boya Zhou, Huiqin Wei, Fengyan Wu . Analysis of a fourth-order compact θ-method for delay parabolic equations. Electronic Research Archive, 2024, 32(4): 2805-2823. doi: 10.3934/era.2024127
    [8] Jianxing Du, Xifeng Su . On the existence of solutions for the Frenkel-Kontorova models on quasi-crystals. Electronic Research Archive, 2021, 29(6): 4177-4198. doi: 10.3934/era.2021078
    [9] Zihan Zheng, Juan Wang, Liming Cai . Global boundedness in a Keller-Segel system with nonlinear indirect signal consumption mechanism. Electronic Research Archive, 2024, 32(8): 4796-4808. doi: 10.3934/era.2024219
    [10] Ying Hou, Liangyun Chen . Constructions of three kinds of Bihom-superalgebras. Electronic Research Archive, 2021, 29(6): 3741-3760. doi: 10.3934/era.2021059
  • Structural brain changes in aging are known to occur even in the absence of dementia, but the magnitudes and regions involved vary between studies. To further characterize these changes, we analyzed paired MRI images acquired with identical protocols and scanner over a median 5.8-year interval. The normal study group comprised 78 elders (25M 53F, baseline age range 70–78 years) who underwent an annual standardized expert assessment of cognition and health and who maintained normal cognition for the duration of the study. We found a longitudinal grey matter (GM) loss rate of 2.56 ± 0.07 ml/year (0.20 ± 0.04%/year) and a cerebrospinal fluid (CSF) expansion rate of 2.97 ± 0.07 ml/year (0.22 ± 0.04%/year). Hippocampal volume loss rate was higher than the GM and CSF global rates, 0.0114 ± 0.0004 ml/year (0.49 ± 0.04%/year). Regions of greatest GM loss were posterior inferior frontal lobe, medial parietal lobe and dorsal cerebellum. Rates of GM loss and CSF expansion were on the low end of the range of other published values, perhaps due to the relatively good health of the elder volunteers in this study. An additional smaller group of 6 subjects diagnosed with MCI at baseline were followed as well, and comparisons were made with the normal group in terms of both global and regional GM loss and CSF expansion rates. An increased rate of GM loss was found in the hippocampus bilaterally for the MCI group.



    Ramanujan's last letter to Hardy is one of the most mysterious and important mathematical letters in the history of mathematics. He introduced a class of functions that he called mock theta functions in his letter. For nearly a century, properties of these functions have been widely studied by different mathematicians. The important direction involves the arithmetic properties (see [1,2]), combinatorics (see [3,4]), identities between these functions, and generalized Lambert series (see [5,6]). For the interested reader, regarding the history and new developments in the study of mock theta functions, we refer to [7].

    In 2007, McIntosh studied two second order mock theta functions in reference [8]; more details are given in reference [9]. These mock theta functions are:

    A(q)=n=0q(n+1)2(q;q2)n(q;q2)2(n+1)=n=0qn+1(q2;q2)n(q;q2)n+1, (1.1)
    B(q)=n=0qn(q;q2)n(q;q2)n+1=n=0qn(n+1)(q2;q2)n(q;q2)2n+1, (1.2)

    where

    (a;q)n=n1i=0(1aqi),(a;q)=i=0(1aqi),
    (a1,a2,,am;q)=(a1;q)(a2;q)(am;q),

    for |q|<1.

    The functions A(q) and B(q) have been combinatorially interpreted in terms of overpartitions in [3] using the odd Ferrers diagram. In this paper, we study some arithmetic properties of one of the second order mock theta functions B(q). We start by noting, Bringmann, Ono and Rhoades [10] obtained the following identity:

    B(q)+B(q)2=f54f42, (1.3)

    where

    fkm:=(qm;qm)k,

    for positive integers m and k. We consider the function

    B(q):=n=0b(n)qn. (1.4)

    Followed by Eq (1.3), the even part of B(q) is given by:

    n=0b(2n)qn=f52f41. (1.5)

    In 2012, applying the theory of (mock) modular forms and Zwegers' results, Chan and Mao [5] established two identities for b(n), shown as:

    n=0b(4n+1)qn=2f82f71, (1.6)
    n=0b(4n+2)qn=4f22f44f51. (1.7)

    In a sequel, Qu, Wang and Yao [6] found that all the coefficients for odd powers of q in B(q) are even. Recently, Mao [11] gave analogues of Eqs (1.6) and (1.7) modulo 6

    n=0b(6n+2)qn=4f102f23f101f6, (1.8)
    n=0b(6n+4)qn=9f42f43f6f81, (1.9)

    and proved several congruences for the coefficients of B(q). Motivated from this, we prove similar results for b(n) by applying identities on the coefficients in arithmetic progressions. We present some congruence relations for the coefficients of B(q) modulo certain numbers of the form 2α3β,2α5β,2α7β where α,β0. Our main theorems are given below:

    Theorem 1.1. For n0, we have

    n=0b(12n+9)qn=18[f92f123f171f36+2f52f43f6f91+28f62f33f66f141], (1.10)
    n=0b(12n+10)qn=36[2f162f106f201f3f412qf282f33f212f241f84f2616q2f22f33f84f212f161f26]. (1.11)

    In particular, b(12n+9)0(mod18),b(12n+10)0(mod36).

    Theorem 1.2. For n0, we have

    n=0b(18n+10)qn=72[f162f213f271f96+38qf132f123f241+64q2f102f33f96f211], (1.12)
    n=0b(18n+16)qn=72[5f152f183f261f66+64qf122f93f36f231+32q2f92f126f201]. (1.13)

    In particular, b(18n+10)0(mod72),b(18n+16)0(mod72).

    Apart from these congruences, we find some relations between b(n) and restricted partition functions. Here we recall, Partition of a positive integer ν, is a representation of ν as a sum of non-increasing sequence of positive integers μ1,μ2,,μn. The number of partitions of ν is denoted by p(ν) which is called the partition function. If certain conditions are imposed on parts of the partition, is called the restricted partition and corresponding partition function is named as restricted partition function. Euler proved the following recurrence for p(n) [12] [p. 12, Cor. 1.8]:

    (n)p(n1)p(n2)+p(n5)+p(n7)p(n12)p(n15)++(1)kp(nk(3k1)/2)+(1)kp(nk(3k+1)/2)+={1, if n=0,0, otherwise. 

    The numbers k(3k±1)/2 are pentagonal numbers. Following the same idea, different recurrence relations have been found by some researchers for restricted partition functions. For instance, Ewell [13] presented the recurrence for p(n) involving the triangular numbers. For more study of recurrences, see [14,15,16]. Under the influence of these efforts, we express the coefficients of mock theta function B(q) which are in arithmetic progression in terms of recurrence of some restricted partition functions.

    This paper is organized as follows: Section 2, here we recall some preliminary lemmas and present the proof of Theorems 1.1 and 1.2. Section 3 includes some more congruences based on the above results. Section 4 depicts the links between b(n) and some of the restricted partition functions.

    Before proving the results, we recall Ramanujan's theta function:

    j(a,b)=n=an(n+1)2bn(n1)2, for|ab|<1.

    Some special cases of j(a,b) are:

    ϕ(q):=j(q,q)=n=qn2=f52f21f24,ψ(q):=j(q,q3)=n=0qn(n+1)/2=f22f1.

    Also,

    ϕ(q)=f21f2.

    The above function satisfy the following properties (see Entries 19, 20 in [17]).

    j(a,b)=(a,b,ab;ab),(Jacobi's triple product identity),
    j(q,q2)=(q;q),(Euler's pentagonal number theorem).

    We note the following identities which will be used below.

    Lemma 2.1. [[18], Eq (3.1)] We have

    f32f31=f6f3+3qf46f59f83f18+6q2f36f29f218f73+12q3f26f518f63f9. (2.1)

    Lemma 2.2. We have

    f22f1=f6f29f3f18+qf218f9, (2.2)
    f2f21=f46f69f83f318+2qf36f39f73+4q2f26f318f63. (2.3)

    Proof. The first identity follows from [[19] Eq (14.3.3)]. The proof of second identity can be seen from [20].

    Lemma 2.3. We have

    1f41=f144f142f48+4qf24f48f102, (2.4)
    f41=f104f22f484qf22f48f24. (2.5)

    Proof. Identity (2.4) is Eq (1.10.1) from [19]. To obtain (2.5), replacing q by q and then using

    (q;q)=f32f1f4.

    Now, we present the proof of Theorems 1.1 and 1.2.

    Proof of Theorems 1.1 and 1.2. From Eq (1.6), we have

    n=0b(4n+1)qn=2(f32f31)3f22f1.

    Substituting the values from Eqs (2.1) and (2.2) in above, we get

    n=0b(4n+1)qn=2f36f29f33f18+2qf26f218f23f9+12qf66f79f103f218+18q2f96f129f173f318+36q2f56f49f18f93+90q3f86f99f163+72q3f46f9f418f83+48q4f36f718f73f29+288q4f76f69f318f153+504q5f66f39f618f143+576q6f56f918f133. (2.6)

    Bringing out the terms involving q3n+2, dividing by q2 and replacing q3 by q, we get (1.10). Considering Eq (1.5), we have

    n=0b(2n)qn=f32f31f22f1.

    Substituting the values from Eqs (2.1) and (2.2), we obtain

    n=0b(2n)qn=(f6f3+3qf46f59f83f18+6q2f36f29f218f73+12q3f26f518f63f9)(f6f29f3f18+qf218f9).

    Extracting the terms involving q3n,q3n+1,q3n+2 from the above equation, we have

    n=0b(6n)qn=f22f23f21f6+18qf32f3f46f71, (2.7)
    n=0b(6n+2)qn=f2f26f1f3+3f52f73f91f26+12qf22f76f61f23, (2.8)
    n=0b(6n+4)qn=9f42f43f6f81. (2.9)

    Using Eqs (2.4) and (2.5) in Eq (2.9), we get

    n=0b(6n+4)qn=9f42f6(f144f142f48+4qf24f48f102)2(f1012f26f4244q3f26f424f212).

    Extracting the terms involving q2n,q2n+1 from above, we arrive at

    n=0b(12n+4)qn=9(f282f106f241f3f84f412+16qf42f84f106f161f3f41232q2f162f33f412f201f26), (2.10)
    n=0b(12n+10)qn=9(8f162f106f201f3f4124qf282f33f412f241f84f2616q2f42f33f84f412f161f26). (2.11)

    From Eq (2.11), we ultimately arrive at Eq (1.11). To prove Theorem 1.2, consider Eq (2.9) as:

    n=0b(6n+4)qn=9f43f6(f2f21)4.

    Using Eq (2.3) in above, we get

    n=0b(6n+4)qn=9f176f249f283f1218+72qf166f219f273f918+360q2f156f189f263f618+288q3f146f159f253f318+864q3f126f159f193f618+2736q4f136f129f243+4608q5f126f99f318f233+5760q6f116f69f618f223+4608q7f106f39f918f213+2304q8f96f1218f203. (2.12)

    Bringing out the terms involving q3n+1 and q3n+2 from Eq (2.12), we get Eqs (1.12) and (1.13), respectively.

    This segment of the paper contains some more interesting congruence relations for b(n).

    Theorem 3.1. For n0, we have

    b(12n+1){2(1)k(mod6),ifn=3k(3k+1)/2,0(mod6),otherwise. (3.1)

    Theorem 3.2. For n0, we have

    b(2n){(1)k(2k+1)(mod4),ifn=k(k+1),0(mod4),otherwise. (3.2)

    Theorem 3.3. For n0, we have

    b(36n+10)0(mod72), (3.3)
    b(36n+13)0(mod6), (3.4)
    b(36n+25)0(mod12), (3.5)
    b(36n+34)0(mod144), (3.6)
    b(108n+t)0(mod18),for t{49,85}. (3.7)

    Theorem 3.4. For n0, we have

    b(20n+t)0(mod5),for t{8,16} (3.8)
    b(20n+t)0(mod20),for t{6,18} (3.9)
    b(20n+17)0(mod10), (3.10)
    b(28n+t)0(mod14),for t{5,21,25}. (3.11)

    Proof of Theorem 3.1. From Eq (2.6), picking out the terms involving q3n and replacing q3 by q, we have

    n=0b(12n+1)qn=2f32f23f31f6+90qf82f93f161+72qf42f3f46f81+576q2f52f96f31. (3.12)

    Reducing modulo 6, we obtain

    n=0b(12n+1)qn2f3(mod6). (3.13)

    With the help of Euler's pentagonal number theorem,

    n=0b(12n+1)qn2k=(1)kq3k(3k+1)2(mod6),

    which completes the proof of Theorem 3.1.

    Proof of Theorem 3.2. Reducing Eq (1.5) modulo 4, we get

    n=0b(2n)qnf32(mod4). (3.14)

    From Jacobi's triple product identity, we obtain

    n=0b(2n)qnk=0(1)k(2k+1)qk(k+1)(mod4),

    which completes the proof of Theorem 3.2.

    Proof of Theorem 3.3. Consider Eq (1.11), reducing modulo 72

    n=0b(12n+10)qn36qf282f33f412f241f84f26(mod72),
    n=0b(12n+10)qn36qf282f33f412f122f84f12=36qf162f33f312f84(mod72)

    or

    n=0b(12n+10)qn36qf33f312(mod72). (3.15)

    Extracting the terms involving q3n, replacing q3 by q in Eq (3.15), we arrive at Eq (3.3). Similarly, consider Eq (1.13) and reducing modulo 144, we have

    n=0b(18n+16)qn725f152f183f261f66(mod144),72f152f96f132f66=72f22f36(mod144).

    Extracting the terms involving q2n+1, dividing both sides by q and replacing q2 by q, we get Eq (3.6).

    From Eq (3.20), we get

    n=0b(12n+1)qn2f3(mod6).

    Bringing out the terms containing q3n+1, dividing both sides by q and replacing q3 by q, we have b(36n+13)0(mod6). Reducing Eq (3.12) modulo 12, we have

    n=0b(12n+1)qn2f32f23f31f6+90qf82f93f161(mod12),
    n=0b(12n+1)qn2f23f6(f6f3+3qf46f59f83f18+6q2f36f29f218f73+12q3f26f518f63f9)+6qf82f93f82.

    Extracting the terms containing q3n+2, dividing by q2 and replacing q3 by q, we obtain Eq (3.5). Reducing Eq (3.12) modulo 18,

    n=0b(12n+1)qn2f32f23f31f6(mod18),=2f23f6(f6f3+3qf46f59f83f18+6q2f36f29f218f73+12q3f26f518f63f9).

    Extracting the terms involving q3n+1, dividing both sides by q and replacing q3 by q, we have

    n=0b(36n+13)qn6f32f53f61f66f6f53f23f6(mod18)

    or

    n=0b(36n+13)qn6f33(mod18).

    Extracting the terms containing q3n+1,q3n+2 from above to get Eq (3.7).

    Proof of Theorem 3.4. From Eqs (1.5) and (2.4), we have

    n=0b(2n)qn=f52(f144f142f48+4qf24f48f102).

    Bringing out the terms containing even powers of q, we obtain

    n=0b(4n)qn=f142f91f44,

    which can be written as:

    n=0b(4n)qn=f152f101f54.f1f4f2f310f25f20.f1f4f2(mod5).

    Here

    f1f4f2=(q;q)(q4;q4)(q2;q2),=(q;q2)(q2;q2)(q4;q4)(q2;q2),
    f1f4f2=(q,q3,q4;q4)=n=(1)nq2n2n, (3.16)

    where the last equality follows from Jacobi's triple product identity. Using the above identity, we have

    n=0b(4n)qnf310f25f20n=(1)nq2n2n(mod5). (3.17)

    Since 2n2n2,4(mod5), it follows that the coefficients of q5n+2,q5n+4 in n=0b(4n)qn are congruent to 0(mod5), which proves that b(20n+t)0(mod5), for t{8,16}.

    Consider Eq (1.7)

    n=0b(4n+2)qn=4f54f51f22f44f20f5f22f4(mod20).

    Now

    f22f4=(q2;q2)2(q4;q4),=(q2;q2)(q2;q4)(q4;q4)(q4;q4),
    f22f4=(q2,q2,q4;q4)=n=(1)nq2n2.

    Using the above identity, we get

    n=0b(4n+2)qn4f20f5n=(1)nq2n2(mod20). (3.18)

    Since 2n21,4(mod5), it follows that the coefficients of q5n+1,q5n+4 in n=0b(4n+2)qn are congruent to 0(mod20), which proves Eq (3.9). For the proof of next part, consider Eq (1.6) as:

    n=0b(4n+1)qn=2f52f101f31f322f10f25f31f32(mod10),
    n=0b(4n+1)qn2f10f25k=0(1)k(2k+1)qk(k+1)2m=0(1)m(2m+1)qm(m+1)(mod10). (3.19)

    Therefore, to contribute the coefficient of q5n+4, (k,m)(2,2)(mod5) and thus the contribution towards the coefficient of q5n+4 is a multiple of 5.

    Consider Eq (1.6) as:

    n=0b(4n+1)qn=2f72f71f22f14f7f2(mod14).

    With the help of Euler's pentagonal number theorem,

    n=0b(4n+1)qn2f14f7n=(1)nqn(3n+1)(mod14). (3.20)

    As n(3n+1)1,5,6(mod7), it readily proves Eq (3.11).

    In this section, we find some recurrence relations connecting b(n) and restricted partition functions. First we define some notations. Let ¯pl(n) denotes the number of overpartitions of n with l copies. Then

    n=0¯pl(n)qn=(f2f21)l.

    Let pld(n) denotes the number of partitions of n into distinct parts with l copies. Then

    n=0pld(n)qn=(f2f1)l.

    Theorem 4.1. We have

    b(2n)=¯p2(n)3¯p2(n)+5¯p2(n)++(1)k(2k+1)¯p2(nk(k+1))+, (4.1)
    (2n)=p4d(n)p4d(n2)p4d(n4)+p4d(n10)+p4d(n14)++(1)kp4d(nk(3k1))+(1)kp4d(nk(3k+1))+. (4.2)

    Theorem 4.2.

    (4n+1)=2p8d(n)2p8d(n1)2p8d(n2)+2p8d(n5)+2p8d(n7)++(1)k2p8d(nk(3k1)2)+(1)k2p8d(nk(3k+1)2)+, (4.3)
    b(4n+1)=2nc=0b(2c)p3d(nc). (4.4)

    Theorem 4.3.

    (6n+2)=4p10d(n)8p10d(n3)+8p10d(n12)+8p10d(n27)++8(1)kp10d(n3k2)+. (4.5)

    Proof of Theorem 4.1. Consider (1.5) as:

    n=0b(2n)qn=(f2f21)2f32.

    Then

    n=0b(2n)qn=(n=0¯p2(n)qn)(k=0(1)k(2k+1)qk(k+1)),=n=0k=0(1)k(2k+1)¯p2(n)qn+k(k+1),=n=0(k=0(1)k(2k+1)¯p2(nk(k+1)))qn.

    From the last equality, we readily arrive at (4.1). To prove (4.2), consider (1.5) as:

    n=0b(2n)qn=(f2f1)4f2,=(n=0p4d(n)qn)(k=(1)kqk(3k+1)),=(n=0p4d(n)qn)(1+k=1(1)kqk(3k1)+k=1(1)kqk(3k+1)),
    n=0b(2n)qn=n=0p4d(n)qn+n=0(k=1(1)kp4d(n)qk(3k1)+n)+n=0(k=1(1)kp4d(n)qk(3k+1)+n),
    n=0b(2n)qn=n=0p4d(n)qn+n=0(k=1(1)kp4d(nk(3k1))qn)+n=0(k=1(1)kp4d(nk(3k+1))qn),

    which proves Eq (4.2).

    Proof of Theorem 4.2. Consider Eq (1.6) as:

    n=0b(4n+1)qn=2(f2f1)8f1,=2(n=0p8d(n)qn)(k=(1)kqk(3k+1)2),=2(n=0p8d(n)qn)(1+k=1(1)kqk(3k1)/2+k=1(1)kqk(3k+1)/2),
    n=0b(4n+1)qn=n=0p8d(n)qn+n=0k=1(1)kp8d(n)qk(3k1)/2+n+n=0k=1(1)kp8d(n)qk(3k+1)/2+n,
    n=0b(4n+1)qn=n=0p8d(n)qn+n=0(k=1(1)kp8d(nk(3k1)2))qn+n=0(k=1(1)kp8d(nk(3k+1)2))qn,

    which proves Eq (4.3). To prove Eq (4.4), consider Eq (1.6) as:

    n=0b(4n+1)qn=2(f52f41)f32f31,=2(n=0b(2n)qn)(k=0p3d(k)qk),=2n=0(nc=0b(2c)p3d(nc))qn.

    Comparing the coefficients of qn, we arrive at Eq (4.4).

    Proof of Theorem 4.3. Consider Eq (1.8) as:

    n=0b(6n+2)qn=4(f2f1)10f23f6,=4(n=0p10d(n)qn)(k=(1)kq3k2),=4(n=0p10d(n)qn)(1+2k=1(1)kq3k2),=4n=0p10d(n)qn+8n=0(k=1(1)kp10d(n)q3k2+n),=4n=0p10d(n)qn+8n=0(k=1(1)kp10d(n3k2))qn.

    Comparing the coefficients of qn to obtain Eq (4.5).

    In this paper, we have provided the arithmetic properties of second order mock theta function B(q), introduced by McIntosh. Some congruences are proved for the coefficients of B(q) modulo specific numbers. The questions which arise from this work are:

    (i) Are there exist congruences modulo higher primes for B(q)?

    (ii) Is there exist any other technique (like modular forms) that helps to look for some more arithmetic properties of B(q)?

    (iii) How can we explore the other second order mock theta function A(q)?

    The first author is supported by University Grants Commission (UGC), under grant Ref No. 971/(CSIR-UGC NET JUNE 2018) and the the second author is supported by Science and Engineering Research Research Board (SERB-MATRICS) grant MTR/2019/000123. The authors of this paper are thankful to Dr. Rupam Barman, IIT Guwahati, for his valuable insight during establishing Theorems 3.1 and 3.2. We would like to thank the referee for carefully reading our paper and offering corrections and helpful suggestions.

    The authors declare there is no conflicts of interest.


    Acknowledgments



    We gratefully acknowledge support from the United States National Institute of Aging, Grant # P30 AG028383. We also wish to thank the patients and families in our clinic who participated in this study.

    Conflict of interest



    All authors declare no conflicts of interest in this paper.

    [1] Lockhart SN, DeCarli C (2014) Structural imaging measures of brain aging. Neuropsychol Rev 24: 271-289. doi: 10.1007/s11065-014-9268-3
    [2] Giorgio A, Santelli L, Tomassini V, et al. (2010) Age-related changes in grey and white matter structure throughout adulthood. Neuroimage 51: 943-951. doi: 10.1016/j.neuroimage.2010.03.004
    [3] Taki Y, Thyreau B, Kinomura S, et al. (2013) A longitudinal study of age- and gender-related annual rate of volume changes in regional gray matter in healthy adults. Hum Brain Mapp 34: 2292-2301. doi: 10.1002/hbm.22067
    [4] Madsen SK, Gutman BA, Joshi SH, et al. (2013) Mapping dynamic changes in ventricular volume onto baseline cortical surfaces in normal aging, MCI, and Alzheimer's disease. Multimodal Brain Image Anal (2013) 8159: 84-94. doi: 10.1007/978-3-319-02126-3_9
    [5] Fjell AM, Walhovd KB (2010) Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci 21: 187-221. doi: 10.1515/REVNEURO.2010.21.3.187
    [6] Maillet D, Rajah MN (2013) Association between prefrontal activity and volume change in prefrontal and medial temporal lobes in aging and dementia: A review. Ageing Res Rev 12: 479-489. doi: 10.1016/j.arr.2012.11.001
    [7] Gorbach T, Pudas S, Lundquist A, et al. (2017) Longitudinal association between hippocampus atrophy and episodic-memory decline. Neurobiol Aging 51: 167-176. doi: 10.1016/j.neurobiolaging.2016.12.002
    [8] Schmitt FA, Nelson PT, Abner E, et al. (2012) University of Kentucky Sanders-Brown healthy brain aging volunteers: donor characteristics, procedures and neuropathology. Curr Alzheimer Res 9: 724-733. doi: 10.2174/156720512801322591
    [9] McKhann G, Drachman D, Folstein M, et al. (1984) Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 34: 939-944. doi: 10.1212/WNL.34.7.939
    [10] Albert MS, DeKosky ST, Dickson D, et al. (2011) The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7: 270-279. doi: 10.1016/j.jalz.2011.03.008
    [11] Jicha GA, Abner EL, Schmitt FA, et al. (2012) Preclinical AD Workgroup staging: pathological correlates and potential challenges. Neurobiol Aging 33: 622 e1-622 e16. doi: 10.1016/j.neurobiolaging.2011.02.018
    [12] Tustison NJ, Avants BB, Cook PA, et al. (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29: 1310-1320. doi: 10.1109/TMI.2010.2046908
    [13] Smith CD, Johnson ES, Van Eldik LJ, et al. (2016) Peripheral (deep) but not periventricular MRI white matter hyperintensities are increased in clinical vascular dementia compared to Alzheimer's disease. Brain Behav 6: e00438. doi: 10.1002/brb3.438
    [14] Gudbjartsson H, Patz S (1995) The Rician distribution of noisy MRI data. Magn Reson Med 34: 910-914. doi: 10.1002/mrm.1910340618
    [15] Andersen AH (1996) On the Rician distribution of noisy MRI data. Magn Reson Med 36: 331-333. doi: 10.1002/mrm.1910360222
    [16] Ashburner J, Ridgway GR (2012) Symmetric diffeomorphic modeling of longitudinal structural MRI. Front Neurosci 6: 197.
    [17] Tabatabaei-Jafari H, Shaw ME, Cherbuin N (2015) Cerebral atrophy in mild cognitive impairment: A systematic review with meta-analysis. Alzheimers Dement (Amst) 1: 487-504. doi: 10.1016/j.dadm.2015.11.002
    [18] Smith CD, Chebrolu H, Wekstein DR, et al. (2007) Age and gender effects on human brain anatomy: a voxel-based morphometric study in healthy elderly. Neurobiol Aging 28: 1075-1087. doi: 10.1016/j.neurobiolaging.2006.05.018
    [19] Allen JS, Bruss J, Brown CK, et al. (2005) Normal neuroanatomical variation due to age: the major lobes and a parcellation of the temporal region. Neurobiol Aging 26: 1245-1260. doi: 10.1016/j.neurobiolaging.2005.05.023
    [20] Bagarinao E, Watanabe H, Maesawa S, et al. (2017) An unbiased data-driven age-related structural brain parcellation for the identification of intrinsic brain volume changes over the adult lifespan. Neuroimage 169: 134-144. doi: 10.1016/j.neuroimage.2017.12.014
    [21] Cardenas VA, Du AT, Hardin D, et al. (2003) Comparison of methods for measuring longitudinal brain change in cognitive impairment and dementia. Neurobiol Aging 24: 537-544. doi: 10.1016/S0197-4580(02)00130-6
    [22] Good CD, Johnsrude IS, Ashburner J, et al. (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14: 21-36. doi: 10.1006/nimg.2001.0786
    [23] Resnick SM, Pham DL, Kraut MA, et al. (2003) Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci 23: 3295-3301. doi: 10.1523/JNEUROSCI.23-08-03295.2003
    [24] Hedman AM, van Haren NE, Schnack HG, et al. (2012) Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies. Hum Brain Mapp 33: 1987-2002. doi: 10.1002/hbm.21334
    [25] Jack CR, Weigand SD, Shiung MM, et al. (2008) Atrophy rates accelerate in amnestic mild cognitive impairment. Neurology 70: 1740-1752. doi: 10.1212/01.wnl.0000281688.77598.35
    [26] Resnick SM, Goldszal AF, Davatzikos C, et al. (2000) One–year age changes in MRI brain volumes in older adults. Cereb Cortex 10: 464-472. doi: 10.1093/cercor/10.5.464
    [27] Enzinger C, Fazekas F, Matthews PM, et al. (2005) Risk factors for progression of brain atrophy in aging: six-year follow-up of normal subjects. Neurology 64: 1704-1711. doi: 10.1212/01.WNL.0000161871.83614.BB
    [28] Burgmans S, van Boxtel MP, Vuurman EF, et al. (2009) The prevalence of cortical gray matter atrophy may be overestimated in the healthy aging brain. Neuropsychology 23: 541-550. doi: 10.1037/a0016161
    [29] Sigurdsson S, Aspelund T, Forsberg L, et al. (2012) Brain tissue volumes in the general population of the elderly: the AGES-Reykjavik study. Neuroimage 59: 3862-3870. doi: 10.1016/j.neuroimage.2011.11.024
    [30] Pfefferbaum A, Sullivan EV (2015) Cross-sectional versus longitudinal estimates of age-related changes in the adult brain: overlaps and discrepancies. Neurobiol Aging 36: 2563-2567. doi: 10.1016/j.neurobiolaging.2015.05.005
    [31] Driscoll I, Davatzikos C, An Y, et al. (2009) Longitudinal pattern of regional brain volume change differentiates normal aging from MCI. Neurology 72: 1906-1913. doi: 10.1212/WNL.0b013e3181a82634
    [32] DeCarli C, Massaro J, Harvey D, et al. (2005) Measures of brain morphology and infarction in the framingham heart study: establishing what is normal. Neurobiol Aging 26: 491-510. doi: 10.1016/j.neurobiolaging.2004.05.004
    [33] Nelson PT, Head E, Schmitt FA, et al. (2011) Alzheimer's disease is not “brain aging”: neuropathological, genetic, and epidemiological human studies. Acta Neuropathol 121: 571-587. doi: 10.1007/s00401-011-0826-y
    [34] Raz N, Lindenberger U, Rodrigue KM, et al. (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15: 1676-1689. doi: 10.1093/cercor/bhi044
    [35] Morra JH, Tu Z, Apostolova LG, et al. (2009) Automated mapping of hippocampal atrophy in 1-year repeat MRI data from 490 subjects with Alzheimer's disease, mild cognitive impairment, and elderly controls. Neuroimage 45: S3-15. doi: 10.1016/j.neuroimage.2008.10.043
    [36] Raz N, Rodrigue KM, Head D, et al. (2004) Differential aging of the medial temporal lobe: a study of a five-year change. Neurology 62: 433-438. doi: 10.1212/01.WNL.0000106466.09835.46
    [37] Grieve SM, Clark CR, Williams LM, et al. (2005) Preservation of limbic and paralimbic structures in aging. Hum Brain Mapp 25: 391-401. doi: 10.1002/hbm.20115
    [38] Fiford CM, Ridgway GR, Cash DM, et al. (2017) Patterns of progressive atrophy vary with age in Alzheimer's disease patients. Neurobiol Aging 63: 22-32. doi: 10.1016/j.neurobiolaging.2017.11.002
    [39] Jack CR, Petersen RC, Xu Y, et al. (1998) Rate of medial temporal lobe atrophy in typical aging and Alzheimer's disease. Neurology 51: 993-999. doi: 10.1212/WNL.51.4.993
    [40] Apostolova LG, Thompson PM (2008) Mapping progressive brain structural changes in early Alzheimer's disease and mild cognitive impairment. Neuropsychologia 46: 1597-1612. doi: 10.1016/j.neuropsychologia.2007.10.026
    [41] Guo X, Wang Z, Li K, et al. (2010) Voxel-based assessment of gray and white matter volumes in Alzheimer's disease. Neurosci Lett 468: 146-150. doi: 10.1016/j.neulet.2009.10.086
    [42] Byun MS, Kim SE, Park J, et al. (2015) Heterogeneity of regional brain atrophy patterns associated with distinct progression rates in Alzheimer's disease. PLoS One 10: e0142756. doi: 10.1371/journal.pone.0142756
    [43] Takao H, Hayashi N, Ohtomo K (2013) Effects of the use of multiple scanners and of scanner upgrade in longitudinal voxel-based morphometry studies. J Magn Reson Imaging 38: 1283-1291. doi: 10.1002/jmri.24038
  • This article has been cited by:

    1. Olivia X.M. Yao, New congruences modulo 9 for the coefficients of Gordon-McIntosh's mock theta function ξ ( q ) , 2024, 47, 1607-3606, 239, 10.2989/16073606.2023.2205604
    2. Yueya Hu, Eric H. Liu, Olivia X. M. Yao, Congruences modulo 4 and 8 for Ramanujan’s sixth-order mock theta function ρ(q)
    , 2025, 66, 1382-4090, 10.1007/s11139-024-01018-x
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4612) PDF downloads(342) Cited by(8)

Figures and Tables

Figures(2)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog