Citation: Tiziana M. Florio. Stereotyped, automatized and habitual behaviours: are they similar constructs under the control of the same cerebral areas?[J]. AIMS Neuroscience, 2020, 7(2): 136-152. doi: 10.3934/Neuroscience.2020010
[1] |
Anholt RRC (2020) Evolution of epistatic networks and the genetic basis of innate behaviors. Trends Genet 36: 24-29. doi: 10.1016/j.tig.2019.10.005
![]() |
[2] |
Arber S (2012) Motor circuits in action: specification, connectivity, and function. Neuron 74: 975-989. doi: 10.1016/j.neuron.2012.05.011
![]() |
[3] |
Adolph KE (2002) Babies' steps make giant strides toward a science of development. Infant Behav Dev 25: 86-90. doi: 10.1016/S0163-6383(02)00106-6
![]() |
[4] |
Simion F, Regolin L, Bulf H (2008) A predisposition for biological motion in the newborn baby. PNAS 105: 809-813. doi: 10.1073/pnas.0707021105
![]() |
[5] |
Slater A, Quinn PC (2001) Face recognition in the newborn infant. Inf Child Dev 10: 21-24. doi: 10.1002/icd.241
![]() |
[6] |
Ekman P, Friesen W (1971) Constants across cultures in the face and emotion. J Pers Social Psychol 17: 124-129. doi: 10.1037/h0030377
![]() |
[7] | Miellet S, Vizioli L, He L, et al. (2013) Mapping face recognition information use across cultures. Front Pshycol 4. |
[8] |
Grillner S, Robertson B (2016) The basal ganglia over 500 million years. Curr Biol 26: R1088-R1100. doi: 10.1016/j.cub.2016.06.041
![]() |
[9] |
Stephenson-Jones M, Samuelsson E, Ericsson J, et al. (2011) Evolutionary conservation of the basal ganglia as a common vertebrate mechanism for action selection. Curr Biol 21: 1081-1091. doi: 10.1016/j.cub.2011.05.001
![]() |
[10] |
Romo R, de Lafuente V (2013) Conversion of sensory signals into perceptual decisions. Prog Neurobiol 103: 41-75. doi: 10.1016/j.pneurobio.2012.03.007
![]() |
[11] |
Boettiger CA, D'Esposito M (2005) Frontal networks for learning and executing arbitrary Stimulus–Response associations. J Neurosci 25: 2723-2732. doi: 10.1523/JNEUROSCI.3697-04.2005
![]() |
[12] |
Garr E (2019) Contributions of the basal ganglia to action sequence learning and performance. Neurosci Biobehav Rev 107: 279-295. doi: 10.1016/j.neubiorev.2019.09.017
![]() |
[13] |
Wu T, Hallett M, Chana P (2015) Motor automaticity in Parkinson's disease. Neurobiol Dis 82: 226-234. doi: 10.1016/j.nbd.2015.06.014
![]() |
[14] |
Marinelli L, Quartarone A, Hallett M, et al. (2017) The many facets of motor learning and their relevance for Parkinson's disease. Clin Neurophysiol 128: 1127-1141. doi: 10.1016/j.clinph.2017.03.042
![]() |
[15] |
Balleine BW, Liljeholm M, Ostlund SB (2009) The integrative function of the basal ganglia in instrumental conditioning. Behav Brain Res 199: 43-52. doi: 10.1016/j.bbr.2008.10.034
![]() |
[16] |
Kobesova A, Kolar P (2014) Developmental kinesiology: Three levels of motor control in the assessment and treatment of the motor system. J Bodyw Mov Ther 18: 23-33. doi: 10.1016/j.jbmt.2013.04.002
![]() |
[17] |
Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends Neurosci 13: 266-271. doi: 10.1016/0166-2236(90)90107-L
![]() |
[18] |
Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7: 464-76. doi: 10.1038/nrn1919
![]() |
[19] |
Hiebert NM, Vo A, Hampshire A, et al. (2014) Striatum in stimulus–response learning via feedback and in decision making. Neuroimage 101: 448-457. doi: 10.1016/j.neuroimage.2014.07.013
![]() |
[20] |
Jenkins IH, Jahanshahi M, Jueptner M, et al. (2000) Self-initiated versus externally triggered movements. II. The effect of movement predictability on regional cerebral blood flow. Brain 123: 1216-1228. doi: 10.1093/brain/123.6.1216
![]() |
[21] |
Gasbarri A, Sulli A, Packard MG (1997) The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Prog Neuropsychopharmacol Biol Psychiatry 21: 1-22. doi: 10.1016/S0278-5846(96)00157-1
![]() |
[22] |
Shu SY, Jiang G, Zeng QY, et al. (2015) The marginal division of the striatum and hippocampus has different role and mechanism in learning and memory. Mol Neurobiol 51: 827-839. doi: 10.1007/s12035-014-8891-6
![]() |
[23] |
Seger CA (2008) How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Neurosci Biobehav Rev 32: 265-278. doi: 10.1016/j.neubiorev.2007.07.010
![]() |
[24] |
Arroyo-García LE, Rodríguez-Moreno A, Flores G (2018) Apomorphine effects on the hippocampus. Neural Regen Res 13: 2064-2066. doi: 10.4103/1673-5374.241443
![]() |
[25] | Bissonette GB, Roesch MR (2016) Neurophysiology of rule switching in the corticostriatal circuit. Neuroscience 14: 64-76. |
[26] |
Shu SY, Jiang G, Zeng QY, et al. (2019) A New neural pathway from the ventral striatum to the nucleus basalis of Meynert with functional implication to learning and memory. Mol Neurobiol 56: 7222-7233. doi: 10.1007/s12035-019-1588-0
![]() |
[27] | Goodman J, Packard MG (2017) Memory Systems of the Basal Ganglia. Handbook of Basal Ganglia Structure and Function Academic Press, 725-740. |
[28] |
Peall KJ, Lorentzos MS, Heyman I, et al. (2017) A review of psychiatric co-morbidity described in genetic and immune mediated movement disorders. Neurosci Biobehav Rev 80: 23-25. doi: 10.1016/j.neubiorev.2017.05.014
![]() |
[29] |
Crittenden JR, Graybiel AM (2011) Basal ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat 5: 59. doi: 10.3389/fnana.2011.00059
![]() |
[30] |
Graybiel AM (1997) The basal ganglia and cognitive pattern generators. Schizophr Bull 23: 459-69. doi: 10.1093/schbul/23.3.459
![]() |
[31] |
Leisman G, Moustafa AA, Shafir T (2016) Thinking, walking, talking: integratory motor and cognitive brain function. Front Public Health 4: 94. doi: 10.3389/fpubh.2016.00094
![]() |
[32] |
Nobili A, Latagliata EC, Viscomi MT, et al. (2017) Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer's disease. Nat Commun 8: 14727. doi: 10.1038/ncomms14727
![]() |
[33] |
Intzandt B, Beck EN, Silveira CRA (2018) The effects of exercise on cognition and gait in Parkinson's disease: A scoping review. Neurosci Biobeh Rev 95: 136-169. doi: 10.1016/j.neubiorev.2018.09.018
![]() |
[34] |
Crowley EK, Nolan YM, Sullivan AM (2019) Exercise as a therapeutic intervention for motor and non-motor symptoms in Parkinson's disease: Evidence from rodent models. Prog Neurobiol 172: 2-22. doi: 10.1016/j.pneurobio.2018.11.003
![]() |
[35] |
Feng YS, Yang SD, Tan ZX, et al. (2020) The benefits and mechanisms of exercise training for Parkinson's disease. Life Sci 245: 117345. doi: 10.1016/j.lfs.2020.117345
![]() |
[36] |
Cunnington R, Iansek R, Thickbroom GW, et al. (1996) Effects of magnetic stimulation over supplementary motor area on movement in Parkinson's disease. Brain 119: 815-822. doi: 10.1093/brain/119.3.815
![]() |
[37] |
Grieb B, von Nicolai C, Engler G, et al. (2013) Decomposition of abnormal free locomotor behavior in a rat model of Parkinson's disease. Front Syst Neurosci 7: 95. doi: 10.3389/fnsys.2013.00095
![]() |
[38] |
Bouchekioua Y, Tsutsui-Kimura I, Sanob H, et al. (2018) Striatonigral direct pathway activation is sufficient to induce repetitive behaviors. Neurosci Res 132: 53-57. doi: 10.1016/j.neures.2017.09.007
![]() |
[39] |
Smith KS, Graybiel AM (2016) Habit formation. Dialogues Clin Neurosci 18: 33-43. doi: 10.31887/DCNS.2016.18.1/ksmith
![]() |
[40] |
Jin X, Costa RM (2015) Shaping action sequences in basal ganglia circuits. Curr Opin Neurobiol 33: 188-196. doi: 10.1016/j.conb.2015.06.011
![]() |
[41] |
Graybiel AM (1998) The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem 70: 119-136. doi: 10.1006/nlme.1998.3843
![]() |
[42] |
Thorn CA, Atallah H, Howe M, et al. (2010) Differential Dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning. Neuron 66: 781-795. doi: 10.1016/j.neuron.2010.04.036
![]() |
[43] | Smith KS, Graybiel AM (2014) Investigating habits: strategies, technologies and models. Front Behav Neurosci 8: 39. |
[44] |
Iachini T, Ruggiero G, Ruotolo F, et al. (2014) Motor resources in peripersonal space are intrinsic to spatial encoding: Evidence from motor interference. Acta Psychol 153: 20-27. doi: 10.1016/j.actpsy.2014.09.001
![]() |
[45] |
Wang C, Chen X, Knierim JJ (2020) Egocentric and allocentric representations of space in the rodent brain. Curr Opin Neurobiol 60: 12-20. doi: 10.1016/j.conb.2019.11.005
![]() |
[46] |
Glover S, Bibby E, Tuomi E (2020) Executive functions in motor imagery: support for the motor-cognitive model over the functional equivalence model. Exp Brain Res 238: 931-944. doi: 10.1007/s00221-020-05756-4
![]() |
[47] |
Soriano M, Cavallo A, D'Ausilio A, et al. (2018) Movement kinematics drive chain selection toward intention detection. PNAS 115: 10452-10457. doi: 10.1073/pnas.1809825115
![]() |
[48] |
Del Vecchio M, Caruana F, Sartori I, et al. (2020) Action execution and action observation elicit mirror responses with the same temporal profile in human SII. Commun Biol 3: 80. doi: 10.1038/s42003-020-0793-8
![]() |
[49] |
McBride SD, Parker MO (2015) The disrupted basal ganglia and behavioural control: An integrative cross-domain perspective of spontaneous stereotypy. Behav Brain Res 276: 45-58. doi: 10.1016/j.bbr.2014.05.057
![]() |
[50] | Guzulaitis R, Alaburda A, Hounsgaard J (2013) Increased activity of pre-motor network does not change the excitability of motoneurons during protracted scratch initiation. J Physiol 120: 2542-2554. |
[51] |
Grillner S, McClellan A, Perret C (1981) Entrainment of the spinal pattern generators for swimming by mechano-sensitive elements in the lamprey spinal cord in vitro. Brain Res 217: 380-386. doi: 10.1016/0006-8993(81)90015-9
![]() |
[52] |
Grillner S (1991) Recombination of motor pattern generators. Curr Biol 1: 231-3. doi: 10.1016/0960-9822(91)90066-6
![]() |
[53] |
Kalueff AV, Stewart AM, Song C, et al. (2015) Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat Rev Neurosci 17: 45-59. doi: 10.1038/nrn.2015.8
![]() |
[54] |
Ashby FG, Turner BO, Horvitz JC (2010) Cortical and basal ganglia contributions to habit learning and Automaticity. Trends Cogn Sci 14: 208-215. doi: 10.1016/j.tics.2010.02.001
![]() |
[55] |
Redgrave R, Rodriguez M, Smith Y, et al. (2011) Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease. Nat Rev Neurosci 11: 760-772. doi: 10.1038/nrn2915
![]() |
[56] |
Dezfouli A, Balleine BW (2012) Habits, action sequences and reinforcement learning. Eur J Neurosci 35: 1036-1051. doi: 10.1111/j.1460-9568.2012.08050.x
![]() |
[57] | Hernández LF, Redgrave P, Obeso JA (2015) Habitual behaviour and dopamine cell vulnerability in Parkinson disease. Front Neuroanat 9: 99. |
[58] |
Helie S, Chakravarthy S, Moustafa AA (2013) Exploring the cognitive and motor functions of the basal ganglia: an integrative review of computational cognitive neuroscience models. Front Comput Neurosci 7: 174. doi: 10.3389/fncom.2013.00174
![]() |
[59] |
Smith KS, Graybiel AM (2013) A dual operator view of habitual behavior reflecting cortical and striatal dynamics. Neuron 79: 361-374. doi: 10.1016/j.neuron.2013.05.038
![]() |
[60] |
Hart G, Leung BK, Balleine BW (2014) Dorsal and ventral streams: The distinct role of striatal subregions in the acquisition and performance of goal-directed actions. Neurobiol Learn Mem 108: 104-118. doi: 10.1016/j.nlm.2013.11.003
![]() |
[61] |
Hinman JR, Chapman GW, Hasselmo ME (2019) Neural representation of environmental boundaries in egocentric coordinates. Nat Commun 10: 2772. doi: 10.1038/s41467-019-10722-y
![]() |
[62] | Florio TM (2017) The 6-Hydroxydopamine Hemiparkinsonian Rat Model: Evidence of Early Stage Degeneration of the Nigrostriatal Pathway. Xjenza Online Available from: https://www.xjenza.org/JOURNAL/OLD/5-2-2017/05.pdf. |
[63] |
Poldrack RA, Packard MG (2003) Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia 41: 245-251. doi: 10.1016/S0028-3932(02)00157-4
![]() |
[64] |
Calabresi P, Maj R, Pisani A, et al. (1992) Longterm synaptic depression in the striatum: physiological and pharmacological characterization. J Neurosci 12: 4224-4233. doi: 10.1523/JNEUROSCI.12-11-04224.1992
![]() |
[65] |
Calabresi P, Centonze D, Gubellini P, et al. (2000) Synaptic transmission in the striatum: from plasticity to neurodegeneration. Prog Neurobiol 61: 231-265. doi: 10.1016/S0301-0082(99)00030-1
![]() |
[66] |
Calabresi P, Picconi B, Tozzi A, et al. (2007) Dopamine mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30: 211-219. doi: 10.1016/j.tins.2007.03.001
![]() |
[67] |
Pisani A, Centonze D, Bernardi G, et al. (2005) Striatal synaptic plasticity: Implications for motor learning and Parkinson's disease. Movement Disord 20: 395-402. doi: 10.1002/mds.20394
![]() |
[68] |
Centonze D, Picconi B, Gubellini P, et al. (2001) Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur J Neurosci 13: 1071-1077. doi: 10.1046/j.0953-816x.2001.01485.x
![]() |
[69] |
Grahn JA, Parkinson JA, Owen AM (2009) The role of the basal ganglia in learning and memory: Neuropsychological studies. Behav Brain Res 199: 53-60. doi: 10.1016/j.bbr.2008.11.020
![]() |
[70] |
Atallah HE, Frank MJ, O'Reilly RC (2004) Hippocampus, cortex, and basal ganglia: Insights from computational models of complementary learning systems. Neurobiol Learn Mem 82: 253-267. doi: 10.1016/j.nlm.2004.06.004
![]() |
[71] |
Brown JW, Bullock D, Grossberg S (2004) How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades. Neural Networks 17: 471-510. doi: 10.1016/j.neunet.2003.08.006
![]() |
[72] |
Aron AR, Behrens TE, Smith S, et al. (2007) Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J Neurosci 27: 3743-52. doi: 10.1523/JNEUROSCI.0519-07.2007
![]() |
[73] |
Baunez C, Nieoullon A, Amalric M (1995) Dopamine and complex sensorimotor integration: further studies in a conditioned motor task in the rat. Neuroscience 65: 375-384. doi: 10.1016/0306-4522(94)00498-T
![]() |
[74] |
Lehéricy S, Benali H, Van de Moortele PF, et al. (2005) Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc Natl Acad Sci 102: 12566-12571. doi: 10.1073/pnas.0502762102
![]() |
[75] |
Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13: 266-271. doi: 10.1016/0166-2236(90)90107-L
![]() |
[76] |
Lawrence AD, Sahakian BJ, Robbins TW (1998) Cognitive functions and corticostriatal circuits: insights from Huntington's disease. Trends Cogn Sci 2: 379-388. doi: 10.1016/S1364-6613(98)01231-5
![]() |
[77] |
Bédard P, Sanes JN (2009) On a basal ganglia role in learning and rehersing visual-MPTPr associations. Neuroimage 47: 1701-1710. doi: 10.1016/j.neuroimage.2009.03.050
![]() |
[78] |
Delgado MR, Miller MM, Inati S, et al. (2005) An fMRI study of reward-related probability learning. Neuroimage 24: 862-873. doi: 10.1016/j.neuroimage.2004.10.002
![]() |
[79] |
Grol MJ, de Lange FP, Verstraten FA, et al. (2006) Cerebral changes during performance of overlearned arbitrary visuomotor associations. J Neurosci 26: 117-125. doi: 10.1523/JNEUROSCI.2786-05.2006
![]() |
[80] |
Seger CA, Cincotta CM (2006) Dynamics of frontal, striatal, and hippocampal systems during rule learning. Cereb Cortex 16: 1546-1555. doi: 10.1093/cercor/bhj092
![]() |
[81] |
Boettiger CA, D'Esposito M (2005) Frontal networks for learning and executing arbitrary stimulus–response associations. J Neurosci 25: 2723-2732. doi: 10.1523/JNEUROSCI.3697-04.2005
![]() |
[82] |
Buch ER, Brasted PJ, Wise SP (2006) Comparison of population activity in the dorsal premotor cortex and putamen during the learning of arbitrary visuomotor mappings. Exp Brain Res 169: 69-84. doi: 10.1007/s00221-005-0130-y
![]() |
[83] |
Charpier S, Mahon S, Deniau JM (1999) In vivo induction of striatal long-term potentiation by low-frequency stimulation of the cerebral cortex. Neuroscience 91: 1209-1222. doi: 10.1016/S0306-4522(98)00719-2
![]() |
[84] |
Bonsi P, Florio T, Capozzo A, et al. (2003) Behavioural learning-induced increase in spontaneous GABAA-dependent synaptic activity in rat striatal cholinergic interneurons. Eur J Neurosci 17: 174-178. doi: 10.1046/j.1460-9568.2003.02410.x
![]() |
[85] |
Frank MJ, Loughry B, O'Reilly RC (2001) Interactions between the frontal cortex and basal ganglia in working memory: A computational model. Cogn Affect Behav Neurosci 1: 137-160. doi: 10.3758/CABN.1.2.137
![]() |
[86] |
Fino E, Glowinski J, Venance L (2005) Bidirectional activity-dependent plasticity at corticostriatal synapses. J Neurosci 25: 11279-11287. doi: 10.1523/JNEUROSCI.4476-05.2005
![]() |
[87] |
Fino E, Deniau JM, Venance L (2008) Cell-specific spike-timing-dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices. J Physiol 586: 265-282. doi: 10.1113/jphysiol.2007.144501
![]() |
[88] |
Fino E, Deniau JM, Venance L (2009) Brief subthreshold events can act as Hebbian signals for long-term plasticity. PloS ONE 4: e6557. doi: 10.1371/journal.pone.0006557
![]() |
[89] |
Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31-39. doi: 10.1038/361031a0
![]() |
[90] |
Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23: 649-711. doi: 10.1146/annurev.neuro.23.1.649
![]() |
[91] |
Martin SJ, Morris RG (2002) New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus 12: 609-636. doi: 10.1002/hipo.10107
![]() |
[92] |
Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84: 87-136. doi: 10.1152/physrev.00014.2003
![]() |
[93] |
Giordano N, Iemolo A, Mancini M, et al. (2018) Motor learning and metaplasticity in striatal neurons: relevance for Parkinson's disease. Brain 141: 505-520. doi: 10.1093/brain/awx351
![]() |
[94] |
Cameron IGM, Coe CB, Watanabe M, et al. (2009) Role of the basal ganglia in switching a planned response. Eur J Neurosci 29: 2413-2425. doi: 10.1111/j.1460-9568.2009.06776.x
![]() |
[95] |
Hikosaka O, Isoda M (2010) Switching from automatic to controlled behavior: cortico-basal ganglia mechanisms. Trends Cogn Sci 14: 154-161. doi: 10.1016/j.tics.2010.01.006
![]() |
[96] |
Obeso JA, Rodriguez-Oroz MC, Benitez-Temino B, et al. (2008) Functional organization of the basal ganglia: Therapeutic implications for Parkinson's Disease. Movement Disord 23: S548-S559. doi: 10.1002/mds.22062
![]() |
[97] |
Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50: 381-425. doi: 10.1016/S0301-0082(96)00042-1
![]() |
[98] |
Reynolds JNJ, Hyland BI, Wickens JR (2019) A cellular mechanism of reward-related learning. Nature 413: 67-70. doi: 10.1038/35092560
![]() |
[99] |
Vandaele Y, Mahajan NR, Ottenheimer DJ, et al. (2019) Distinct recruitment of dorsomedial and dorsolateral striatum erodes with extended training. eLife 8: e49536. doi: 10.7554/eLife.49536
![]() |
[100] |
Klaus A, Martins GJ, Paixao VB, et al. (2017) The spatiotemporal organization of the striatum encodes action space. Neuron 95: 1171-1180. doi: 10.1016/j.neuron.2017.08.015
![]() |
[101] |
Florio TM, Scarnati E, Rosa I, et al. (2018) The basal ganglia: More than just a switching device. CNS Neurosci Ther 24: 677-684. doi: 10.1111/cns.12987
![]() |
[102] |
Florio TM, Confalone G, Sciarra A, et al. (2013) Switching ability of over trained movements in a Parkinson's disease rat model. Behav Brain Res 250: 326-333. doi: 10.1016/j.bbr.2013.05.020
![]() |
[103] |
Patel N, Jankovic J, Hallett M (2014) Sensory aspects of movement disorders. Lancet Neurol 13: 100-112. doi: 10.1016/S1474-4422(13)70213-8
![]() |
[104] |
Williams-Gray CH, Worth PF (2016) Parkinson's disease. Movement Disorders. Medicine (Baltimore) 44: 542-546. doi: 10.1016/j.mpmed.2016.06.001
![]() |
[105] |
Asakawa T, Fang H, Sugiyama K, et al. (2016) Human behavioural assessments in current research of Parkinson's disease. Neurosci Biobehav Rev 68: 741-772. doi: 10.1016/j.neubiorev.2016.06.036
![]() |
[106] |
Obeso JA, Stamelou M, Goetz CG, et al. (2017) Past, present, and future of Parkinson's disease: A special essay on the 200th Anniversary of the Shaking Palsy. Mov Disord 32: 1264-1310. doi: 10.1002/mds.27115
![]() |
[107] |
Berganzo K, Tijero B, González-Eizaguirre A, et al. (2016) Motor and non-motor symptoms of Parkinson's disease and their impact on quality of life and on different clinical subgroups. Neurologia 31: 585-591. doi: 10.1016/j.nrl.2014.10.010
![]() |
[108] |
Cameron IGM, Watanabe M, Pari G, et al. (2010) Executive impairment in Parkinson's disease: Response automaticity and task switching. Neuropsychologia 48: 1948-57. doi: 10.1016/j.neuropsychologia.2010.03.015
![]() |
[109] | Magrinelli F, Picelli A, Tocco P, et al. (2016) Pathophysiology of Motor Dysfunction in Parkinson's Disease as the Rationale for Drug Treatment and Rehabilitation. Parkinsons Dis 2016: 9832839. |
[110] |
Mancini M, Carlson-Kuhta P, Zampieri C, et al. (2012) Postural sway as a marker of progression in Parkinson's disease: A pilot longitudinal study. Gait Posture 36: 471-476. doi: 10.1016/j.gaitpost.2012.04.010
![]() |
[111] |
Rosa I, Di Censo D, Ranieri B, et al. (2020) Comparison between Tail Suspension Swing Test and Standard Rotation Test in revealing early motor behavioral changes and neurodegeneration in 6-OHDA hemiparkinsonian rats. Int J Mol Sci 21: 2874. doi: 10.3390/ijms21082874
![]() |
[112] |
Siragy T, Nantel J (2020) Absent arm swing and dual tasking decreases trunk postural control and dynamic balance in people with Parkinson's disease. Front Neurol 11: 213. doi: 10.3389/fneur.2020.00213
![]() |
[113] |
Fox ME, Mikhailova MA, Bass CE, et al. (2016) Cross-hemispheric dopamine projections have functional significance. Proc Natl Acad Sci 113: 6985-6990. doi: 10.1073/pnas.1603629113
![]() |
[114] |
Lisman JE, Grace AA (2005) The Hippocampal-VTA loop: Controlling the entry of information into long-term memory. Neuron 46: 703-713. doi: 10.1016/j.neuron.2005.05.002
![]() |
[115] |
Cordella A, Krashia P, Nobili A, et al. (2018) Dopamine loss alters the hippocampus-nucleus accumbens synaptic transmission in the Tg2576 mouse model of Alzheimer's disease. Neurobiol Dis 116: 142-154. doi: 10.1016/j.nbd.2018.05.006
![]() |
[116] |
Casarrubea M, Di Giovanni G, Crescimanno G, et al. (2019) Effects of Substantia Nigra pars compacta lesion on the behavioural sequencing in the 6-OHDA model of Parkinson's disease. Behav Brain Res 362: 28-35. doi: 10.1016/j.bbr.2019.01.004
![]() |
[117] |
Gilat M, Bell PT, Ehgoetz Martens KA, et al. (2017) Dopamine depletion impairs gait automaticity by altering cortico-striatal and cerebellar processing in Parkinson's disease. Neuroimage 152: 207-220. doi: 10.1016/j.neuroimage.2017.02.073
![]() |
[118] | Wissner-Gross AD, Freer CE (2013) Causal entropic forces. Phys Rev Lett 110: 168702-1-168702-5. |
[119] |
Merchant H, Averbeck BB (2017) The computational and neural basis of rhythmic timing in medial premotor cortex. J Neurosci 37: 4552-4564. doi: 10.1523/JNEUROSCI.0367-17.2017
![]() |
[120] |
Athalye VR, Carmena JM, Costa RM (2020) Neural reinforcement: re-entering and refining neural dynamics leading to desirable outcomes. Curr Opin Neurobiol 60: 145-154. doi: 10.1016/j.conb.2019.11.023
![]() |