Research article

Enhancing water flux of thin-film nanocomposite (TFN) membrane by incorporation of bimodal silica nanoparticles

  • Received: 23 February 2015 Accepted: 27 March 2016 Published: 30 March 2016
  • Modern reverse osmosis (RO)/nanofiltration (NF) membranes are primarily made of thin-film composites (TFC) fabricated through interfacial polymerization of m-phenylene diamine (MPD) and trimesoyl chloride (TMC) on a polysulfone (PSF) supporting membrane. In this study, two types of bimodal silica nanoparticles (~80 nm) with different internal pore structures were synthesized and incorporated into the polyamide (PA) thin-film layer during interfacial polymerization at concentrations varying from 0 to 0.1 wt%. The as-prepared membranes were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy, and their performances were evaluated in terms of the water permeability and salt rejection. The results showed the water permeability increased with increasing BSN concentrations, reaching a maximum of 53.5 L m−2 h−1 at a bimodal silica nanoparticle (BSN) concentration of 0.5 wt% (pressure at 300 psi, NaCl concentration: 2000 ppm). This represented a flux increase of approximately 40%, while a near constant salt rejection of 95% was maintained. The study demonstrated that the internal micro-mesoporous structures of bimodal silica nanoparticles contributed significantly to the membrane performance, which is consistent with previous studies with relatively uniform internal pores.

    Citation: Zhe Yang, Jun Yin, Baolin Deng. Enhancing water flux of thin-film nanocomposite (TFN) membrane by incorporation of bimodal silica nanoparticles[J]. AIMS Environmental Science, 2016, 3(2): 185-198. doi: 10.3934/environsci.2016.2.185

    Related Papers:

    [1] Qiuxia Hu, Bilal Khan, Serkan Araci, Mehmet Acikgoz . New double-sum expansions for certain Mock theta functions. AIMS Mathematics, 2022, 7(9): 17225-17235. doi: 10.3934/math.2022948
    [2] Suxia Wang, Tiehong Zhao . New refinements of Becker-Stark inequality. AIMS Mathematics, 2024, 9(7): 19677-19691. doi: 10.3934/math.2024960
    [3] Zhenhua Su, Zikai Tang, Hanyuan Deng . Higher-order Randić index and isomorphism of double starlike trees. AIMS Mathematics, 2023, 8(12): 31186-31197. doi: 10.3934/math.20231596
    [4] Waleed Mohamed Abd-Elhameed, Youssri Hassan Youssri . Spectral tau solution of the linearized time-fractional KdV-Type equations. AIMS Mathematics, 2022, 7(8): 15138-15158. doi: 10.3934/math.2022830
    [5] Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu . On some refinements for inequalities involving zero-balanced hypergeometric function. AIMS Mathematics, 2020, 5(6): 6479-6495. doi: 10.3934/math.2020418
    [6] Mustafa Inc, Mamun Miah, Akher Chowdhury, Shahadat Ali, Hadi Rezazadeh, Mehmet Ali Akinlar, Yu-Ming Chu . New exact solutions for the Kaup-Kupershmidt equation. AIMS Mathematics, 2020, 5(6): 6726-6738. doi: 10.3934/math.2020432
    [7] Aslıhan ILIKKAN CEYLAN, Canan HAZAR GÜLEÇ . A new double series space derived by factorable matrix and four-dimensional matrix transformations. AIMS Mathematics, 2024, 9(11): 30922-30938. doi: 10.3934/math.20241492
    [8] Waleed Mohamed Abd-Elhameed, Abdullah F. Abu Sunayh, Mohammed H. Alharbi, Ahmed Gamal Atta . Spectral tau technique via Lucas polynomials for the time-fractional diffusion equation. AIMS Mathematics, 2024, 9(12): 34567-34587. doi: 10.3934/math.20241646
    [9] Ling Zhu . New inequalities of Wilker's type for hyperbolic functions. AIMS Mathematics, 2020, 5(1): 376-384. doi: 10.3934/math.2020025
    [10] Bai-Ni Guo, Dongkyu Lim, Feng Qi . Series expansions of powers of arcsine, closed forms for special values of Bell polynomials, and series representations of generalized logsine functions. AIMS Mathematics, 2021, 6(7): 7494-7517. doi: 10.3934/math.2021438
  • Modern reverse osmosis (RO)/nanofiltration (NF) membranes are primarily made of thin-film composites (TFC) fabricated through interfacial polymerization of m-phenylene diamine (MPD) and trimesoyl chloride (TMC) on a polysulfone (PSF) supporting membrane. In this study, two types of bimodal silica nanoparticles (~80 nm) with different internal pore structures were synthesized and incorporated into the polyamide (PA) thin-film layer during interfacial polymerization at concentrations varying from 0 to 0.1 wt%. The as-prepared membranes were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy, and their performances were evaluated in terms of the water permeability and salt rejection. The results showed the water permeability increased with increasing BSN concentrations, reaching a maximum of 53.5 L m−2 h−1 at a bimodal silica nanoparticle (BSN) concentration of 0.5 wt% (pressure at 300 psi, NaCl concentration: 2000 ppm). This represented a flux increase of approximately 40%, while a near constant salt rejection of 95% was maintained. The study demonstrated that the internal micro-mesoporous structures of bimodal silica nanoparticles contributed significantly to the membrane performance, which is consistent with previous studies with relatively uniform internal pores.


    In [18] Ramanujan showed a total of 17 series for $ 1/\pi $ but he did not indicate how he arrived at these series. The Borwein brothers [5] gave rigorous proofs of Ramanujan's series for the first time and also obtained many new series for $ 1/\pi. $ Till now, many new Ramanujan's-type series for $ 1/\pi $ have been published, (see, for example, [4,6,8]). Chu [7], Liu [15,16] and Wei et al. [21,22] gave many $ \pi $-formula with free parameters by means of gamma functions and hypergeometric series. Guillera [10] proved a kind of bilateral semi-terminating series related to Ramanujan-like series for negative powers of $ \pi $. Moreover, Guillera and Zudilin [11] outlined an elementary method for proving numerical hypergeometric identities, in particular, Ramanujan-type identities for $ 1/\pi $. Recently, $ q $-analogues of Ramanujan-type series for $ 1/\pi $ have caught the interests of many authors (see, for example, [9,12,13,14,20,21]).

    Although various definitions for gamma functions are used in the literature, we adopt the following definition [23, p.76]

    $ \frac 1{\Gamma(z)} = ze^{\gamma z}\prod\limits_{n = 1}^\infty\left(1+\frac zn\right)e^{-\frac zn} $

    where $ \gamma $ is the Euler constant defined as

    $ \gamma = \lim\limits_{n\rightarrow \infty}\left(1+ \frac 12+\cdots+ \frac 1n-\log n\right). $

    It is easy to verify that $ \Gamma(1) = 1, \Gamma({ \frac 12}) = \sqrt\pi $ and $ \Gamma({z+1}) = z\Gamma(z). $ It follows that for every positive integer $ n $, $ \Gamma(n) = (n-1)!. $

    For any complex $ \alpha $, we define the general rising shifted factorial by

    $ (z)α=Γ(z+α)/Γ(z).
    $
    (1.1)

    Obviously, $ (z)_0 = 1. $ For every positive integer $ n $, we have

    $ (z)_n = \Gamma({z+n})/\Gamma(z) = z(z+1)\cdots(z+n-1) $

    and

    $ (z)_{-n} = \Gamma({z-n})/\Gamma(z) = \frac 1{(z-1)(z-2)\ldots(z-n)}. $

    For convenience, we use the following compact notations

    $ (a_1,a_2,\ldots,a_m)_n = (a_1)_n(a_2)_n\ldots(a_m)_n $

    and

    $ (a)_{(n_1,n_2,\ldots,n_m)} = (a)_{n_1}(a)_{n_2}\ldots(a)_{n_m}. $

    Following [1,3], the hypergeometric series is defined by

    $ _{{r+1}}F_{s}\left[a0,a1,,arb1,,bs
    ;z\right] = \sum\limits_{k = 0}^\infty \frac {(a_0, a_1,\ldots,a_r)_k}{(b_1,\ldots,b_s)_k} \frac {z^k}{k!}, $

    where $ a_i, b_j(i = 0, 1, \ldots, r, j = 1, 2, \ldots, s) $ are complex numbers such that no zero factors appear in the denominators of the summand on the right hand side.

    We let $ F_{q:s; v}^{p:r; u}\ ({p, q, r, s, u, v\in \Bbb N_0 = \{0, 1, 2, \ldots\}}) $ denote a general (Kampé de Fériet's) double hypergeometric function defined by (see [2,19])

    $ Fp:r;uq:s;v[α1,,αp:a1,,ar;c1,,cu;β1,,βq:b1,,bs;d1,,dv;x,y]=m,n=0(α1,,αp)m+n(a1,,ar)m(c1,,cu)n(β1,,βq)m+n(b1,,bs)m(d1,,dv)nxmm!ynn!,
    $

    where, for convergence of the double hypergeometric series,

    $ p+r\leq q+s+1{\quad}\text{and}{\quad} p+u\leq q+v+1, $

    with equality only when $ |x| $ and $ |y| $ are appropriately constrained (see, for details, [19,Eq 1.3(29),p.27]).

    There exist numerous identities for such series. For example, we have

    Theorem 1.1 (See [17,(30)] ) If $ Re(e-d) > 0 $ and $ Re(d+e-a-b-c) > 0, $ then

    $ F_{1:1;1}^{0:3;3}\left[:a,b,c;da,db,dc;d:e;d+eabc;
    1,1\right] = \frac {\Gamma({e})\Gamma({e+d-a-b-c})\Gamma({e-d})}{\Gamma({e-a})\Gamma({e-b})\Gamma({e-c})}. $

    In [15], Liu used the general rising shifted factorial and the Gauss summation formula to prove the following four-parameter series expansions formula, which implies infinitely many Ramanujan type series for $ 1/\pi $ and $ \pi $.

    Theorem 1.2 For any complex $ {\alpha} $ and $ Re(c-a-b) > 0, $ we have

    $ \sum\limits_{n = 0}^\infty \frac {({\alpha})_{a+n}(1-{\alpha})_{b+n}}{n!\Gamma({c+n+1})} = \frac {({\alpha})_a(1-{\alpha})_b\Gamma({c-a-b})} {({\alpha})_{c-b}(1-{\alpha})_{c-a}}\cdot \frac {\sin \pi{\alpha}}\pi. $

    Motivated by Liu's work, in this paper we derive the following result from Theorem 1.1 which enables us to give many double series expansions for $ 1/\pi $ and $ \ \pi $. To the best of our knowledge, most of the results in this paper have not previously appeared.

    Theorem 1.3 If $ d\in \Bbb N_0, Re(e-d+{\sigma}-{\delta}) > 0 $ and $ Re(d+e-a-b-c+{\delta}+{\sigma}-{\alpha}-\beta-{\gamma}) > 0, $ then

    $ m,n=0(α)a+m(β)b+m(γ)c+m(δα)da+n(δβ)db+n(δγ)dc+nm!n!(δ+d)m+n(σ)e+m(δ+σαβγ)d+eabc+n=(α)a(β)b(γ)c(δα)da(δβ)db(δγ)dc(σδ)ed(σα)ea(σβ)eb(σγ)ecΓ(σ)Γ(σδ)Γ(δ+σαβγ)Γ(σα)Γ(σβ)Γ(σγ).
    $

    Several examples of such formulae are

    $ \sum\limits_{m,n = 0}^\infty \frac {( \frac 12)_m^3( \frac 12)_n^2}{m!n!(m+n)!(m+1)!(2n+1)} = \frac 4{\pi}, $
    $ \sum\limits_{m,n = 0}^\infty \frac {(- \frac 12)_m^3( \frac 32)_n^3}{m!n!(m+n)!(n+3)!( \frac 12)_{m+1}} = \pi, $

    and

    $ \sum\limits_{m,n = 0}^\infty \frac {(- \frac 23)_m^2( \frac 13)_n^3}{m!n!(n+1)!(2-3m)(- \frac 13)_{m+n}} = \frac {\sqrt3\pi}3. $

    The remainder of the paper is organized as follows. In section 2 we give the proof of Theorem 1.3. Sections 3 and 4 are devoted to the double series expansions for $ 1/\pi $ and $ \pi $, respectively.

    First of all, by making use of (1.1), Theorem 1.3 can be restated as follows:

    $ m,n=0Γ(a+m)Γ(b+m)Γ(c+m)Γ(da+n)Γ(db+n)Γ(dc+n)m!n!Γ(d+m+n)Γ(e+m)Γ(d+eabc+n)=Γ(a)Γ(b)Γ(c)Γ(da)Γ(db)Γ(dc)Γ(ed)Γ(d)Γ(ea)Γ(eb)Γ(ec).
    $
    (2.1)

    From (1.1) it is easy to see that

    $ Γ(a+α+m)=(α)a+mΓ(α), Γ(b+β+m)=(β)b+mΓ(β), Γ(c+γ+m)=(γ)c+mΓ(γ),Γ(da+δα+n)=(δα)da+nΓ(δα), Γ(db+δβ+n)=(δβ)db+nΓ(δβ),Γ(dc+δγ+n)=(δγ)dc+nΓ(δγ), Γ(d+δ+m+n)=(δ)d+m+nΓ(δ)Γ(e+m+σ)=(σ)e+mΓ(σ), Γ(a+α)=(α)aΓ(α), Γ(b+β)=(β)bΓ(β), Γ(c+γ)=(γ)cΓ(γ),Γ(da+δα)=(δα)daΓ(δα), Γ(db+δβ)=(δβ)dbΓ(δβ),Γ(dc+δγ)=(δγ)dcΓ(δγ), Γ(ed+σδ)=(σδ)edΓ(σδ),Γ(d+δ)=(δ)dΓ(δ),Γ(ea+σα)=(σα)eaΓ(σα),Γ(eb+σβ)=(σβ)ebΓ(σβ), Γ(ec+σγ)=(σγ)ecΓ(σγ),Γ(d+eabc+δ+σαβγ)=(δ+σαβγ)d+eabcΓ(δ+σαβγ).
    $

    and we realize that $ ({\delta})_{d+m+n} = ({\delta})_d({\delta}+d)_{m+n} $ when $ d\in \Bbb N_0. $ Replacing$ (a, b, c, d, e) $ by $ (a+{\alpha}, b+\beta, c+{\gamma}, d+{\delta}, e+{\sigma}) $ in (2.1) and substituting above identities into the resulting equation, we get the desired result.

    In this section we will use Theorem 1.3 to prove the following double series expansion formula for $ 1/\pi $.

    Theorem 3.1 If $ d\in \Bbb N_0, Re(e-d+1) > 0 $ and $ Re(d+e-a-b-c+ \frac 32) > 0, $ then

    $ \sum\limits_{m,n = 0}^\infty \frac {( \frac 12)_{(a+m,b+m,c+m,d-a+n,d-b+n,d-c+n)}} {m!n!(d+1)_{m+n}(2)_{e+m}( \frac 32)_{d+e-a-b-c+n}} = \frac {( \frac 12)_{(a,b,c,d-a,d-b,d-c)}(1)_{e-d}} {( \frac 32)_{(e-a,e-b,e-c)}}\cdot \frac 4{\pi}. $

    Proof. Let $ ({\alpha}, \beta, {\gamma}, {\delta}, {\sigma}) = ( \frac 12, \frac 12, \frac 12, 1, 2) $ in Theorem 1.3. We find that

    $ m,n=0(12)(a+m,b+m,c+m,da+n,db+n,dc+n)m!n!(d+1)m+n(2)e+m(32)d+eabc+n=(12)(a,b,c,da,db,dc)(1)ed(32)(ea,eb,ec)Γ(2)Γ(1)Γ(32)Γ3(32).
    $
    (3.1)

    Substituting $ \Gamma({ \frac 32}) = \frac {\sqrt{\pi}}2 $ into (3.1) we obtain the result immediately. Putting $ (a, b, c) = (0, 0, 0) $ in Theorem 3.1 we get the following general double summation formula for $ 1/\pi $ with two free parameters.

    Corollary 3.2 If $ d\in \Bbb N_0, Re(e-d+1) > 0 $ and $ Re(d+e+ \frac 32) > 0, $ then

    $ \sum\limits_{m,n = 0}^\infty \frac {( \frac 12)_{(m,d+n)}^3} {m!n!(d+1)_{m+n}(2)_{e+m}( \frac 32)_{d+e+n}} = \frac {4( \frac 12)_d^3(1)_{e-d}}{\pi( \frac 32)_e^3}. $

    Setting $ d = 0 $ and $ e = k\in\Bbb N_0 $ in Corallary 3.2 we have the following result.

    Proposition 3.3 Let $ k $ be a nonnegative integer. Then

    $ \sum\limits_{m,n = 0}^\infty \frac {( \frac 12)_{(m,n)}^3}{m!n!(m+n)!(m+k+1)!( \frac 32+k)_n} = \frac {4k!}{\pi( \frac 32)_k^2}. $

    Example 3.1 ($ k = 0 $ in Proposition 3.3).

    $ \sum\limits_{m,n = 0}^\infty \frac {( \frac 12)_m^3( \frac 12)_n^2}{m!n!(m+n)!(m+1)!(2n+1)} = \frac 4{\pi}. $

    If $ d = e = k\in\Bbb N_0 $ in Corollary 3.2 we achieve

    Proposition 3.4 Let $ k $ be a nonnegative integer. Then

    $ \sum\limits_{m,n = 0}^\infty \frac {( \frac 12)_{(m,n+k)}^3} {m!n!(k+1)_{m+n}(m+k+1)!( \frac 32)_{n+2k}} = \frac 4{\pi(2k+1)^3}. $

    If we put $ k = 0 $ into Proposition 3.4, then we can also get Example 3.1.

    In this section we will prove the following theorem, which allows us to derive infinitely double series expansions for $ \pi $.

    Theorem 4.1 If $ d\in \Bbb N_0, Re(e-d-{\sigma}+1) > 0 $ and $ Re(d+e-a-b-c+2) > 0, $ then

    $ m,n=0(σ1)(a+m,b+m,c+m)(σ)(da+n,db+n,dc+n)m!n!(2σ+d1)m+n(σ)e+m(2)d+eabc+n=(σ1)(a,b,c)(σ)(da,db,dc)(1σ)ed(1)(ea,eb,ec)πsinσπ.
    $

    Proof. Let $ ({\alpha}, \beta, {\gamma}, {\delta}) = ({\sigma}-1, {\sigma}-1, {\sigma}-1, 2{\sigma}-1) $ in Theorem 1.3. We obtain that

    $ m,n=0(σ1)(a+m,b+m,c+m)(σ)(da+n,db+n,dc+n)m!n!(2σ+d1)m+n(σ)e+m(2)d+eabc+n=(σ1)(a,b,c)(σ)(da,db,dc)(1σ)ed(1)(ea,eb,ec)Γ(σ)Γ(1σ)Γ(2)Γ3(1).
    $
    (4.1)

    Combining $ \Gamma({{\sigma}})\Gamma({1-{\sigma}}) = \frac \pi{\sin{\sigma}\pi} $ with (4.1) we get the desired result immediately. Putting $ a = b = c = 0 $ in Theorem 4.1 we obtain the following equation.

    Corollary 4.2 If $ d\in \Bbb N_0, Re(e-d-{\sigma}+1) > 0 $ and $ Re(d+e+2) > 0, $ then

    $ \sum\limits_{m,n = 0}^\infty \frac {({\sigma}-1)_m^3({\sigma})_{d+n}^3} {m!n!(2{\sigma}+d-1)_{m+n}({\sigma})_{e+m}(2)_{d+e+n}} = \frac {({\sigma})_d^3(1-{\sigma})_{e-d}}{(1)_e^3} \cdot \frac {\pi}{\sin{{\sigma}\pi}}. $

    Letting $ \sigma=\frac{1}{2} $ in Corollary 4.2, we get the following proposition.

    Proposition 4.3 If $ d\in \Bbb N_0, Re(e-d+ \frac 12) > 0 $ and $ Re(d+e+2) > 0, $ then

    $ \sum\limits_{m,n = 0}^\infty \frac {(- \frac 12)_m^3( \frac 12)_{d+n}^3}{m!n!(d)_{m+n}( \frac 12)_{e+m} (2)_{d+e+n}} = \frac {( \frac 12)_d^3( \frac 12)_{e-d}}{(1)_{e}^3} \pi. $

    When we set $ d = 1 $ and $ e = k\in\Bbb N = \{1, 2, 3\ldots\} $ in Proposition 4.3 we obtain

    Proposition 4.4 If $ k $ is a positive integer, then

    $ \sum\limits_{m,n = 0}^\infty \frac {(- \frac 12)_m^3( \frac 32)_n^3}{m!n!(m+n)!(n+k+2)!( \frac 12)_{m+k}} = \frac {\pi( \frac 12)_{k-1}}{(k!)^3} . $

    Example 4.1 ($ k = 1 $ in Proposition 4.4).

    $ \sum\limits_{m,n = 0}^\infty \frac {(- \frac 12)_m^3( \frac 32)_n^3}{m!n!(m+n)!(n+3)!( \frac 12)_{m+1}} = \pi. $

    Putting $ \sigma=\frac{1}{3} $ in Corollary 4.2, we get the following proposition.

    Proposition 4.5 If $ d\in \Bbb N_0, Re(e-d+ \frac 23) > 0 $ and $ Re(d+e+2) > 0, $ then

    $ \sum\limits_{m,n = 0}^\infty \frac {(- \frac 23)_m^3( \frac 13)_{d+n}^3}{m!n!(d- \frac 13)_{m+n}( \frac 13)_{e+m} (2)_{d+e+n}} = \frac {2\sqrt3\pi( \frac 13)_d^3( \frac 23)_{e-d}}{3(1)_{e}^3}. $

    When we set $ d = 0 $ and $ e = k\in\Bbb N_0 $ in Proposition 4.5 we obtain

    Proposition 4.6 If $ k $ is a nonnegative integer, then

    $ \sum\limits_{m,n = 0}^\infty \frac {(- \frac 23)_m^3( \frac 13)_n^3}{m!n!(- \frac 13)_{m+n}( \frac 13)_{m+k}(n+k+1)!} = \frac {2\sqrt3\pi( \frac 23)_k}{3k!^3}. $

    Example 4.2 ($ k = 0 $ in Proposition 4.6).

    $ \sum\limits_{m,n = 0}^\infty \frac {(- \frac 23)_m^2( \frac 13)_n^3}{m!n!(n+1)!(2-3m)(- \frac 13)_{m+n}} = \frac {\sqrt3\pi}3. $

    Setting $ d = e = k\in\Bbb N_0 $ in Proposition 4.5, we get

    Proposition 4.7 If $ k $ is a nonnegative integer, then

    $ \sum\limits_{m,n = 0}^\infty \frac {(- \frac 23)_m^3( \frac 13+k)_n^3}{m!n!(n+2k+1)!(k- \frac 13)_{m+n}( \frac 13)_{m+k} } = \frac {2\sqrt3\pi}{3k!^3}. $

    Therefore, Example 4.2 can also be deduced by fixing $ k = 0 $ in the above equation.

    Example 4.3 ($ k = 1 $ in Proposition 4.7).

    $ \sum\limits_{m,n = 0}^\infty \frac {(- \frac 23)_m^3( \frac 43)_n^3}{m!n!(n+3)!( \frac 23)_{m+n} ( \frac 43)_m} = \frac {2\sqrt3\pi}9. $

    Double series expansions for $ 1/\pi $ and $ \pi $ with several free parameters are established and many interesting formulas are obtained. A point that should be stressed is that there is an important connection between the summation formulas for double hypergeometric functions and double series expansions for the powers of $ \pi $.

    The author was partially supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (grant 19KJB110006).

    The author declares that there is no conflict of interest in this paper.

    [1] Mezher T, Fath H, Abbas Z, et al. (2011) Techno-economic assessment and environmental impacts of desalination technologies. Desalination 266: 263-273. doi: 10.1016/j.desal.2010.08.035
    [2] Su J, Zhang S, Ling MM, et al. (2012) Forward osmosis: an emerging technology for sustainable supply of clean water. Clean Technol Envir 14: 507-511. doi: 10.1007/s10098-012-0486-1
    [3] Fritzmann C, Löwenberg J, Wintgens T, et al. (2007) State-of-the-art of reverse osmosis desalination. Desalination 216: 1-76. doi: 10.1016/j.desal.2006.12.009
    [4] Lee KP, Arnot TC, Mattia D (2011) A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J Membrane Sci 370: 1-22. doi: 10.1016/j.memsci.2010.12.036
    [5] Xu J, Wang Z, Yu L, et al. (2013) A novel reverse osmosis membrane with regenerable anti-biofouling and chlorine resistant properties. J Membrane Sci 435: 80-91. doi: 10.1016/j.memsci.2013.02.010
    [6] Daraei P, Madaeni SS, Salehi E, et al. (2013) Novel thin film composite membrane fabricated by mixed matrix nanoclay/chitosan on PVDF microfiltration support: Preparation, characterization and performance in dye removal. J Membrane Sci 436: 97-108. doi: 10.1016/j.memsci.2013.02.031
    [7] Zhu X, Loo HE, Bai R (2013) A novel membrane showing both hydrophilic and oleophobic surface properties and its non-fouling performances for potential water treatment applications. J Membrane Sci 436: 47-56. doi: 10.1016/j.memsci.2013.02.019
    [8] Li D, Wang H (2010) Recent developments in reverse osmosis desalination membranes. J Mater Chem 20: 4551. doi: 10.1039/b924553g
    [9] Wei J, Jian X, Wu C, et al. (2005) Influence of polymer structure on thermal stability of composite membranes. J Membrane Sci 256: 116-121.
    [10] Kim HI, Kim SS (2006) Plasma treatment of polypropylene and polysulfone supports for thin film composite reverse osmosis membrane. J Membrane Sci 286: 193-201. doi: 10.1016/j.memsci.2006.09.037
    [11] Chen G, Li S, Zhang X, et al. (2008) Novel thin-film composite membranes with improved water flux from sulfonated cardo poly(arylene ether sulfone) bearing pendant amino groups. J Membrane Sci 310: 102-109. doi: 10.1016/j.memsci.2007.10.039
    [12] Tarboush BJA, Rana D, Matsuura T, et al. (2008) Preparation of thin-film-composite polyamide membranes for desalination using novel hydrophilic surface modifying macromolecules. J Membrane Sci 325: 166-175. doi: 10.1016/j.memsci.2008.07.037
    [13] Yu S, Liu M, Liu X, et al. (2009) Performance enhancement in interfacially synthesized thin-film composite polyamide-urethane reverse osmosis membrane for seawater desalination. J Membrane Sci 342: 313-320. doi: 10.1016/j.memsci.2009.07.003
    [14] Mansourpanah Y, Momeni Habili E (2013) Preparation and modification of thin film PA membranes with improved antifouling property using acrylic acid and UV irradiation. J Membrane Sci 430: 158-166. doi: 10.1016/j.memsci.2012.11.065
    [15] Zhao L, Chang PCY, Yen C, et al. (2013) High-flux and fouling-resistant membranes for brackish water desalination. J Membrane Sci 425-426: 1-10. doi: 10.1016/j.memsci.2012.09.018
    [16] Li S, Wang Z, Zhang C, et al. (2013) Interfacially polymerized thin film composite membranes containing ethylene oxide groups for CO2 separation. J Membrane Sci 436: 121-131. doi: 10.1016/j.memsci.2013.02.038
    [17] Buonomenna MG (2013) Nano-enhanced reverse osmosis membranes. Desalination 314: 73-88. doi: 10.1016/j.desal.2013.01.006
    [18] Johansson EM, Ballem MA, Cordoba JM, et al. (2011) Rapid synthesis of SBA-15 rods with variable lengths, widths, and tunable large pores. Langmuir 27: 4994-4999. doi: 10.1021/la104864d
    [19] Kim E-S, Deng B (2011) Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications. J Membrane Sci 375: 46-54. doi: 10.1016/j.memsci.2011.01.041
    [20] Jeong BH, Hoek EMV, Yan Y, et al. (2007) Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. J Membrane Sci 294: 1-7. doi: 10.1016/j.memsci.2007.02.025
    [21] Jadav GL, Singh PS (2009) Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties. J Membrane Sci 328: 257-267. doi: 10.1016/j.memsci.2008.12.014
    [22] Rajaeian B, Rahimpour A, Tade MO, et al. (2013) Fabrication and characterization of polyamide thin film nanocomposite (TFN) nanofiltration membrane impregnated with TiO2 nanoparticles. Desalination 313: 176-188. doi: 10.1016/j.desal.2012.12.012
    [23] Yin J, Zhu G, Deng B (2013) Multi-walled carbon nanotubes (MWNTs)/polysulfone (PSU) mixed matrix hollow fiber membranes for enhanced water treatment. J Membrane Sci 437: 237-248. doi: 10.1016/j.memsci.2013.03.021
    [24] Dumée L, Lee J, Sears K, et al. (2013) Fabrication of thin film composite poly(amide)-carbon-nanotube supported membranes for enhanced performance in osmotically driven desalination systems. J Membrane Sci 427: 422-430. doi: 10.1016/j.memsci.2012.09.026
    [25] Kim CE, Yoon JS, Hwang HJ (2008) Synthesis of nanoporous silica aerogel by ambient pressure drying. J Sol-Gel Sci Techn 49: 47-52.
    [26] Yin J, Kim ES, Yang J, et al. (2012) Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification. J Membrane Sci 423-424: 238-246. doi: 10.1016/j.memsci.2012.08.020
    [27] Wu H, Tang B, Wu P (2013) Optimizing polyamide thin film composite membrane covalently bonded with modified mesoporous silica nanoparticles. J Membrane Sci 428: 341-348. doi: 10.1016/j.memsci.2012.10.053
    [28] Mori H, Uota M, Fujikawa D, et al. (2006) Synthesis of micro-mesoporous bimodal silica nanoparticles using lyotropic mixed surfactant liquid-crystal templates. Micropor Mesopor Mat 91: 172-180. doi: 10.1016/j.micromeso.2005.11.033
    [29] Kosmulski M (2002) The pH-dependent surface charging and the points of zero charge. J Colloid Interface Sci 253: 77-87. doi: 10.1006/jcis.2002.8490
    [30] Lee HS, Im SJ, Kim JH, et al. (2008) Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination 219: 48-56. doi: 10.1016/j.desal.2007.06.003
    [31] Shawky HA, Chae SR, Lin S, et al. (2011) Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment. Desalination 272: 46-50. doi: 10.1016/j.desal.2010.12.051
    [32] Viart N, Niznansky D, Rehspringer JL (1997) Structural Evolution of a Formamide Modified Sol--Spectroscopic Study. J Sol-Gel Sci Techn 8: 183-187.
    [33] Wu H, Tang B, Wu P (2013) Optimization, characterization and nanofiltration properties test of MWNTs/polyester thin film nanocomposite membrane. J Membrane Sci 428: 425-433. doi: 10.1016/j.memsci.2012.10.042
    [34] Yin J, Deng B (2015) Polymer-matrix nanocomposite membranes for water treatment. J Membrane Sci 479: 256-275.
    [35] Yin J, Zhu G, Deng D (2016) Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination 379: 93-101. doi: 10.1016/j.desal.2015.11.001
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8188) PDF downloads(1626) Cited by(24)

Figures and Tables

Figures(7)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog