Citation: Toshiyuki Ogawa, Takashi Okuda. Oscillatory dynamics in a reaction-diffusion system in the presence of 0:1:2 resonance[J]. Networks and Heterogeneous Media, 2012, 7(4): 893-926. doi: 10.3934/nhm.2012.7.893
[1] | Toshiyuki Ogawa, Takashi Okuda . Oscillatory dynamics in a reaction-diffusion system in the presence of 0:1:2 resonance. Networks and Heterogeneous Media, 2012, 7(4): 893-926. doi: 10.3934/nhm.2012.7.893 |
[2] | Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean . Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks and Heterogeneous Media, 2014, 9(4): 709-737. doi: 10.3934/nhm.2014.9.709 |
[3] | L’ubomír Baňas, Amy Novick-Cohen, Robert Nürnberg . The degenerate and non-degenerate deep quench obstacle problem: A numerical comparison. Networks and Heterogeneous Media, 2013, 8(1): 37-64. doi: 10.3934/nhm.2013.8.37 |
[4] | Chaoqun Huang, Nung Kwan Yip . Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks and Heterogeneous Media, 2013, 8(4): 1009-1034. doi: 10.3934/nhm.2013.8.1009 |
[5] | Yongqiang Zhao, Yanbin Tang . Approximation of solutions to integro-differential time fractional wave equations in $ L^{p}- $space. Networks and Heterogeneous Media, 2023, 18(3): 1024-1058. doi: 10.3934/nhm.2023045 |
[6] | Luca Placidi, Julia de Castro Motta, Rana Nazifi Charandabi, Fernando Fraternali . A continuum model for the tensegrity Maxwell chain. Networks and Heterogeneous Media, 2024, 19(2): 597-610. doi: 10.3934/nhm.2024026 |
[7] | Leonid Berlyand, Petru Mironescu . Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks and Heterogeneous Media, 2008, 3(3): 461-487. doi: 10.3934/nhm.2008.3.461 |
[8] | Laura M. Pérez, Jean Bragard, Hector Mancini, Jason A. C. Gallas, Ana M. Cabanas, Omar J. Suarez, David Laroze . Effect of anisotropies on the magnetization dynamics. Networks and Heterogeneous Media, 2015, 10(1): 209-221. doi: 10.3934/nhm.2015.10.209 |
[9] | Joachim von Below, José A. Lubary . Stability implies constancy for fully autonomous reaction-diffusion-equations on finite metric graphs. Networks and Heterogeneous Media, 2018, 13(4): 691-717. doi: 10.3934/nhm.2018031 |
[10] | Bernold Fiedler, Carlos Rocha, Matthias Wolfrum . Sturm global attractors for $S^1$-equivariant parabolic equations. Networks and Heterogeneous Media, 2012, 7(4): 617-659. doi: 10.3934/nhm.2012.7.617 |
[1] |
D. Armbruster, J. Guckenheimer and P. Holmes, Heteroclinic cycles and modulated travelling waves in system with O(2) symmetry, Physica, 29D (1988), 257-282. doi: 10.1016/0167-2789(88)90032-2
![]() |
[2] | J. Carr, "Applications of Center Manifold Theory," Springer, 1981. |
[3] | Lecture Notes in Mathematics, 730, Springer. |
[4] |
P. Frederickson, J. Kaplan, E. Yorke and J. Yorke, The Lyapunov dimension of strange attractors, J. DIff. Eqs., 49 (1983), 185-207. doi: 10.1016/0022-0396(83)90011-6
![]() |
[5] | T. Ogawa, Degenerate Hopf instability in oscillatory reaction-diffusion equations, Discrete Contin. Dyn. Syst., (2007). Proceedings of the 6th AIMS International Conference, suppl., 784-793. |
[6] |
M. R. E. Proctor and C. A. Jones, The interaction of two spatially resonant patterns in thermal convection, Part 1. Exact 1:2 resonance, J. Fluid Mech., 188 (1988), 301-335. doi: 10.1017/S0022112088000746
![]() |
[7] |
J. Porter and E. Knobloch, New type of complex dynamics in the 1:2 spatial resonance, Physica, 159D (2001), 125-154. doi: 10.1016/S0167-2789(01)00340-2
![]() |
[8] | Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory," Springer, 1997. |
[9] |
J. Liu, F. Yi and J. Wei, Multiple bifurcation analysis and spatiotemporal patterns in a 1-D Gierer-Meinhardt model of morphogenesis, IJBC, 20 (2010), 1007-1025. doi: 10.1142/S0218127410026289
![]() |
[10] |
I. Shimada and T. Nagashima, A numerical approach to Ergodic problem of dissipative dynamical systems, Prog. Theor. Phys., 61 (1979), 1605-1616. doi: 10.1143/PTP.61.1605
![]() |
[11] |
T. R. Smith, J. Moehlis and P. Holmes, Heteroclinic cycles and periodic orbits for the O(2)-equivariant 0:1:2 mode interaction, Physica, 211D (2005), 347-376. doi: 10.1016/j.physd.2005.09.002
![]() |
[12] |
Y. Morita and T. Ogawa, Stability and bifurcations of nonconstant solutions to a reaction-diffusion system with conservation mass, Nonlinearity, 23 (2010), 1387-1411. doi: 10.1088/0951-7715/23/6/007
![]() |
[13] | A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. B, 237 (1952), 37-72. |
[14] | L. Yang, M. Dolnik, A. M. Zhabotinsky and I. R. Epstein, Pattern formation arising from interactions between Turing and wave instabilities, J. Chem. Phys., 117 (2002), 7257-7265. |
[15] | A. Vanderbauwhede and G. Iooss, Center manifold theory in infinite dimensions, Dynam. Report. Expositions Dynam. Systems (N.S.), 1, Springer, (1992), 125-163. |
[16] |
M. J. Ward and J. Wei, Hopf Bifurcation of spike solutions for the shadow Gierer-Meinhardt model, Europ. J. Appl. Math., 14 (2003), 677-711. doi: 10.1017/S0956792503005278
![]() |
1. | Kenji Kashima, Toshiyuki Ogawa, 2015, Chapter 11, 978-4-431-55012-9, 141, 10.1007/978-4-431-55013-6_11 | |
2. | Shunsuke KOBAYASHI, Takashi Okuda SAKAMOTO, Hopf Bifurcation and Hopf-Pitchfork Bifurcation in an Integro-Differential Reaction-Diffusion System, 2019, 42, 0387-3870, 10.3836/tjm/1502179295 | |
3. | Toshiyuki Ogawa, Takashi Okuda Sakamoto, 2016, Chapter 19, 978-4-431-56455-3, 531, 10.1007/978-4-431-56457-7_19 | |
4. | Ayuki Sekisaka, Hiroko Yamamoto, Instability in the nebula model of compressive viscous gases, 2020, 403, 01672789, 132290, 10.1016/j.physd.2019.132290 | |
5. | Takashi Okuda Sakamoto, Hopf bifurcation in a reaction–diffusion system with conservation of mass, 2013, 26, 0951-7715, 2027, 10.1088/0951-7715/26/7/2027 | |
6. | Hirofumi Izuhara, Shunusuke Kobayashi, An instability framework of Hopf–Turing–Turing singularity in 2-component reaction–diffusion systems, 2024, 0916-7005, 10.1007/s13160-024-00668-0 |