Oscillatory dynamics in a reaction-diffusion system in the presence of 0:1:2 resonance

  • Received: 01 January 2012 Revised: 01 July 2012
  • Primary: 35B10, 37G05; Secondary: 37D45.

  • Oscillatory dynamics in a reaction-diffusion system with spatially nonlocal effect under Neumann boundary conditions is studied. The system provides triply degenerate points for two spatially non-uniform modes and uniform one (zero mode). We focus our attention on the 0:1:2-mode interaction in the reaction-diffusion system. Using a normal form on the center manifold, we seek the equilibria and study the stability of them. Moreover, Hopf bifurcation phenomena is studied for each equilibrium which has a Hopf instability point. The numerical results to the chaotic dynamics are also shown.

    Citation: Toshiyuki Ogawa, Takashi Okuda. Oscillatory dynamics in a reaction-diffusion system in the presence of 0:1:2 resonance[J]. Networks and Heterogeneous Media, 2012, 7(4): 893-926. doi: 10.3934/nhm.2012.7.893

    Related Papers:

    [1] Toshiyuki Ogawa, Takashi Okuda . Oscillatory dynamics in a reaction-diffusion system in the presence of 0:1:2 resonance. Networks and Heterogeneous Media, 2012, 7(4): 893-926. doi: 10.3934/nhm.2012.7.893
    [2] Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean . Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks and Heterogeneous Media, 2014, 9(4): 709-737. doi: 10.3934/nhm.2014.9.709
    [3] L’ubomír Baňas, Amy Novick-Cohen, Robert Nürnberg . The degenerate and non-degenerate deep quench obstacle problem: A numerical comparison. Networks and Heterogeneous Media, 2013, 8(1): 37-64. doi: 10.3934/nhm.2013.8.37
    [4] Chaoqun Huang, Nung Kwan Yip . Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks and Heterogeneous Media, 2013, 8(4): 1009-1034. doi: 10.3934/nhm.2013.8.1009
    [5] Yongqiang Zhao, Yanbin Tang . Approximation of solutions to integro-differential time fractional wave equations in $ L^{p}- $space. Networks and Heterogeneous Media, 2023, 18(3): 1024-1058. doi: 10.3934/nhm.2023045
    [6] Luca Placidi, Julia de Castro Motta, Rana Nazifi Charandabi, Fernando Fraternali . A continuum model for the tensegrity Maxwell chain. Networks and Heterogeneous Media, 2024, 19(2): 597-610. doi: 10.3934/nhm.2024026
    [7] Leonid Berlyand, Petru Mironescu . Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks and Heterogeneous Media, 2008, 3(3): 461-487. doi: 10.3934/nhm.2008.3.461
    [8] Laura M. Pérez, Jean Bragard, Hector Mancini, Jason A. C. Gallas, Ana M. Cabanas, Omar J. Suarez, David Laroze . Effect of anisotropies on the magnetization dynamics. Networks and Heterogeneous Media, 2015, 10(1): 209-221. doi: 10.3934/nhm.2015.10.209
    [9] Joachim von Below, José A. Lubary . Stability implies constancy for fully autonomous reaction-diffusion-equations on finite metric graphs. Networks and Heterogeneous Media, 2018, 13(4): 691-717. doi: 10.3934/nhm.2018031
    [10] Bernold Fiedler, Carlos Rocha, Matthias Wolfrum . Sturm global attractors for $S^1$-equivariant parabolic equations. Networks and Heterogeneous Media, 2012, 7(4): 617-659. doi: 10.3934/nhm.2012.7.617
  • Oscillatory dynamics in a reaction-diffusion system with spatially nonlocal effect under Neumann boundary conditions is studied. The system provides triply degenerate points for two spatially non-uniform modes and uniform one (zero mode). We focus our attention on the 0:1:2-mode interaction in the reaction-diffusion system. Using a normal form on the center manifold, we seek the equilibria and study the stability of them. Moreover, Hopf bifurcation phenomena is studied for each equilibrium which has a Hopf instability point. The numerical results to the chaotic dynamics are also shown.


    [1] D. Armbruster, J. Guckenheimer and P. Holmes, Heteroclinic cycles and modulated travelling waves in system with O(2) symmetry, Physica, 29D (1988), 257-282. doi: 10.1016/0167-2789(88)90032-2
    [2] J. Carr, "Applications of Center Manifold Theory," Springer, 1981.
    [3] Lecture Notes in Mathematics, 730, Springer.
    [4] P. Frederickson, J. Kaplan, E. Yorke and J. Yorke, The Lyapunov dimension of strange attractors, J. DIff. Eqs., 49 (1983), 185-207. doi: 10.1016/0022-0396(83)90011-6
    [5] T. Ogawa, Degenerate Hopf instability in oscillatory reaction-diffusion equations, Discrete Contin. Dyn. Syst., (2007). Proceedings of the 6th AIMS International Conference, suppl., 784-793.
    [6] M. R. E. Proctor and C. A. Jones, The interaction of two spatially resonant patterns in thermal convection, Part 1. Exact 1:2 resonance, J. Fluid Mech., 188 (1988), 301-335. doi: 10.1017/S0022112088000746
    [7] J. Porter and E. Knobloch, New type of complex dynamics in the 1:2 spatial resonance, Physica, 159D (2001), 125-154. doi: 10.1016/S0167-2789(01)00340-2
    [8] Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory," Springer, 1997.
    [9] J. Liu, F. Yi and J. Wei, Multiple bifurcation analysis and spatiotemporal patterns in a 1-D Gierer-Meinhardt model of morphogenesis, IJBC, 20 (2010), 1007-1025. doi: 10.1142/S0218127410026289
    [10] I. Shimada and T. Nagashima, A numerical approach to Ergodic problem of dissipative dynamical systems, Prog. Theor. Phys., 61 (1979), 1605-1616. doi: 10.1143/PTP.61.1605
    [11] T. R. Smith, J. Moehlis and P. Holmes, Heteroclinic cycles and periodic orbits for the O(2)-equivariant 0:1:2 mode interaction, Physica, 211D (2005), 347-376. doi: 10.1016/j.physd.2005.09.002
    [12] Y. Morita and T. Ogawa, Stability and bifurcations of nonconstant solutions to a reaction-diffusion system with conservation mass, Nonlinearity, 23 (2010), 1387-1411. doi: 10.1088/0951-7715/23/6/007
    [13] A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. B, 237 (1952), 37-72.
    [14] L. Yang, M. Dolnik, A. M. Zhabotinsky and I. R. Epstein, Pattern formation arising from interactions between Turing and wave instabilities, J. Chem. Phys., 117 (2002), 7257-7265.
    [15] A. Vanderbauwhede and G. Iooss, Center manifold theory in infinite dimensions, Dynam. Report. Expositions Dynam. Systems (N.S.), 1, Springer, (1992), 125-163.
    [16] M. J. Ward and J. Wei, Hopf Bifurcation of spike solutions for the shadow Gierer-Meinhardt model, Europ. J. Appl. Math., 14 (2003), 677-711. doi: 10.1017/S0956792503005278
  • This article has been cited by:

    1. Kenji Kashima, Toshiyuki Ogawa, 2015, Chapter 11, 978-4-431-55012-9, 141, 10.1007/978-4-431-55013-6_11
    2. Shunsuke KOBAYASHI, Takashi Okuda SAKAMOTO, Hopf Bifurcation and Hopf-Pitchfork Bifurcation in an Integro-Differential Reaction-Diffusion System, 2019, 42, 0387-3870, 10.3836/tjm/1502179295
    3. Toshiyuki Ogawa, Takashi Okuda Sakamoto, 2016, Chapter 19, 978-4-431-56455-3, 531, 10.1007/978-4-431-56457-7_19
    4. Ayuki Sekisaka, Hiroko Yamamoto, Instability in the nebula model of compressive viscous gases, 2020, 403, 01672789, 132290, 10.1016/j.physd.2019.132290
    5. Takashi Okuda Sakamoto, Hopf bifurcation in a reaction–diffusion system with conservation of mass, 2013, 26, 0951-7715, 2027, 10.1088/0951-7715/26/7/2027
    6. Hirofumi Izuhara, Shunusuke Kobayashi, An instability framework of Hopf–Turing–Turing singularity in 2-component reaction–diffusion systems, 2024, 0916-7005, 10.1007/s13160-024-00668-0
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3903) PDF downloads(90) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog