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ABSTRACT. Oscillatory dynamics in a reaction-diffusion system with spatially
nonlocal effect under Neumann boundary conditions is studied. The system
provides triply degenerate points for two spatially non-uniform modes and uni-
form one (zero mode). We focus our attention on the 0:1:2-mode interaction in
the reaction-diffusion system. Using a normal form on the center manifold, we
seek the equilibria and study the stability of them. Moreover, Hopf bifurcation
phenomena is studied for each equilibrium which has a Hopf instability point.
The numerical results to the chaotic dynamics are also shown.

1. Introduction. There has been a lot of studies about spatiotemporal patterns
and their dynamics to systems of reaction-diffusion equations. Let us consider vari-
ations of bifurcations from a stationary solution. Suppose this stationary solution
is spatially uniform. Then we linearize the equation about this equilibrium and we
know a bifurcation occurs only if the linearized problem has zero or purely imaginary
eigenvalues which we call critical eigenvalues. Moreover if this critical eigenvalue is
0 with spatially non-trivial eigenfunction, a stationary bifurcation to non-uniform
steady state occurs. One of the typical examples for this is the well-known Turing
instability. On the contrary, if the critical eigenvalues are a pair of purely imaginary
numbers with spatially non-trivial eigenfunctions, spatially non-trivial oscillations
may occur. The so-called wave instability corresponds to this (for instance, see
[5, 14]).

Now how can we say about the bifurcations from a spatially non-uniform steady
state? Since the linearization about non-uniform steady states is not easy in general,
we need to restrict ourselves to some special cases. Bifurcation analysis about
degenerate instability points is one of such examples. In fact it is easy to find the
degenerate instability points even in the case of Turing instability where n and n+1
modes become critical at the same time by choosing the system size appropriately.
And in this case we can see the n-mode stationary solution becomes unstable to the
(n + 1)-mode perturbation and the mixed mode stationary solution may bifurcate.

2000 Mathematics Subject Classification. Primary: 35B10, 37G05; Secondary: 37D45.

Key words and phrases. Hopf bifurcation, triply degenerate point, 0:1:2 resonance, normal
form, chaotic dynamics.

The first author is supported by Grant-in-Aid for Scientific Research (KAKENHI) 20540116.

893


http://dx.doi.org/10.3934/nhm.2012.7.893

894 TOSHIYUKI OGAWA AND TAKASHI OKUDA

Here, we focus our attention on the case where the system has the triple de-
generacy with 0, 1 and 2-modes (0:1:2-mode interaction). There, we would like
to introduce the case where the 1-mode stationary solution may become unstable
with a pair of purely imaginary critical eigenvalues. And we will give the explicit
condition for the Hopf bifurcation from the 1-mode stationary solutions.

This kind of triple degeneracy can be observed by considering the following types
of 3-component reaction-diffusion system :

ug = Dytgy + au+ bv + sw + F(u,v), =€ (0,L),t>0,

vy = Doy + cu + dv + G(u,v), z € (0,L),t>0, (1)
7wy = DaWyy +u — w, z € (0,L),t>0,

Uy = Vp = Wy = 0, r=0,L.

Here, Dy, Dy and D3 are diffusion coefficients a, b, ¢, d and s are constants, and
F and G are higher order terms. Moreover, the time constant 7 is supposed to be
very small. This system consists of two component activator-inhibitor type reaction-
diffusion equations and one scalar equation which has the feedback effect to the first
component. We shall see the triple degeneracy for this system precisely later. It is,
on the other hand, easy to understand the mechanism for the triple degeneracy by
assuming that it has two small time constants as follows:

up = Ditge + au+ bv + sw+ F(u,v), x € (0,L),t>0,

10t = Dovge +u — v + G(u,v), x € (0,L),t >0, @)
Tows = DaWgy +u — w, x € (0,L),t >0,

Uy = Vp = Wy =0, at =0, L.

In fact, we can reduce this system to a scalar equation by setting 71 = 75 = 0.
Let us consider only the linear terms in (2). Then we obtain the following by taking
the Fourier transformation.

i
Mk _ D24y, + adiy, + big + s,
0 = —Dy k20, + Uy — O,

0= —ng‘zwk + U — Wy.

The second and third equations of the above can be solved as

- U . U,
v = —m8M8M8— W = —m———.
P14 Dok P T 1+ Dak?
Therefore, we obtain
diiy,
2k
di kUK,

where

b S
A\ = a— Dqk? .
R0 N T e T T Dok

Now we define the neutral stability curve by C' = {(k,a); A\ = 0}. We take the
constants satisfying b < 0, s > 0, —1/b < D3/D; and Dy < D3. Then it turns out
that the curve C has the shapes as shown in Fig. 1.

Since we are considering the Neumann boundary conditions, the wave number
k should be an integer multiple of the fundamental wave number kg = w/L: k =
mko (m = 0,1,2,---). Let us define the neutral stability curves for each mode m
by

Cmn = {(ko,a); Ak, = 0}.
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It is now easy to conclude that 0:1:2-triple degeneracy occurs by choosing the con-
stants appropriately (see Fig. 1).
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FIGURE 1. The neutral stability curves C' = {(k,a); A\ = 0} and
Cm = {(ko,a); \mk, = 0} in the case of D; = 0.25, Dy = 20,
D3 = 100. [(Left:) The neutral stability curves C. Dotted line:
b = s = 0; Dashed line: s = 0,b = —2; Solid line: b = —2, s =~ 1.67.]
[(Right:) The neutral stability curves Cy (dotted line), Cy (solid
line) and Cy (dashed line) in the case where triple degeneracy of
0:1:2-mode interaction occur at (kg,a) = (0.50,0.33). Constants
(critical values) are b = 2, s &~ 1.67. The horizontal axis correspond
to ko}

Let us go back to the case (1). It can be also reduced to a simpler system of
reaction-diffusion equations as follows: putting 7 = 0, we have

uy = Ditgy + au+ bv + sw + F(u,v), x € (0,L),t>0,

vy = Davgy + cu + dv + G(u, v), z € (0,L),t>0, 3)
0= D3wyy +u—w, z€(0,L),t>0,

Up = Vg = Wy = 0, z=0,L.

Let (wm, (t), vim(t), wn(t)) be the Fourier coefficients so that the following holds:

ult, z) = uo(t) + Y tm(t) cos(mma/L),

meN

v(t,x) = vo(t) + Z U (t) cos(mmax /L),
meN

w(t, z) = wo(t) + Z W (t) cos(mmz/L).
meN

Then, the third equation can be solved as

1

U)m(t) = 14 (F/L)2m2D3

um(t), me{0}UN.

It holds that wg = wug, and taking D3 — oo, then

W, =0, meN.
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Combining them, we obtain

w(t,z) = )+ Z Wy, (t) cos(mma /L)
meN
= uo(t) + Y (14 (v/L)*m>Ds)™ i () cos(mma/L)
meN
= ugp(t) (as D3 — 00)

1 L
= Z/o u(t, x) de.

Substituting it into (1), we obtain the reaction-diffusion system as follows:

ou 0%u

E:D182+au+bv+F(uv+ fo ) dz, € (0,L),t >0,

v 0%v

= Dy—— L 4
En 252 + cu+ dv+ G(u,v), x € (0,L),t >0, (4)
ou v

9~ n 0at x =0,

Let (w,,vn,) are Fourier coefficients of (u(t,x),v(t,z)). Then, the linearized
matrix about a trivial solution (u,v) = (0,0) is

a+s b _
() (m = 0),
My, = (5)
a — Dym?k? b
< é 0 d— D2m2k[2) > (m # 0)3

Then, a triply degenerate point (Da, ko, s) of 0:1:2-modes is given by a solution of
det My = det M; = det My = 0 as follows:

1 1/2
ko = ki) = [ {5A V2542 — 16adA}} ,

8d D1

 {dDy(k)? — A}
D2 = G D)7 — )
s=—-A/d,

where A = ad — bc. We also have a triple degeneracy of 0:1:2-mode interaction. It
should be noted that the linear stability is also discussed in the next section.

If we have the triple degeneracy, the dynamics about the critical point can be
generically analyzed by using the quadratic normal form by Smith, Moehlis and
Holmes [11]. It also includes the 1:2-mode dynamics which is governed by the
quadratic normal form. It had been studied by Armbruster and Guckenheimer [1].
They have periodic orbits (standing and traveling waves) as well as fixed points
(pure and mixed mode stationary solutions), invariant tori (modulated traveling
waves) and heteroclinic cycles. However, we focus our attention on the case where
the problem has up-down symmetry. Then we don’t have any quadratic terms in the
normal form which is different from their studies. Therefore we need to study the
cubic type normal form for 0:1:2-modes. This is the main contribution of this paper
and by this we can conclude that the 1-mode stationary solution of these systems
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can exhibit the Hopf bifurcation and we can observe the limit cycle bifurcating from
the non-uniform steady state. In fact, there have been several studies on reaction-
diffusion systems where periodic motions around 1-mode stationary solutions are
observed ([9, 12, 16]). This result could be one of the starting points to study the
oscillatory dynamics around 1-mode stationary solutions.

As we imposed the Neumann boundary conditions for both ends of the interval,
the periodic motions mentioned above are standing wave oscillations around 1-mode
stationary solutions. Therefore, they are not traveling waves. In addition to the
periodic motions, the normal form also suggests that the system exhibits chaotic
behaviors.

This paper is organized as follows: in the next section, we show the mathematical
settings and precise assumptions to (4). Under these settings, the normal form
around the triply degenerate point is derived. In section 3, we seek the equilibria
of the normal form. We also compute the linearized stability of them, and seek the
Hopf instability points for each equilibrium. In section 4, we state our main result
which is summarized in Theorem 4.3. The numerical results are also presented in
this section. In section 5, we study the Hopf bifurcation phenomena around mixed
mode stationary solutions. In section 6, we show the numerical results to the chaotic
solutions in the normal form. The bifurcation problem of (2) is considered in section
7. A brief discussion and the numerical results to (4) are included in section 8. In
the appendixes, we show a proof of lemma 4.2 which gives normal forms for the Hopf
bifurcation from 1-mode stationary solutions. We also show constants appearing in
the normal forms.

2. Formulation.

2.1. Mathematical formulation and assumptions to (4): We start this sec-
tion by introducing mathematical formulation and precise assumptions to the reacti-
on-diffusion system (4). We consider the system (4) in a function space

X = {(u,v) € [H*()]*u, =v, =0at z=0,L},
where ) denotes an interval (0, L) C R. And we assume the following:
e (Al) The functions (higher order terms) F' and G are sufficiently smooth;
e (A2) F(u,v) = —F(—u,—v) and G(u,v) = —G(—u, —v) hold;
e (A3) The coefficients of linear parts satisfy a,c > 0, b,d < 0, a +d < 0 and
A :=ad — bc > 0;
b

o (A4) EC +d < 0 holds.

Using assumptions (A1) and (A2) , the functions F' and G can be represented by
the Taylor series around the origin:

Fluv) = > feudv’ +of|[(u,0)]),

jre=3
Gu,v) = Y gjew v’ +o||(u,0)])).
=3
Here, || - || stands for norm on [H?(9)]?, and
1 o'F 1 otG

fie 0,0), j+£=3,4¢cN.

B 310! Oud vt (0,0), ge = M@ujave(
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2.2. Dynamical system on Fourier space: We note that solutions of (4) can
be considered as those of periodic boundary conditions with period 2L. Indeed, if
(u(t,z),v(t,x)) € X is a solution of (4), then we can extend it for z € [0,2L] as
follows:

- u(t, ) zel0,L], . v(t, ) x € [0, L],
aft,z) = { u(t,2L —x) =z €[L,2L], ot @) = { v(t,2L —x) z€[L,2

One can verify that (a(t, x), 0(t,x)) is a solution of
ut = DiUge + au+bv + 57 fOQL u(t,z) dz + F(u,v), © € Qp,t >0,
vy = Dovgy + cu + dv + G(u,v), © € Qp,t >0,

u(t,z) = u(t,x + 2L),uy(t, ) = ux(t,x +2L) t > 0,

v(t,x) = v(t,x + 2L), v, (t, ) = v (t, x + 2L) ,¢ > 0.

Here, Q,, denotes the interval (0,2L). Thus, we consider the system (6) in a function
space

Xp = {(u,v) € [Hpe, ()] (u(z),v(2)) = (w(2L — 2),v(2L —2))}  (7)

per
instead of (4) on X. By Fourier series, we can describe the solution of (6) as
(u(t, ), 0(t,z)) = (20, o) + Y (am(t), B (t)) cos(mhoz),
meN

or

(u(t, @), v(t,2)) = Y (um(t), wm ()™, (8)

meZ
where kg = 7/L and

_ (uo,'UO)a m =0,
(am, Bm) = { (2, 20), m € N.

Using (8), system (6) is equivalent to
d [ u U f
—_ m == Mm m " 9 > 07 9
dt(vm) (Um)+(gvrz)m ©)

fm = Z (f30um1um2um3 + f21um1um2vm3

mi1+mog+t+mgz=m
my,mg,m3€L

where

+f12um1 UmoUms + f03vm1 Umzvmg);

9m = E (930um1 UmyUmg + 921 Um, UmyUmg

mi1+mogt+mgz=m
my,mg,m3€L

+gl2um1 UmoUms + 903VUm 1 UmyUms )

and M, (m =0,1,2,---) are defined in (5). It should be noted that since (um,, V) =
(U—m,v—m) holds by the symmetry of (7), it is sufficient to consider the equations
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for m > 0. Moreover, here we take the terms up to third order, truncating the
higher order terms. We consider the system (9) in a space

XF = {{(Um7vm)}m€Z; (um7vm) = (U,m/l),m),
(s vm) ezl = Y (14+m)?| (tm, vm)|* < OO}
meZ

which is equivalent to X, by the map P:

2L
Pu,v) = {21[1/0 (u(t, ), v(t, z))e " mko® dx}

Throughout this paper, we consider the dynamical system (9) on a Fourier space
X instead of the system (6) on X,. It should be noted that bifurcation parameters
in (9) are kg, D2 and s.

mEZ

2.3. Linear stability: Let us consider the linear stability about a trivial solution
again. The matrix M, has a zero eigenvalue if and only if det M,,, = 0. Moreover,
the following holds:

Lemma 2.1. For given two positive integers j, £, ( j # £) and constants Dy, a,b, c,d,
the linearized eigenvalue problem of (9) about a trivial solution has strictly three zero
eigenvalues for m = 0,5 and € at (ko, D2, s) = (kf)’é,D%’e, s*), where

_ 1 1/2
Jil 2 2 2 i2 02
Kt = {mp 252{ 2402 - /A2 1 ) 4adAj£}] ,
ot DG - A}
2 - . i . i )
kYD1 (k) — a)
s* = —A/d=—(ad —bc)/d.

Here we define the neutral stability curves. Solving det M,,, = 0 for D5, we have

(dD1m?ko® — A)
m2k‘02(D1m2k‘02 — Cl) '

D2 = Dg(ko; m) =

We can define the neutral stability curves for m € N as follows:
m = {(Da, ko) € R%; Dy = Dy(ko; m)}.

Lemma 2.1 provides us a general triple degeneracy of 0:5:/ -mode interaction
(j,£ € N). And it is easy to see that this yields a triple degeneracy of 0:1:2-mode
interaction by choosing j = 1 and ¢ = 2. We are going to focus on this case
since the normal form has cubic resonance terms. We would like to study the
dynamics around 0:1:2-degenerate point, especially, oscillatory dynamics around
1-mode stationary solutions.

2.4. Normal form in the presence of 0:1:2 resonance: Let us derive the nor-
mal form on the center manifolds around the triply degenerate point (kr(l)’Q, D%’Q, s*)
of (4). Here we apply the standard theory of center manifold reduction (for instance,
see [2, 15]).
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2.4.1. Diagonalization: To apply the center manifold theory, we diagonalize the
equations in (9) for m = 0,1 and 2. Set (ko, D2, s) = (k(l)’Q, D;’Z, s*). Then changing
variables *(tm, ) = T *(tm, Om ), (m = 0,1,2) by the matrix

_ _ 212 27.2
T0:< d bc/d)va:( d+ Dam?ki a Dlka),m:l,?,

c c c c
we have
(%)_(0 0 )(“m )+T <fm ),m—O,l,Q.
Urn 0 pu, Um Jm
Here,
Ko =d+bc/d,
fiom = (a + d) —m*(Dy + Dy*)(kg'*)?,
fn = fm|t(umj O ) =Tm (G ; ,Om ;)0
Gm = Gmlt (tn 0y ) =T (i B )

2.4.2. Center manifold reduction: Let
p = (kéj? D%727 5*) - (k(]v D27 5)7
= {tr My, + /(tr Myp)? — 4 det Mm} /2.

We define a neighborhood U, of X x R3:

= {{(um, vm)}mez, p) € Xp x B |[{(tm, vm)}mezllxr + ol <}

Then we have the following theorem.

Theorem 2.2. For given constants a,b,c,d, Dy, there exists a positive constant €
such that the local center manifold WY, . of (9) is contained in U.. Moreover, the
dynamics of (9) on the manifold WY, is governed by the following system:

20 = (ud + a122 + a22? + a322)20 + as2?29 + 0(3),

21 = (p + 0122 + bo2? 4 b322) 21 + bazoz122 + 0(3), (10)

2o = (pg + 128 + c22? + c323) 20 + caz02? + 0(3).
Here, zj(t) € R denote ;(t) (j = 0,1,2), and o(3) denotes o(|(zo, 21, 22)|?). In ad-
dition, the coefficients ujﬂ aj,bj,c; are dependent on the coefficients and parameters
appearing in (9).

Proof. The first statement of the theorem follows from standard center manifold
theory. It also states that for m # 0,1, 2, there exist functions

h%(ﬂ07ﬂ17ﬂ2;p)7m 2 37
hvm(ianal,ﬁfQ;p)ﬂ m > Oa

satisfying
8h“ 8h”
0,0,0;0) = =="(0,0,0;0) =0, ( =0,1,2
and
ohy, oh}
0,0,0;0) = —=(0,0,0;0) =0
T (0,0,0:0) = He2(0,0,0:0)
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such that the local invariant manifold Wy, , is expressed by

choc = {{(ﬂg,ﬂ[), (u7ruv7rb)}\€|§2,|m\23 S XF;’D@ = h;(amaha%p%
(umavm) = (hum(a(),ﬂlyﬁ%p)ahvm(a07a1,ﬂ2;p)), “€| § 27 |m| 2 3}

By the simple computation, if |(o, @1, ii2; p)| < € then hY, = h%, = o(3). Then,
the cubic truncated equations for @,,, (m = 0, 1,2) are given by the following:

. 1 (s b
Uoua—uo_{fod!]o},
Ho
. 1 -
lin = il — m—,{cfm + (—a+ Dim?(ky*))gm}t m = 1,2,

where

fm = E (f3OBmle2Bm3ﬁmlﬂm2ﬁm3

mq+mg+mgz=m

m;€{0,£1,+2}

~ ~ ~ 2 ~ ~ ~ 3 ~ ~ ~
+Cf21Bm1 Bmgumlumgumg +c f12Bm1um1Um2um3 +c fOSumlumgumg)
and

gm ‘= E (QBOBml BmgBmgﬂmlamgﬂmg

my+mo+mg=m

mje{0,%1,%2}

~ ~ ~ 2 ~ ~ ~ 3 ~ ~ ~
+0921-Bmle2um1um2um3 +c 912Bm1um1um2um3 +c gOSUmlumgumg)'

Here, B; = —d + 32Dy (k5®)2. This gives the cubic truncated system (10). We
show the explicit form of coefficients in Appendix B. O

3. Existence and stability of equilibria. Let us consider the third order trun-
cated system of (10):

20 = (o + @125 + az2] + azz3)zo + as2i 22,
731 = (‘Ll,l —+ blzg + bQZ% —+ ng%)Zl —+ b42’02’122, (11)
Zo = (p2 + clzg + 223 + 322) 20 + c4202%,

where
fim = Ha, (M =10,1,2)
for simplicity. Now we introduce a scale-invariance property of (11):

3.1. Scale-invariance of the normal form: The system (11) is invariant under
the scaling:

Z=nz, [Bj=1n, t=n"t, "neR. (12)
Therefore, if
z(t; po, pas 2, 2(0)) := (20, 21, 22) (5 po, 1, B2, 20(0), 21(0), 22(0))
is a solution to (11) , then
(20, 21, 22) (& fio. fur, fiz, 2(0)) = nz(0°t; n* po, 07”0 2, 12(0))
is also a solution to (11). Then, the following hold:
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e Let us consider the system (11) with higher order terms O(|(zo, 21, 22)[%).
Using (12), it becomes

2= [i;% + fi(Zo, 21, Z25 ) + 02O(|(3o, 21, 22)[%). (13)
Here f; are cubic terms in (11). Taking nn — 0, the higher order terms vanish;

o Let Z(t;//l'Ovl*LlaMQ) = (20,21,22)(t;/.t0,/.t1,ﬂ2) (t~ € (07772T]) be a solution of
(11). Then, there exists a similar solution of (11):

a(t; fuo, fin, fi2) = na(n’t; 0% o, 7 pa, 7 ps),  t € (0,71,
This implies that we can obtain a small amplitude solution from a (large
amplitude) solution by taking n sufficiently small.

Let us seek the equilibria of (11) , and study the stabilities of them with the
assumptions:

o €R, a; #0, b;#0 and c¢; #0.
Notice that p; (j = 1,2) are real by the assumption (A3).

3.2. Existence of pure mode solutions: By the simple computation, we obtain
the following theorem:

Theorem 3.1. If poa; < 0, p1be < 0, pacs < 0 then the system (11) has equilibria
tep = :l:(\/ _,U()/ahovo)) te; = :l:( V _,ul/b23070)7 teg = i(ovoa V _,LLQ/C?)))
respectively. Moreover, these equilibria e, correspond to the pure mode stationary
solutions of (4):
2C
u(z) = Ug(x) := i?j cos (6%:5) +o(?),

v(z) = Vo(z) := j:Q?C(Z cos (é%m) + o(£%),

where
V _/'LO/ah f = 07
Ce = V _Ml/b27 = 17
V—h2/cs, L =2.

We call the solutions (U(x), Vi(z)) “¢-mode stationary solution (or ¢-mode solu-
tion)”. It is obvious that equilibria +ej, (j = 0, 1,2) appear through the pitchfork
bifurcation from the trivial solution at p1; = 0. It is quite a contrast to the case of
[1] that the equilibria +e; corresponding to 1-mode stationary solution of (4) exist
in our case.

Remark. Even though the equilibria +eq correspond to the spatially uniform so-
lutions of (4), we call them “pure mode solutions”.

By the simple computation, we have the following:
(i) Linearized eigenvalues about +eq are

—2p0,  p1 —bipo/ar,  pz — poci/aq;
(ii) Linearized eigenvalues about +eq are

Mo — aspia/ca,  p1 — pbs/ca,  —2pa;
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(iii) Linearized matrix of +e; is given by

a9 0 —aq
Ho by H1 by Jo5
M:I:el = O _2/1/1 O
o P
by H1 K2 by H1
3.2.1. Hopf instability of +e1: Now we put
as —a4
I A vt T I
(Miey)a1 (M, )33 ~ A e — 2
ba ba

If tr Miel = 0 and det Miel > 0 hold, then the matrix M4., has a pair of purely
imaginary eigenvalues. That is, the following holds:

Lemma 3.2. The linearized matric M., of equilibria *e1 has a pair of purely
imaginary eigenvalues at jiy = —po + p1(az +c2)/bo if and only if (o — pras/be)? +
piagcs/b3 < 0 holds.

We consider the existence of periodic solutions by constructing a center manifold
around 4e; in the latter section. Here we note that the condition ascs < 0 is
necessary for the Hopf instability around +e;.

3.3. Existence of doubly mixed mode solutions:

Theorem 3.3. If (agu2—cspo)(aics—ciaz) > 0 and (c1p0—a1p2)(a1cz—aser) > 0,
then the system (11) has equilibria

(20721732) = Zt(ZS,O,Z;) and (20,21722) = :I:(Zaaoa _Z;)a

agp2 — C3lho Ci1bo — Q12
PP Lo U, SRS QP e Vol Rac 1o
a;c3 — C1a3 aijc3z — azcy

edy = (25,0,25) and egy == (25,0, —25).

where

Now we define

They correspond to doubly mized mode stationary solutions of (4):
* * 2
u(x) = +2 [;(Z + %22 cos (Iirm)} +o(e?),
2 2
v(z) =+= {ZS + 25 cos (Z/Tx)} +o(e?).
c

Since it is easy to prove this theorem, we omit the proof. Let us study the
stability of :I:eé. Linearized matrix around them is given by

2a1(24)? 0 2a323 25
0 fin 4 b1(z5)? + b3(23)? + bazi 23 0
2c12525 0 2c3(23)?

Though it is hard to determine the stability of :I:eg2 in general, we can obtain the
following sufficient condition.
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3.3.1. Hopf instability of doubly mixed mode solutions:

Lemma 3.4. If there exist constants po, pio such that agua — cspo > 0 and cqpo —
aipe > 0 hold at

aicg + cicg

aias + csaq

Then the linearized matriz around j:ea—L2 has a pair of purely imaginary eigenvalues
if and only if aics — crag > 0 holds.
Proof. One of the linearized eigenvalue about +eZ, is
g1+ b1 (25)? + b3(23)% + bazg 2

and the others are given by the eigenvalues of matrix:

2a1(28)?  2a3z875

2012525 2c3(23)? )
It has purely imaginary eigenvalues if and only if

4(ares —azer)(z523)% > 0 and a1 (25)? + e3(23)% = 0.

Moreover, solving a;(z3)? + c3(23)% = 0 for us, we have
aic3 +cic3

Ha = aias + c3aq
This completes the proof. O

3.4. Existence of triply mixed mode solutions: The triply mixed mode equi-
libria of (11) are given by the roots of

Z%ZQ

o + alz(z) + ang + (IgZ% + a4z— =0,
0
p1 + b128 + baz? + b323 + byzgze = 0, (14)
2
202
po + 128 + c22f + c323 + 84% =0.
2

We also note that if (2q,, 21, 22, ) satisfying

20 7& Oa 21 x 7& 0 and 22 7é 0

is an equilibrium, then it correspond to the triply mixed mode stationary solution
of (4):

Z0x | Pl ™ 294 2m 3
o[ s () om ()] o)
u(x) {Bo + B cos (7@ + By cos ( T a:)} +o(e”)
v(x) = 2 204 + 21, COS (Ix) + 29, cO8 Q—Wm + o(e%)
- ¢ 0 1x I 2% i3 .

To study the dynamics around this equilibrium, we reduce the system (11) to the
system on R?. Now we put

p1 = (1, p2) — (bipo/ar, cipo/ar),
Zpo 1=/ —Ho/a1,
€o(t) = 20(t) — 2p0-

Then we have the following lemma.
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Lemma 3.5. There exists a positive constant €1 such that if

|0, 21, 22)| + |p1] < €1
then there exists a function ho(z1, z2; p1) satisfying

Ohg Ohg
ho(0,0;0) = —(0,0;0) = —(0,0;0) =0
O(av) azj(,v) ap1(77)
such that the center manifold of (11) is represented as
WS = {(20, 21, 22) € R%; 29 = 230 + ho(21, 225 p1) }-

Moreover, the dynamics of (11) on the center manifold is locally equivalent to
the dynamics of the following system:

#1 = Pi(zpo + ho(z1, 22), 21, 22) + o(|(21, 22) *), (15)
Z2 = Pa(zpo + ho(z21, 22), 21, 22) + o] |
where
P (Zo, 21, ZQ) = (Ml + blzg + ng% + bgzg)zl + bazoz1 22,
Py (20,21, 22) := (2 + c125 + c227 + 323) 20 + c42023.
This lemma immediately follows from the center manifold reduction to the system
(11) around eg. In addition, the system (11) is invariant under the mapping:
(20, 21, 22) = (=20, 21, —22).
This yields that the center manifold about —ey is represented as
{(20,21,22) € R* 20 = —2p0 — ho(z1, =225 p1)}-
Therefore, if (z1(t), 22(t)) is a solution to (15) then
(—zpo — ho(21(t), —22(t); p1), 21(¢), —22(¢))
is a solution to (11) near —eg. We also have the following Lemma.
Lemma 3.6.
(i) : If c1 < 0 then the center manifold WS is locally attractive;
(i1) : If c1 > O then the center manifold W§ is unstable.
Proof. Since if ¢; < 0 (resp. ¢; > 0) then +eq exist if and only if ug > 0 (resp.

o < 0). That is, linearized matrix about +ey has two zero eigenvalues and a
negative (resp. positive) eigenvalue: —2pyg. O

It should be noted that the solutions to system (15) correspond to the solutions
to (11) in the case when

lp1| = [(p1, p2) — (brpo/ar, crpo/ar)| < 2|uol
and

20() = 20 + 01 (12 + 2 (D)?).
We also note that if system (15) has an equilibrium (z1,, 22,) with 21, # 0 and
29, # 0, then it correspond to the triply mixed mode equilibrium of (11).
Let us compute the approximation of hg(z1,22;p). The functions (&y(t), 21 (¢),
z9(t)) satisfies the following equations:

o = —2u00 + (34162 + a9z} + a323)zp0 + (0183 + 22} + a323)&0 + asziza,
21 = 21 + (2012180 + baz122) 250 + (0165 + b227 + b323)z1 + baoz1 22,
29 = ﬂg =+ (2615022 + 642’%)2170 + (leg + CQZ% =+ C3Z§)22 + 04502’%.

(16)
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Here fiy := p1 — bypo/ar and fig := po — c1pp/a1. Then, the graph of hg(z1, 22; p1)
satisfies the following equation:

Z—ZT,& + %22 = —2uoho(z1, 225 p1) + a2(2] + as23) zpo
+ 3zpoai(ho(z1,22:p1))% + -+
This yields
h(z1,22) = — 0 (a92? + a3z3) 4 o(e).

2410
Thus, the dynamics on the center manifold W of (11) can be approximated by the
following system:

{ 2 =z +dioz122 + (di123 4 di223) 21,

. 17
Z9 = poze +doozi + (do127 + do223) 20, (17)

where p1; = fi; and

ash asb
dio :=bar/—po/ar, diy = <b2 - 211> , dig = <b3 - 31) ;

asc asc
dog = Can/ —Ho/ah doy = <C2 - 21) , dog = <C3 - 31) .

ai

This is a typical case of 1:2 resonance with O(2) symmetries (for instance, see
[1, 6, 7] ) restricted to the real subspace.

Remark. If (u*,v*) is a non-zero spatially uniform steady state of (4), then by
changing variables (4,?) = (u,v) — (u*,v*), we can obtain a reaction-diffusion
system which has quadratic nonlinearity, and moreover, it yields a normal form
with 1:2 resonance. However, for the sake of simplicity, we consider the system (17)
to compute existence and stability of mixed mode solutions.

Let us solve the stationary problem of (17). Using the scaling
2j = nZj, g =10 fg,t =t
and drop the tildes, we have

dioz122 + n(p1 + di127 + d1223)21 = 0, (18)
daoz? 4+ n(pa + doy 22 + dag22)ze = 0. (19)
Then we obtain
—1 d
2 2 10
= — d — ——29. 20
Zl dll (/’Ll + 1222) ndll 22 ( )

Substituting (20) into (19) and using the power series method:

22 =2 + 0’2 4P 4o

we obtain

2y = ——

1 w1 (diidiope + daodiap
Ly 1(d1rdiope + daodi2 1)773+0(773)
dio daodygs

and

2d19 2 2d7, 13
2= Hip2 o ( 132/~L§M2 12/:1) 3 4 o(n®).
daodig dipdsg dudi
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This implies that if p1 podspdig > 0 then the triply mixed mode equilibrium exists for
small 7. Further calculation gives the linearized eigenvalues about these equilibria

as follows:
I
(22 + /13 + 2#1#2) n+o(n).

3.4.1. Hopf instability of triply mized mode solutions: Here we consider the Hopf
instability around the equilibria. Suppose that (214, 22, ), ( 214 # 0 and 29, # 0) is
an equilibrium of (17), and M is a linearized matrix around (z1,, 22,). Then, the
matrix M has purely imaginary eigenvalues if and only if det M > 0 and trace M = 0
hold. Solving the stationary problem of (17) with z1 = pzs, (p € R) and trace M =0
for (z1, 22, 1, li2), we have

29 = 294 = 7p2d20

T 2(dyy +dag)’
21 = Z1x = PR2x

and the bifurcation point is

 PPda0{2d10(p*dia + daa) + pPdao(p*dis + di2)}
i e o 4(p2dy; -; da2)? ’
p*d50(2p%dy1 + 3daz + p*dar)
4(p2d11 + da2)?
Thus, if det M > 0 at (p1, g2, 21, 22) = (145 B24, 214, 224 ), then the matrix M has
a pair of purely imaginary eigenvalues at the point.

H1 = P1y =

Ho = M2y = —

4. Existence of time-periodic solutions around the 1-mode stationary so-
lutions . Let us compute the normal form for the Hopf bifurcation around e; in
the case of

tr Mi., =0 and det My,, > 0.

More precisely,

o = —po + p1(ag +c2)/ba  and (o — praz/b2)? + piascs /b3 < 0.

Now we put

&1 =2 — 2p1, Zp1 =/ —p1/ba,

and introduce a new parameter po satisfying

202 = (2 + pto + (az + ¢2)zpy) = tr M,

as follows:
& =2/ 0 0 &1
20 = 0 o + a2221 + p2 a4212,1 20
29 0 cazyy —po — a2z} + p2 29
Ni(20,&1,22)
+ | No(20,¢1,22) |, (21)

N2(207517 22)

where N;(zo,&1, 22) are higher order terms. Let

- V11 . [ V21
= , ir €R
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be an eigenvector corresponding to an eigenvalue of My, :

pa +i\/ —p3 + det M, .

The system (21) can be diagonalized by the following:

(50):T4<Zo> T:(U“ U12)
&2 %) ’ V21 V22 '

It should be noted that the matrix T'= T'(p2) satisfies the following

T(0) = ( 0422)1 0 )

where

_ 2
V= lug+ a2zp;

2 _ 2 4
W= —V7 = a4cyzy.

Here we note that w = /—v2 — (14042;4)1 is a real value. The system of the new

variables &; is given by the following:

& =21 0 0 &1 N1(&0,€1,&2)
S | = 0 0 w S |+ | P20+ No(éo:61,82) | (22)
1) 0 —w 0 &2 p2&2 + N2 (80,61, &2)

where

Ni(€o.61,&) = Ni(véo + wés, &1, cazir o),

( &0(60751752) ) :T—1< NO(V€0+W§27§17C4Z;1§0) )
Na(&o,&1,€2) Ny((véo + wéa, &1, ca2160) )

Then we can apply the center manifold theory for (22).

Lemma 4.1. There exists a positive constant €o such that if

(€0, &1, &2)] + [p2| < e,
then, there exists a function hy(€o,&a; p2) satisfying

(0,0:0) = Ge4(0.0:0) = 5(0.050) =0, (= 0.2)
J

such that the center manifold of (22) is represented as

Wy = {(&, &, &) € R% & = hi (&0, &5 02)}-

Moreover, the dynamics of (22) on WY is locally equivalent to the dynamics of

( o ) _ ( p2 W ) ( €o >+ ( No(&o, b1 (€0, €25 p2), &2) )
€2 —w P2 &2 N3 (€0, h1 (8o, €25 p2),€2) /-
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4.1. Approximation of h;. Let us compute the approximation of hy. Differenti-
ating &1 (t) = h1(&o(t), &2(t); p2) with respect to ¢, we have

oh
~2p1ha (o, &2) + N1 (6o, &2) = w@ (50752) 7, (E0 ).
Substituting hy = Y20£2 + 711802 +Y02£3, and equating quadratic terms, we obtain
—1 2 2 4 2 4
Yoo = 4b23p1(w2 n b%z4 ) (*2bQZp1b1w vV — b22p1b4w cy +w b1
+w bgC4Z + w C4Vb42 + w?b? +2b2z 1b11/
+2b22p1b3¢:4 + 2b22plc41/b4),
Y1 = $(b304z + C4Vb4z + 2b2z v+ bgz4lb464 — w?by + b1v?),
2(w? 4 b32,) P
—w?
= b b 20225, b
7Yo2 Ay zp (w2 + b2 ;;1)( 3042 + cuv 42 + zz 101V

+b22 1b4C4 + w bl +b1l/ +2b22 1b1)

Then the dynamics of (22) on the center manifold WY is approximated by the
dynamics of the following:

( 5:0 ) _ ( P2 w ) ( 50 ) + ( ]\:[0(505h1(§07€2)7£2) ) (23)
&2 —w P2 &2 N2 (o, h1 (80, €2),62)

4.2. Normal form for the Hopf bifurcation around 1-mode solutions. Fi-
nally, we obtain the following result:

Lemma 4.2. The system (23) can be transformed by a parameter-dependent change
of complex coordinate and a nonlinear time re-parameterization, into a single equa-
tion of the form

& Bietclel+ olal?), (24)

where z and T are a new complex coordinate and a new time, respectively, and B is
a new parameter satisfying dB/dps = 0 at pa = 0, and moreover, < is given by the
following:

1
o 2 2 2 2 3
¢ = sign 04221(264zp101w +604zp1011/ +1204zp102720
P

+4C4Z§’102702 + 60?122163 + 12¢cazp1v7y20 + 4cazpivyo2 + 4cazpiwyin)

+

E— (3zp1a1w3 + 3zp1wa11/2 + 2wa2212)1720 + 6wa2221702 (25)
P

+wagciz§1 + 21/a2212,1’y11 + 2a4zﬁlc47u
—2zp101w1/2 — 21/22102711 — 2vwysg — Brwype — 21/2711) .
The constants in the general normal form (24) are depend on a parameter pg even
though p fixed so that the equilibria de; exist. This implies that the stabilities of

the periodic solutions around +e; are dependent on the parameters. Now it should
be noted that if we consider the case when

(po, p2) = (agpr /b2, capir/b2), (26)
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then the constant < is independent of the parameters v;, and (sign of ) it can be
simply determined. In fact, ug = agu/bs yields v = 0, and ¢ is computed as follows:

¢ =sign [af(3P1 + P2) — asca(Ps + 3Py)] (27)
where
1
P = ——(2a1b —2a1b3 — b
1 o (arca 7@( arbacsas — 2a1b — azcaasby
+azc4bibs + ascibs + 2a2b1b3),
P. ! (—2c1b3 + 2¢1b b1 + cocabyb
= 5 (—4C C CqaQy4 — C2C4Q CoC.
2 2b2(a404—b§) 1Yo 1V2C4 04 2040407 2040402
+CQCZb3 + QCzblbg + 2bycqaqaby + 2()364[)4 + 2821)3),
Py = 771 (a2a2b1 + asagsbsbe — asaycybs + 2&253b2
2b2 (0,4(34 — b%) 4 2
+2a3b§’ — 2(131)204&4 — 2b2aib1 — 21)%(141)4 - 2b2a4c4b3),
1 2
Py = 7(02@41)1 + coasbybo

B 2b2 ((1464 — bg)

—CQCL4C4b3 + 202[)3()3 + 203[)3 - 203b204a4).

The proof of Lemma 4.2 is obtained directly by applying the elementary normal
form transformation for the Hopf bifurcation to (23) (see Lemma 3.3-3.7 in [8]).
We give the proof in the appendix A.

Let us summarize the obtained results by the following theorem which is the
main results of this paper.

Theorem 4.3.

Consider the system (4) with assumptions (A1) — (A4). Take the parameters in
(4) so that the 1-mode stationary solutions: +(Uy(z), Vi(x)) obtained in theorem 2
exist. Then, the following hold:

(i) If (po — p1az/b2)* + ascs <0 (uj, aj, ba and ¢y are coefficients of (11) ) and if
¢ # 0 (s is given in (26)), then the system (4) has time periodic solutions bifurcated
from 1-mode stationary solutions through the Hopf bifurcation;

(ii) The time periodic solutions obtained in (i) are locally asymptotically stable if
and only if b < 0 and ¢ = —1.

Remark. If as > 0 and the same hypotheses in Theorem 4.3 hold, then the
time periodic solutions around 1-mode stationary solutions exist even though the
eigenvalues corresponding to the spatially uniform eigenfunction ( 0-mode ) are
negative.

4.3. Numerical results: Here we present the numerical results to (4) correspond-
ing to the Hopf bifurcation studied in the previous subsection. Therefore, we focus
our attention on behaviors of solutions, especially, around the 1-mode stationary
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solutions corresponding to equilibria 47 of (11). Let us study the case when

Dy=1/4, a=1, b=-10, ¢=2, d=-5,

(28)
F(u,v) = —u®* and G(u,v) = —0.9u3.

Then we have s* = 3 and
(ko?, Dy?) = (0.87,25.88).
The coefficients of the normal form (11) are listed as follows:

a; ~ 100.00, ay ~ 14644.17, a3~ 1.69 x 10°, a4 ~ 2.45 x 10°,
b1 &= —49.29, by =~ —1203.01, b3~ —27695.10, by ~ —1652.32, (29)
c1 ~ —67.14, co =~ —3277.22, c3~ —18861.66, c4~ —97.761.

It follows that ascy < 0 (one of the necessary conditions for the Hopf bifurcation
is satisfied). Now the special case (26) and the explicit form (27) is convenient to
determine the type of Hopf bifurcation (super, or sub critical) since it is indepen-
dent of the parameters. In the case (28), we can compute ¢ = —1 by using (27).
Therefore, time periodic solutions around 1-mode stationary solutions exist, and
moreover, they are locally asymptotically stable in this case (see Figure 2).

Let us see the numerical results to (4). Now we set

ko = 0.857490 (< L ~ 3.663708), s = 2.978084.

0.003

n.onzﬁ‘“ (\“ “ ‘ “ W\{

w il MU\\\ \‘\”\
°‘°‘“\\\ \\ Il
sets . ‘\HH‘\H‘HH \HH‘ \‘H‘H HH‘\WH” HW
sl " M“ M“ \H‘HH M M”\M“UUHU“‘ |
0203, G350 003-0.002 0001 © 0001 0002 0.003 mi \ / U U J \J \ \ / } | U J \ I U U j \J \} J k \I

FIGURE 2. Numerical results to the normal form (11) in the case
of (29) near a Hopf bifurcation point. The parameters are py =
—0.609489, 1 = 0.0052 and ps = 0.013621. [Left: Periodic orbits
of (20(t), z1(t), 22(t)).] [Right: The graph of z(t) (blue line), z; ()
(green line) and z3(t) (blue line).]
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0.0805 005

ooooo 0,05

01

FIGURE 3. Numerical results for the reaction-diffusion system (4)
with Dy = 27.13 in the case of (28). The initial values are stable
1-mode stationary solutions at Dy = 27.0. [Above: The left and
right figures correspond to the graph of u(t,x) and v(t,x), (t €
[4500,5000], 2 € [0, L]), respectively.] [Below left: The graph of
|(u,v)||L2(t), t € [4500,5000]. Vertical axis : L? norm of u, hori-
zontal axis: t.] [Below right: Graph of ug(¢) (blue line), u (t) (green
line) and wug(¢) (blue line). wu;(t) are j-th mode Fourier coefficients
of u(t, x)]

5. Hopf bifurcation phenomena around the other equilibria. In this section,
we compute the normal forms for the Hopf bifurcation around the equilibria: :I:e(?2
and triply mixed mode solutions of (11). Since the results in this section can be
obtained by the similar calculation in the previous section, we omit the proofs. It
should also be noted that the system (11) is invariant under the mappings:

(20,21,22) = —(20,21,22) and (20, 21,22) = (20, =21, 22)-
This implies that if (z0(t), 21(t), 22(t)) is a solution of (11), then

—(20(t), 21(t), 22(t)) and =+ (20(t), —21(2), 22(1))

are also solutions of (11). Therefore, it is sufficient to consider the Hopf bifurcation

phenomena around the equilibrium (z1,, 22,) of (17), and around the equilibria e,

of (11).

5.1. Hopf bifurcation around doubly mixed mode equilibria 635: We show
the normal form around an equilibrium egy of (11). Here we assume that ajcz —
ciaz > 0. We put

&o(t) = 20(t) — 2§, &2(t) == 22(t) — 23,
v1 =+ 01(25)? + b3(23)% + bazh 23
Then we have
z = Az + N(z), (30)
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where
z = t(zlvé-07£2)7
%1 0 0
A = 0 2a1(23)? 2a3zizs |,

0 2c12525  2c3(23)?

N(z) = *(Ni(&o,21,&2), No(€o,21,&2), Na(&o, 21,€2))

> jterm=s Biem&o2162 (0188 + baz? + b383) 21 + ba&o21&o
= D jterm=a Yiemboz1&2 | + (a1&8 + az27 + a3€3)&o + aszi&o
> jterm=a Vitm€0z162 (c1&2 + oz} + c363)&a + caéo2?

Here,
Q200 = 3a123, Q20 = A22) + G425,
Qo2 = A32g, (101 = 20323,
ai10 = ap11 = 0,
Br1o = 2b125 + baz3, Bor1 = 2b325 + bazg,
B200 = Booz2 = Bio1 = 0,
Y200 = €125, V020 = C275 + €420,
Yooz = 3¢325, Y101 = 2€120,
Y110 = Yo11 = 0.
Let us consider the case when a1 (2g)? + c3(23)? = 0. In this case, the system (30)
can be transformed to the following system:

7z= Az + T N(z), (31)
where

z = (21750352) = T71Z7

} vi 0 0 1 0 0
A=1 0 0 w |, T=| 0 2as2525 0
0 —w 0 0 —2a1(25)? w

Here, w := 2y/a1c3 — asgcr|z§ 25| > 0. Then the following hold:
Lemma 5.1. There exists a positive constant €3 such that if
(60, 21, &2)| + larzg + cazs| < ea,
then there exists a function h., (o, &) satisfying
han (0,0) = 221.0.0) = 0
0¢;

such that the center manifold of (31) is represented as

Wy = {(50,52) ER?* 2z = hz, (50752)}*

Moreover, there exists a constant § satisfying |d| < €3 such that the dynamics of
(11) on W5 is locally equivalent to the dynamics of the following system:

(2)-( %) (8)(Jemeooy o
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Lemma 5.2.
(i) : If v1 < 0 then the center manifold W5 is locally attractive;
(i) : If vi > 0 then the center manifold WY is unstable.

We can also compute the normal form around (&y,&) = (0,0). Here we present
the following results without proof.

Lemma 5.3. The system (32) can be transformed by a parameter-dependent change
of complex coordinate and a nonlinear time re-parameterization, into a single equa-
tion of the form

dz .

% — (B i)z talePz +olle) ()
where z and T are a new complex coordinate and the new time, respectively, and
B = B(9) is a new parameter satisfying 5(0) = 0 and 08/06 # 0 at § = 0, and
moreover, ¢4 is given by the following:

, —g20911(2A + ) |g11] |go2|? g21
=8 Re - N + — + = ) 34
o lgn[ { 212 X 202y 2 (34)
where A denotes iw, and
g0 = —M;ZSZ; [(w + 2ia1 (25)%) (—az00 + 002 — icvion)
+2a32525 (—iv200 + Y002 + Y101)],
1 ) * L wx
gi1 = ﬁ[(w + 2iay (25)?) (200 + o02) + 2iazzg 25 (Y200 + Y002)],
w2agzzg 2y
-1 . . )
go2 = Farai [(w + 2ia1(25)%) (— 200 + 002 + ic101)
+2a32525 (—iv200 + Y002 — Y101)],
1 . * - * %
g1 = —————[(w+ 2ia1(25)?)(3ar + a3) + 2iazz; 25 (3¢ + c3)].

wlasziz

We can conclude that the system (4) has a time periodic solution bifurcated from
a doubly mixed mode solution corresponding to the equilibrium (25,0, 23) of (11),
moreover, it is locally asymptotically stable if and only if v; < 0 and ¢4 = —1.
Replacing (z§, z3) with (28, —23)( or —(z§, 23) ), a constant ¢4 in the normal form
is computable for the all doubly mixed mode solutions: (zg, 21, 22) = j:egtz.

5.2. Hopf bifurcation around the triply mixed mode solutions: We also
consider the Hopf bifurcation phenomena around the equilibrium (z1,, 22,) of (17).
The corresponding triply mixed mode stationary solution of (11) is
(ZOa 21, 22) - (hO(Zl*a Z2*)7 Z1%s Z2*)-
Putting
Z1 =21 Z1s, 22 = 22 — 224,

the system (17) can be transformed to the system

51 = Z O@gé{sg,

. s (35)

=Y BuA,

j+e<3
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where

a0 = p1 + dio2o. + 3d1121, + di1222., o1 = d1o21. + 2d1221 204,

Qoo = 3d11 214, ar1 = dio + di2(222, + 1) 21,224,
a2 = dy1220,, ago = di,

19 = d127 Q21 = Qo3 = 07

B1o = 2da0z1, + 2d21 21422, Bor = p2 + 3dazza, + d21214,
Bao = dao + do1 22, B11 = 2do121 4,

Boz = 3dazza,, Ba1 = dou,

Boz = daa, P12 = B30 = 0.

We consider the case when a9 and [y; are small, that is,
1 = —(digze, +3d1121, +d1225,), pe = —(3dagze, + do121,).
Let w = v/—ap1 P10 and A = iw. We have similarly the following lemma.

Lemma 5.4. The system (35) can be transformed by a parameter-dependent change
of complex coordinate and a nonlinear time re-parameterization, into a single equa-
tion of the form

dz

e (B + 1)z + <5122 + o(|2]), (36)

where z and T are a new complex coordinate and a new time, respectively, and B =
Bla1g, Bo1) is a new parameter satisfying 5(0,0) =0 and 93/0a19 # 0, 93/9Bo1 #
0 at ay9 = Bo1 = 0, and moreover, g5 is given by the following:

s = s o { LN ol e |;) cmll
Here,
g20 = (azoao1 +iwony + iBroaez) — i (B000, /w + if11cor — iwBo2)
g1 = (20001 — Brocnz) — i(B005, /w + iwpBo2),
goz = (aoaa01 — iwagy + iBrocoz) — i(Bogad; /w — icg1 fi1 — iwBo2),
921 = 3Bazeag; + iaanw + ajaw® — 3icgsBiow

—i(3B3003, Jw + iBa1ad; + Braciw + 3iBosw?).

It should be noted that the time periodic-solutions to (4) bifurcated from triply
mixed mode solutions are asymptotically locally stable if and only if a; < 0 and
s =—1

Remark. Since |z; | < €1, (j = 1,2) is assumed, we have
aor = dipz1, + O(€]), Bio = 2daoz1, + O(7).

This implies that
Sign{dlodgo} = sign{C4b4} =-1

is necessary to the Hopf bifurcation phenomena around triply mixed mode solutions
for small e7.
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6. Numerical studies to chaotic dynamics in the normal form. We have
shown the normal forms with 0:1:2 resonance with odd symmetry in reaction terms
F and G. They give us the existence and stability of spatially non-uniform station-
ary solutions, and time periodic solutions in (4). We would also like to introduce
chaotic behaviors in another set of parameter values. We only consider the normal
form in the case of (11) throughout this section.

6.1. Results of numerical studies to the normal form. Let us see numerical
results. We can observe complex oscillatory dynamics in the normal form (11) (see
Figure 4 — 7 and Table 1). They suggest that there is a homoclinic orbit which
connect a triply mixed mode fixed point and itself (since of symmetries of normal
form (11), there could be four homoclinic orbits), and they could induce the complex
oscillation as shown in figures.

It should be noted that since the parameter s is real-valued, it is impossible
that po(s) attains the values listed in the caption of the figures. However, the

0.00014

0.00012 |-
0.0001 |
8e-05 |-
se-05|
4e-05 |-

2e-05 -

-0.3

0.00012

0.0001 -

8005 [T LI L Y T Oy AR
(B TN T B AT ATV (IR
: T ||t i

2e

FIGURE 4. Bifurcation diagram of the Poincaré map of (11)
on the section zyp = zy, ( 204 is a coordinate of the equilib-
rium: (2o(t), 21(t), 22(t)) = (204, 214, 224)). Parameters are p; =
0.0052, e = —0.002. The vertical and horizontal axes correspond
to zg and pg, respectively. [Above : ug € [—0.6,—0.35] [Below
left : Close-up view of the above in po € [—0.5644,—0.5643].
The periodic orbit disappear around pg =~ 0.56437.] [ Below
right : Close-up view of the above in ug € [—0.476, —0.466), 22 €
(6.5 x 107°,8.5 x 107°]]
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FIGURE 5. The orbits (left) and \/z0(t)2 4 21(t)2 + 22(t)? (right)
for typical parameter values pq = 0.0052 and ps = —0.002 . We
change g as po = —0.38, —0.471, —0.473, —0.55 from the above.

system (11) is invariant under the scaling (12), we can choose a parameter s so that
the normal form (11) has small amplitude similar solutions by a suitable choice of
scaling parameter 7.

TABLE 1. Equilibriums of (11) with the constants (29) and their
linearized eigenvalues. Parameters are pug = —0.55, p3 = 0.0052
and pg = —0.002 ( This case correspond to Figure 5).

Equilibria Eigenvalues
(20,21, 22) = (0,0,0) —0.550000 | 0.005200 | —0.00200
(£0.074162,0,0) —0.37127 | —0.265895 | 1.100000
(0,+0.002079, 0) 0.079174 | —0.011472 | —0.010400
+(—0.004570,0.001968,0.000106) | —0.014227 | 0.007193 £ 0.035272¢
+(—0.004570, —0.001968,0.000106) | —0.014227 | 0.007193 £ 0.035272
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0.00015
0.0001
5e-05
0
-5e-05
0.0001
-0.00015

FIGURE 6. Left and right figures show the orbits from the initial
conditions which are close to the triply mixed mode fixed points
(o = —0.55, 417 = 0.0052, us = —0.002. 0 < ¢t < 210). These
numerical results suggest that there is a pair of homoclinic orbits
in the half of the phase space {(zo, 21,22) € R?;2; > 0}.

0.00015

FIGURE 7. [Left: The orbits in fig. 6 are shown. | [Right: The
orbits in fig. 6 and the attractor are shown as well. ]

6.2. Lyapunov characteristic exponents and Lyapunov dimension. In order
to see that there are chaotic dynamics, we compute the Lyapunov characteristic
exponents by using the algorithm in [10]: more precisely, let

7 = F(z) (38)

be a system of differential equation in R?, and let {e;}, 1 =1,2,3 be a set of basis
of tangent space at z = zg := z(0). Consider the variational equation around the
flow z(¢;z0):
y(t) = DF (z(t;20))y(t). (39)

Then, the solution of (39) can be written as y(t) = Uly(0), where U? is the funda-
mental matrix. We define

et zo) = tliﬁrglotfl log (|U*e1]/le1]),

2 — i =1 t t
Ae?,zg) = tlg(r)lot log (|U%e1 x U'es|/le1 x e3]) ,
AP, zg) = tli}m t~'log (|U'e1 - (U'es x U'es)|/le1 - (e2 x e3)]),

where e/ are j-dimensional space defined by e/ = span{ey, ..., e} C R3, moreover
o-o0 and o X o denote inner product and exterior product, respectively. We can
compute the Lyapunov characteristic exponents \;, j = 1,2, 3 by using A(e’, 2p).
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Now we show the results to our problem. We solve the equations (11) by Runge-
Kutta-Fehlberg method checking the difference of the fourth order and the fifth
order approximation is smaller than 107%. Here we also choose the scaling pa-
rameters as 7 = 4. The typical time difference is taken as 1072, and we compute
0 <t <T. The vectors e; are normalized in each step as follows: e; is taken as a
tangent vector of the trajectory (A(e',zo) must attain zero) ; The bases {e;} are
normalized by the Gram-Schmidt orthonormalization. We also set

fio = —0.559489,  p1 = 0.0052, o = —0.002.

Then, we obtain the numerical results as shown in Table 2 for each T

TABLE 2. The Lyapunov characteristic exponents for each T'.

T A1 Ao A3
5 x 10% | 0.014125 0.000286 | —0.136404
10% | 0.021547 0.000112 | —0.136693
5 x 107 ] 0.025032 | —0.000014 | —0.137087
10° | 0.023560 | —0.000000 | —0.137040
5 x 10° [ 0.023984 | —0.000028 | —0.137153
10% [ 0.023906 | —0.000024 | —0.137146
5 x 10% [ 0.023768 | —0.000025 | —0.137136
And we estimate
A1~ 0.0240, A9 =~ 0.0000, M3~ —0.1371.

We can also compute Lyapunov dimension of the attractor as follows (for instance,
see [4]): let j be an integer satisfying
j J+1

J
> XAe>0and > A <0,
(=1 (=1

then the Lyapunov dimension dy is defined by

AR
dy=j+ ZZ:l f.
Ajt1

In our case, we obtain
df ~ 2.175.

These numerical results suggest that the normal form (11) yields chaotic dynamics
by a suitable choice of parameters and coeflicients.

7. Reaction-diffusion equation with two positive and negative global feed-
back. As we showed in the introduction, the following 3-component system (2):

up = Ditge + au+bv + sw+ F(u,v), x€Q,t>0,
10y = Doy +u — v + G(u,v), zeNt>0
Towy = D3wgy +u — w, reNt>0
Uy = Vp = W, =0, at r=0,L

is convenient to check the condition of the Hopf bifurcation. In this section, we
set the higher order terms F'(u,v) = Fi(u) and G(u,v) = Fz(u) (namely, they are
independent of second variable v). And we also assume the following:
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o Fj(u) = —F;(—u) (j = 1,2) hold, and they can be represented in Taylor series
Fj(u) = aju® + h.ot., aj € R;
e The coefficients in (2) satisfy the assumptions (A3) and (A4) in the section 2
(withe=1, d = —1);
e —1/b< Dy/D; and Dy < D3 hold.
It should also be noted that the results shown in this section holds under the ap-
propriate settings of function space similarly to section 2. One of the advantage in
the system (2) is that we can obtain a coefficient of normal form for the Hopf bifur-
cation around 1-mode stationary solutions more simply than (4). This is essentially
because the system can be reduced to the scalar equation with two global feedback
effects as follows. Here we note again that if u(t, z) = (u, v, w)(t, x) is a solution to
(2) then
- u(t, x € (0,L),
At z) := { u(t,22 —z) T€ EL,Z}L)
is a solution of the same equations under periodic boundary condition with period
2L satisfying even symmetries. Thus, it is sufficient to consider the equations in (2)
with periodic boundary conditions on a interval (0,2L) with even symmetry.

Let 7, = 0,51 = —b > 0 and s = s > 0. We have the equation in a Fourier
space which is equivalent to (2) as follows:
o = At + [F1 ()] — 5188 [Fa(u)]m, m € NU{0}, (40)
where

A 1= )‘mko =a— D1m2k(2) - Slﬂém) + S2ﬁ§m)7 m € NU {0}7
B = (1+ Dym2k3)™t j=2,3, me NU{0},

[Fj (u)]m = Z Uy Umy Umg

mi+mao+ms=m

i=12, myeZ (¢=1,23), meNU{0}.

We also consider the dynamics of the equation (40) around a critical point, espe-
cially, triply degenerate point. It holds that A\g = A\ = Ay = 0 if (ko,a,s2) =
(k},a*,s3) and

D, Ds

Da(Ds — Dy)’ (41)

S1 >

where

2 _ ~OD1Ds £ V9D?D2 + 1651 D1 D2 D3(D3 — D»)
o 8Dy Dy D3 ’

(s1Dy — Dy — Dy Dok?)(1 + Dsk?)
(1 + Doki?)Ds

*
So =

and
* * S1 5;
a* =Dk + — .
PO T Dokg® 1+ Dakg?
We note that kj attains the real value if and only if the inequality (41) holds, and
a* is positive if s; — s5 > 0 holds.
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Applying the center manifold theorem around this critical point, we have the
reduced equation on the local center manifold WY, of (40). Moreover, we obtain
the following third order truncated system which approximate the dynamics on the
manifold W[, :

o = Aouo + Yol (ud + 6uf + 6u3)ug + 3uius |,
1 = Aur + 71| (Bud + 3u? + 6ud)uy + buguiug |, (42)
2 = Aotz + Vo[ (3ud + 6u? + 3ud)us + 3ugu? |,
where
Vi = a1 — 51025§])-

Now we seek a sufficient condition for the super critical Hopf bifurcation around
the equilibria of (42): (0,£+/—A1/(3v1),0) which correspond to the 1-mode sta-
tionary solutions of (40). It should be noted again that if (ug(t),u1(t), uz2(t)) is a
solutions of (40), then —(ug(t), u1(t),u2(t)) is also a solution of (40). Therefore, it

is sufficient to consider the Hopf bifurcation around (0,+/—A1/(3v1),0). Now we
assume that a; < 0 (j = 1,2). In this case, it holds that if

5102

S10p < ) < ———5
1+ Dok?

(43)

then
Y >0and v; <0, j=1,2.

This implies that the equilibrium of (42) corresponding to 1-mode solution can be
destabilized with purely imaginary eigenvalues. Using the lemmas in section 4,
we can compute a coefficient ¢ of normal form for the Hopf bifurcation around an

equilibrium (0, /—X1/(371),0) as follows:

. 27
¢ = sign (zm)f(%,%ﬁz)) ;
Y1 — Y072

where

F(v0,71,72) = —(57% + 7072 + 1573)75 — 8v072(0 +72)71 + Y2 + Y075 — 57873

Here, we using the formula (27) for the shake of simplicity. In fact, the constants ¢
computed here can be determined as follows: we can see that

7 \? 251
52 + 7 1572 =5 — =21 >0
Yo + v0v2 + 1o, (70+ 1072) + 100% >

and
(Discriminant of F) = 4v972(575 — 27672 + 477372 — 107075 + 10573).

Then, if the inequality (43) holds then F(vo,71,72) is negative. This yields ¢ = —1,
namely, there exist the periodic solutions around the equilibria of (42) corresponding
to 1-mode stationary solutions bifurcated from the super critical Hopf bifurcation.

This result is obtained in the case when the higher order terms F'(u,v) = Fy(u)
and G(u,v) = Fy(u) are independent of v. In this case, if Fy(u) =0 (or Fa(u) = 0),
then the Hopf bifurcation cannot occur, namely, the both cubic terms F'(u,v) =
Fi(u) = aqu? 4 h.o.t. and G(u,v) = Fy(u) = asu® + h.o.t., (a; # 0) are necessary
to the Hopf bifurcation around the 1-mode solutions.
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8. Discussion. Here, we show the numerical results to the reaction-diffusion sys-
tem (4) with the constants and higher order terms shown in (28). Setting

Dy =26.5, ko= 0.874919,

then we can also observe “chaotic” solutions as Figure 8 (see also Figure 9). It
should be noted that ug is dependent on only one parameter s, and it increases as
s approaches to 3 from the left.

To check the sensitivity to initial conditions, we also show a result of the following

numerical experiment: let (ugl)(x), Uél)(m)) belong to a function space X, and put

() (@), 057 (@) = (u) (2), 0" () + (1079, 0).

Let (u,v™M) and (u®,v?)) be solutions of (4) satisfying (u)(0, z),v)(0,z)) =
(u(()j )(x),véj )), j = 1,2. We show the logarithmic plot of the difference of the two
solutions in the right of Figure 9. These results agree with the results in the section

6.
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0.092 [

0.091

4500
4550

5.5.6 0 0 o
NOZOS o940
BRG2Se5Tae

4000 4200 4400 4600 4800 5000

o 1000 2000 3000 4000 500

FIGURE 8. Numerical results of (4) for s = 2.979 (above) and
s = 2.98212 (below). The left and right figures correspond to the
graph of u(t,z) and ||u||p2(t), for each s, respectively.
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-0.02
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-0.06

FIGURE 9. [Left: Dynamics of Fourier coeflicients
(uo(t),u1(t),uz(t)) of the solution of (4) for s = 2.98212
(This corresponds to the PDE simulation in Figure 8 (below).]
[Right:Logarithmic scale plot of the difference of the L? norm of
the two solutions 1) (¢) and u(?(t). The vertical and horizontal
axes correspond to log | [|u™| ;2 — ||u(®]| 2 | and t, respectively.]

Appendix A: Proof of Lemma 4.2. Here we give the proof of Lemma 4.2:

Proof. Now we put o := 2py and

A:( pz @ )
"o o

Then eigenvalues of the matrix A are A and A, where

/\:%—&—iw.

Let ¢ = (q1,92) € C? be an eigenvector of A corresponding to the eigenvalue \:
Aq = Mg, and let p = (p1,p2) € C? be an eigenvector of the transposed matrix
tA corresponding to its eigenvalue A. It can be normalized with respect to ¢:
< p,q >=1, where

<DP,q >:= P1q1 + P2g.
Then the vector (zg, 22) can be uniquely represented as follows:

(20, 22) = 2q + Zq.
Moreover, we have
z=<p,(z0,22) > .
Then the system (23) can be transformed into the single equation:
2= M2+ < p,N(zq+ zq) >, (44)

where N =t (Ny(21, 22), Na(20, 22)). It also follows that < p, N > is represented as
polynomial formula:

Ry 5 Ro1 5. Rio 5  Ros_g
<p,N >=—z —zZ+ —=zZ —Z°.
P 6 - TR T T
Using a near-identity transformation:

h hot o= iz | hos-
e= it Bk B R+ R,
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where

Rso
2\

R R,
hia = == hos 08

2N T\

hao =

Then (44) becomes
Z=Xz+q|2?2 4+ o(|2]?).

Here,

By time scaling £ = wt, we have

dz N~ 12~
— = +1)z +$2|z|7 7,
= (B+i)E+al
where
_ _ S
ﬁ_2w’§2 w’

Change the time parameterization by:
dr = (1+ c3|2*)dt,

where ¢3 = Im ¢; and using new parameterization of the time, we have

dz N 9~ -
— = (B+1)2+L|Z*2 + o(|2),
dr
where
Reg
L= .
wo
Finally, by changing variable
PR
VAL
we have
dz : 2 3
— = (B+ i)z +<[z]"z + o(|2]).
dr
with ¢ = I1/|l1] = signRe¢;. Direct computation yields the explicit form of ¢ as
shown in the lemma. O

Appendix B: Explicit form of the coefficients of normal form (11). We
show the coefficients of reduced system (11) explicitly. We put A,, = —a +
Dy*m?(ky®)?, then we have the following.

1 . b .
aj=——PY 4 2_pu 1.4
! po T dug Y
b_jfipba‘,ﬁpbi i=1...4
; — P} —P)7, j o4,

Hq CHa

1 o As . .
¢j=——PY — ZLpo j—1...4

Ha dpy
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912 gos )’
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g12 go3

925



926 TOSHIYUKI OGAWA AND TAKASHI OKUDA

n

[2
3

[4

5

6
[7

8
9

[10
[11
12
[13
[14
[15

16

Pcz f f
f .= 6B?B 30 2¢By(B; + 2B 21
<PCQ ) 172 gs0 +2B1(B1 +2B2) g21

+2C2(BQ+281)( f12 )+6C3< f03 )7
gi2 gos

P [ [

f = 3B3 30 3 BQ 21
<P53> 2(930 ek g21

+3C2B2< fi2 )+3C3< fo3 )7
g12 gos

Pt f30 fo1

< Ps ) = 3B%BO< g >+cBl(B1 +2By) < o

+c*(By + 2B)) ( giz )+3c3< fos >

gdos
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