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Abstract. Oscillatory dynamics in a reaction-diffusion system with spatially

nonlocal effect under Neumann boundary conditions is studied. The system

provides triply degenerate points for two spatially non-uniform modes and uni-
form one (zero mode). We focus our attention on the 0:1:2-mode interaction in

the reaction-diffusion system. Using a normal form on the center manifold, we
seek the equilibria and study the stability of them. Moreover, Hopf bifurcation

phenomena is studied for each equilibrium which has a Hopf instability point.

The numerical results to the chaotic dynamics are also shown.

1. Introduction. There has been a lot of studies about spatiotemporal patterns
and their dynamics to systems of reaction-diffusion equations. Let us consider vari-
ations of bifurcations from a stationary solution. Suppose this stationary solution
is spatially uniform. Then we linearize the equation about this equilibrium and we
know a bifurcation occurs only if the linearized problem has zero or purely imaginary
eigenvalues which we call critical eigenvalues. Moreover if this critical eigenvalue is
0 with spatially non-trivial eigenfunction, a stationary bifurcation to non-uniform
steady state occurs. One of the typical examples for this is the well-known Turing
instability. On the contrary, if the critical eigenvalues are a pair of purely imaginary
numbers with spatially non-trivial eigenfunctions, spatially non-trivial oscillations
may occur. The so-called wave instability corresponds to this (for instance, see
[5, 14]).

Now how can we say about the bifurcations from a spatially non-uniform steady
state? Since the linearization about non-uniform steady states is not easy in general,
we need to restrict ourselves to some special cases. Bifurcation analysis about
degenerate instability points is one of such examples. In fact it is easy to find the
degenerate instability points even in the case of Turing instability where n and n+1
modes become critical at the same time by choosing the system size appropriately.
And in this case we can see the n-mode stationary solution becomes unstable to the
(n+ 1)-mode perturbation and the mixed mode stationary solution may bifurcate.
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Here, we focus our attention on the case where the system has the triple de-
generacy with 0, 1 and 2-modes (0:1:2-mode interaction). There, we would like
to introduce the case where the 1-mode stationary solution may become unstable
with a pair of purely imaginary critical eigenvalues. And we will give the explicit
condition for the Hopf bifurcation from the 1-mode stationary solutions.

This kind of triple degeneracy can be observed by considering the following types
of 3-component reaction-diffusion system :

ut = D1uxx + au+ bv + sw + F (u, v), x ∈ (0, L), t > 0,
vt = D2vxx + cu+ dv +G(u, v), x ∈ (0, L), t > 0,
τwt = D3wxx + u− w, x ∈ (0, L), t > 0,
ux = vx = wx = 0, x = 0, L.

(1)

Here, D1, D2 and D3 are diffusion coefficients a, b, c, d and s are constants, and
F and G are higher order terms. Moreover, the time constant τ is supposed to be
very small. This system consists of two component activator-inhibitor type reaction-
diffusion equations and one scalar equation which has the feedback effect to the first
component. We shall see the triple degeneracy for this system precisely later. It is,
on the other hand, easy to understand the mechanism for the triple degeneracy by
assuming that it has two small time constants as follows:

ut = D1uxx + au+ bv + sw + F (u, v), x ∈ (0, L), t ≥ 0,
τ1vt = D2vxx + u− v +G(u, v), x ∈ (0, L), t ≥ 0,
τ2wt = D3wxx + u− w, x ∈ (0, L), t ≥ 0,
ux = vx = wx = 0, at x = 0, L.

(2)

In fact, we can reduce this system to a scalar equation by setting τ1 = τ2 = 0.
Let us consider only the linear terms in (2). Then we obtain the following by taking
the Fourier transformation.

dûk
dt

= −Dk2ûk + aûk + bv̂k + sŵk,

0 = −D2k
2v̂k + ûk − v̂k,

0 = −D3k
2ŵk + ûk − ŵk.

The second and third equations of the above can be solved as

v̂k =
ûk

1 +D2k2
, ŵk =

ûk
1 +D3k2

.

Therefore, we obtain
dûk
dt

= λkûk,

where

λk = a−D1k
2 +

b

1 +D2k2
+

s

1 +D3k2
.

Now we define the neutral stability curve by C = {(k, a) ; λk = 0}. We take the
constants satisfying b < 0, s > 0, −1/b < D2/D1 and D2 � D3. Then it turns out
that the curve C has the shapes as shown in Fig. 1.

Since we are considering the Neumann boundary conditions, the wave number
k should be an integer multiple of the fundamental wave number k0 = π/L: k =
mk0 (m = 0, 1, 2, · · · ). Let us define the neutral stability curves for each mode m
by

Cm = {(k0, a) ; λmk0 = 0}.
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It is now easy to conclude that 0:1:2-triple degeneracy occurs by choosing the con-
stants appropriately (see Fig. 1).

Figure 1. The neutral stability curves C = {(k, a);λk = 0} and
Cm = {(k0, a);λmk0

= 0} in the case of D1 = 0.25, D2 = 20,
D3 = 100. [(Left:) The neutral stability curves C. Dotted line:
b = s = 0; Dashed line: s = 0, b = −2; Solid line: b = −2, s ≈ 1.67.]
[(Right:) The neutral stability curves C0 (dotted line), C1 (solid
line) and C2 (dashed line) in the case where triple degeneracy of
0:1:2-mode interaction occur at (k0, a) ≈ (0.50, 0.33). Constants
(critical values) are b = 2, s ≈ 1.67. The horizontal axis correspond
to k0.]

Let us go back to the case (1). It can be also reduced to a simpler system of
reaction-diffusion equations as follows: putting τ = 0, we have

ut = D1uxx + au+ bv + sw + F (u, v), x ∈ (0, L), t > 0,
vt = D2vxx + cu+ dv +G(u, v), x ∈ (0, L), t > 0,
0 = D3wxx + u− w, x ∈ (0, L), t > 0,
ux = vx = wx = 0, x = 0, L.

(3)

Let (um(t), vm(t), wm(t)) be the Fourier coefficients so that the following holds:

u(t, x) = u0(t) +
∑
m∈N

um(t) cos(mπx/L),

v(t, x) = v0(t) +
∑
m∈N

vm(t) cos(mπx/L),

w(t, x) = w0(t) +
∑
m∈N

wm(t) cos(mπx/L).

Then, the third equation can be solved as

wm(t) =
1

1 + (π/L)2m2D3
um(t), m ∈ {0} ∪ N.

It holds that w0 = u0, and taking D3 →∞, then

wm ≡ 0, m ∈ N.
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Combining them, we obtain

w(t, x) = w0(t) +
∑
m∈N

wm(t) cos(mπx/L)

= u0(t) +
∑
m∈N

(1 + (π/L)2m2D3)−1um(t) cos(mπx/L)

→ u0(t) ( as D3 →∞)

=
1

L

∫ L

0

u(t, x) dx.

Substituting it into (1), we obtain the reaction-diffusion system as follows:

∂u

∂t
= D1

∂2u

∂x2
+ au+ bv + F (u, v) +

s

L

∫ L

0
u(t, x) dx, x ∈ (0, L), t > 0,

∂v

∂t
= D2

∂2v

∂x2
+ cu+ dv +G(u, v), x ∈ (0, L), t > 0,

∂u

∂x
=
∂v

∂x
= 0 at x = 0, L.

(4)

Let (um, vm) are Fourier coefficients of (u(t, x), v(t, x)). Then, the linearized
matrix about a trivial solution (u, v) = (0, 0) is

Mm =



(
a+ s b
c d

)
(m = 0),

(
a−D1m

2k20 b
c d−D2m

2k20

)
(m 6= 0),

(5)

Then, a triply degenerate point (D2, k0, s) of 0:1:2-modes is given by a solution of
detM0 = detM1 = detM2 = 0 as follows:

k0 = k∗0 :=

[
1

8dD1

{
5∆−

√
25∆2 − 16ad∆

}]1/2
,

D2 =
{dD1(k∗0)2 −∆}

(k∗0)2{D1(k∗0)2 − a}
,

s = −∆/d,

where ∆ = ad− bc. We also have a triple degeneracy of 0:1:2-mode interaction. It
should be noted that the linear stability is also discussed in the next section.

If we have the triple degeneracy, the dynamics about the critical point can be
generically analyzed by using the quadratic normal form by Smith, Moehlis and
Holmes [11]. It also includes the 1:2-mode dynamics which is governed by the
quadratic normal form. It had been studied by Armbruster and Guckenheimer [1].
They have periodic orbits (standing and traveling waves) as well as fixed points
(pure and mixed mode stationary solutions), invariant tori (modulated traveling
waves) and heteroclinic cycles. However, we focus our attention on the case where
the problem has up-down symmetry. Then we don’t have any quadratic terms in the
normal form which is different from their studies. Therefore we need to study the
cubic type normal form for 0:1:2-modes. This is the main contribution of this paper
and by this we can conclude that the 1-mode stationary solution of these systems
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can exhibit the Hopf bifurcation and we can observe the limit cycle bifurcating from
the non-uniform steady state. In fact, there have been several studies on reaction-
diffusion systems where periodic motions around 1-mode stationary solutions are
observed ([9, 12, 16]). This result could be one of the starting points to study the
oscillatory dynamics around 1-mode stationary solutions.

As we imposed the Neumann boundary conditions for both ends of the interval,
the periodic motions mentioned above are standing wave oscillations around 1-mode
stationary solutions. Therefore, they are not traveling waves. In addition to the
periodic motions, the normal form also suggests that the system exhibits chaotic
behaviors.

This paper is organized as follows: in the next section, we show the mathematical
settings and precise assumptions to (4). Under these settings, the normal form
around the triply degenerate point is derived. In section 3, we seek the equilibria
of the normal form. We also compute the linearized stability of them, and seek the
Hopf instability points for each equilibrium. In section 4, we state our main result
which is summarized in Theorem 4.3. The numerical results are also presented in
this section. In section 5, we study the Hopf bifurcation phenomena around mixed
mode stationary solutions. In section 6, we show the numerical results to the chaotic
solutions in the normal form. The bifurcation problem of (2) is considered in section
7. A brief discussion and the numerical results to (4) are included in section 8. In
the appendixes, we show a proof of lemma 4.2 which gives normal forms for the Hopf
bifurcation from 1-mode stationary solutions. We also show constants appearing in
the normal forms.

2. Formulation.

2.1. Mathematical formulation and assumptions to (4): We start this sec-
tion by introducing mathematical formulation and precise assumptions to the reacti-
on-diffusion system (4). We consider the system (4) in a function space

X :=
{

(u, v) ∈ [H2(Ω)]2;ux = vx = 0 at x = 0, L
}
,

where Ω denotes an interval (0, L) ⊂ R. And we assume the following:

• (A1) The functions (higher order terms) F and G are sufficiently smooth;
• (A2) F (u, v) ≡ −F (−u,−v) and G(u, v) ≡ −G(−u,−v) hold;
• (A3) The coefficients of linear parts satisfy a, c > 0, b, d < 0, a + d < 0 and

∆ := ad− bc > 0;

• (A4)
bc

d
+ d < 0 holds.

Using assumptions (A1) and (A2) , the functions F and G can be represented by
the Taylor series around the origin:

F (u, v) =
∑

j+`=3

fj`u
jv` + o(‖(u, v)‖),

G(u, v) =
∑

j+`=3

gj`u
jv` + o‖(u, v)‖).

Here, ‖ · ‖ stands for norm on [H2(Ω)]2, and

fj` =
1

j!`!

∂j`F

∂uj∂v`
(0, 0), gj` =

1

j!`!

∂j`G

∂uj∂v`
(0, 0), j + ` = 3, j, ` ∈ N.



898 TOSHIYUKI OGAWA AND TAKASHI OKUDA

2.2. Dynamical system on Fourier space: We note that solutions of (4) can
be considered as those of periodic boundary conditions with period 2L. Indeed, if
(u(t, x), v(t, x)) ∈ X is a solution of (4), then we can extend it for x ∈ [0, 2L] as
follows:

ũ(t, x) =

{
u(t, x) x ∈ [0, L],
u(t, 2L− x) x ∈ [L, 2L],

ṽ(t, x) =

{
v(t, x) x ∈ [0, L],
v(t, 2L− x) x ∈ [L, 2L].

One can verify that (ũ(t, x), ṽ(t, x)) is a solution of

ut = D1uxx + au+ bv + s
2L

∫ 2L

0
u(t, x) dx+ F (u, v), x ∈ Ωp, t > 0,

vt = D2vxx + cu+ dv +G(u, v), x ∈ Ωp, t > 0,

u(t, x) = u(t, x+ 2L), ux(t, x) = ux(t, x+ 2L) t > 0,

v(t, x) = v(t, x+ 2L), vx(t, x) = vx(t, x+ 2L) , t > 0.

(6)

Here, Ωp denotes the interval (0, 2L). Thus, we consider the system (6) in a function
space

Xp := {(u, v) ∈ [H2
per(Ωp)]2; (u(x), v(x)) = (u(2L− x), v(2L− x))} (7)

instead of (4) on X. By Fourier series, we can describe the solution of (6) as

(u(t, x), v(t, x)) = (α0, β0) +
∑
m∈N

(αm(t), βm(t)) cos(mk0x),

or

(u(t, x), v(t, x)) =
∑
m∈Z

(um(t), um(t))eimk0x, (8)

where k0 = π/L and

(αm, βm) =

{
(u0, v0), m = 0,
(2um, 2vm), m ∈ N.

Using (8), system (6) is equivalent to

d

dt

(
um
vm

)
= Mm

(
um
vm

)
+

(
fm
gm

)
,m ≥ 0, (9)

where

fm =
∑

m1+m2+m3=m
m1,m2,m3∈Z

(f30um1um2um3 + f21um1um2vm3

+f12um1
vm2

vm3
+ f03vm1

vm2
vm3

),

gm =
∑

m1+m2+m3=m
m1,m2,m3∈Z

(g30um1
um2

um3
+ g21um1

um2
vm3

+g12um1vm2vm3 + g03vm1vm2vm3)

andMm (m = 0, 1, 2, · · · ) are defined in (5). It should be noted that since (um, vm) =
(u−m, v−m) holds by the symmetry of (7), it is sufficient to consider the equations
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for m ≥ 0. Moreover, here we take the terms up to third order, truncating the
higher order terms. We consider the system (9) in a space

XF :=
{
{(um, vm)}m∈Z; (um, vm) = (u−m, v−m),

‖{(um, vm)}m∈Z‖2XF
=
∑
m∈Z

(1 +m2)2|(um, vm)|2 <∞
}

which is equivalent to Xp by the map P:

P(u, v) =

{
1

2L

∫ 2L

0

(u(t, x), v(t, x))e−imk0x dx

}
m∈Z

.

Throughout this paper, we consider the dynamical system (9) on a Fourier space
XF instead of the system (6) on Xp. It should be noted that bifurcation parameters
in (9) are k0, D2 and s.

2.3. Linear stability: Let us consider the linear stability about a trivial solution
again. The matrix Mm has a zero eigenvalue if and only if detMm = 0. Moreover,
the following holds:

Lemma 2.1. For given two positive integers j, `,( j 6= `) and constants D1, a, b, c, d,
the linearized eigenvalue problem of (9) about a trivial solution has strictly three zero

eigenvalues for m = 0, j and ` at (k0, D2, s) = (kj,`0 , Dj,`
2 , s∗), where

kj,`0 =

[
1

2dD1j2`2

{
∆(j2 + `2)−

√
∆2(j2 + `2)2 − 4ad∆j2`2

}]1/2
,

Dj,`
2 =

{dD1j
2(kj,`0 )2 −∆}

j2(kj,`0 )2{D1j2(kj,`0 )2 − a}
,

s∗ = −∆/d = −(ad− bc)/d.

Here we define the neutral stability curves. Solving detMm = 0 for D2, we have

D2 = D2(k0;m) :=
(dD1m

2k0
2 −∆)

m2k0
2(D1m2k0

2 − a)
.

We can define the neutral stability curves for m ∈ N as follows:

Cm := {(D2, k0) ∈ R2
+;D2 = D2(k0;m)}.

Lemma 2.1 provides us a general triple degeneracy of 0:j:` -mode interaction
(j, ` ∈ N). And it is easy to see that this yields a triple degeneracy of 0:1:2-mode
interaction by choosing j = 1 and ` = 2. We are going to focus on this case
since the normal form has cubic resonance terms. We would like to study the
dynamics around 0:1:2-degenerate point, especially, oscillatory dynamics around
1-mode stationary solutions.

2.4. Normal form in the presence of 0:1:2 resonance: Let us derive the nor-
mal form on the center manifolds around the triply degenerate point (k1,20 , D1,2

2 , s∗)
of (4). Here we apply the standard theory of center manifold reduction (for instance,
see [2, 15]).
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2.4.1. Diagonalization: To apply the center manifold theory, we diagonalize the
equations in (9) for m = 0, 1 and 2. Set (k0, D2, s) = (k1,20 , D1,2

2 , s∗). Then changing
variables t(um, vm) = Tm

t(ũm, ṽm), (m = 0, 1, 2) by the matrix

T0 =

(
−d bc/d
c c

)
, Tm =

(
−d+D2m

2k20 a−D1m
2k20

c c

)
,m = 1, 2,

we have (
˙̃um
˙̃vm

)
=

(
0 0
0 µ−m

)(
ũm
ṽm

)
+ T−1m

(
f̃m
g̃m

)
,m = 0, 1, 2.

Here,

µ−0 := d+ bc/d,

µ−m := (a+ d)−m2(D1 +D1,2
2 )(k1,20 )2,

f̃m := fm|t(umj
,vmj

)=Tm
t(ũmj

,ṽmj
),

g̃m := gm|t(umj
,vmj

)=Tm
t(ũmj

,ṽmj
).

2.4.2. Center manifold reduction: Let

ρ := (k1,20 , D1,2
2 , s∗)− (k0, D2, s),

µ+
m :=

{
tr Mm +

√
(tr Mm)2 − 4 detMm

}
/2.

We define a neighborhood Uε of XF × R3:

Uε :=
{

({(um, vm)}m∈Z, ρ) ∈ XF × R3; ||{(um, vm)}m∈Z||XF
+ |ρ| < ε

}
.

Then we have the following theorem.

Theorem 2.2. For given constants a, b, c, d,D1, there exists a positive constant ε
such that the local center manifold Wc

loc of (9) is contained in Uε. Moreover, the
dynamics of (9) on the manifold Wc

loc is governed by the following system:
ż0 = (µ+

0 + a1z
2
0 + a2z

2
1 + a3z

2
2)z0 + a4z

2
1z2 + o(3),

ż1 = (µ+
1 + b1z

2
0 + b2z

2
1 + b3z

2
2)z1 + b4z0z1z2 + o(3),

ż2 = (µ+
2 + c1z

2
0 + c2z

2
1 + c3z

2
2)z2 + c4z0z

2
1 + o(3).

(10)

Here, zj(t) ∈ R denote ũj(t) (j = 0, 1, 2), and o(3) denotes o(|(z0, z1, z2)|3). In ad-
dition, the coefficients µ+

j , aj , bj , cj are dependent on the coefficients and parameters

appearing in (9).

Proof. The first statement of the theorem follows from standard center manifold
theory. It also states that for m 6= 0, 1, 2, there exist functions

hum(ũ0, ũ1, ũ2; ρ),m ≥ 3,

hvm(ũ0, ũ1, ũ2; ρ), m ≥ 0,

satisfying

∂hum
∂ũj

(0, 0, 0; 0) =
∂hvm
∂ũj

(0, 0, 0; 0) = 0, (j = 0, 1, 2)

and

∂hum
∂ρ

(0, 0, 0; 0) =
∂hvm
∂ρ

(0, 0, 0; 0) = 0
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such that the local invariant manifold Wc
loc is expressed by

Wc
loc =

{
{(ũ`, ṽ`), (um, vm)}|`|≤2, |m|≥3 ∈ XF ; ṽ` = hv` (ũ0, ũ1, ũ2; ρ),

(um, vm) = (hum(ũ0, ũ1, ũ2; ρ), hvm(ũ0, ũ1, ũ2; ρ)), |`| ≤ 2, |m| ≥ 3
}
.

By the simple computation, if |(ũ0, ũ1, ũ2; ρ)| < ε then hum = hvm = o(ε3). Then,
the cubic truncated equations for ũm, (m = 0, 1, 2) are given by the following:

˙̃u0 = µ+
0 ũ0 −

1

µ−0

{
f̃0 −

b

d
g̃0

}
,

˙̃um = µ+
mũm −

1

cµ−m
{cf̃m + (−a+D1m

2(k1,20 )2)g̃m},m = 1, 2,

where

f̃m :=
∑

m1+m2+m3=m

mj∈{0,±1,±2}

(f30Bm1Bm2Bm3 ũm1 ũm2 ũm3

+cf21Bm1Bm2 ũm1 ũm2 ũm3 + c2f12Bm1 ũm1 ũm2 ũm3 + c3f03ũm1 ũm2 ũm3)

and

g̃m :=
∑

m1+m2+m3=m

mj∈{0,±1,±2}

(g30Bm1
Bm2

Bm3
ũm1

ũm2
ũm3

+cg21Bm1
Bm2

ũm1
ũm2

ũm3
+ c2g12Bm1

ũm1
ũm2

ũm3
+ c3g03ũm1

ũm2
ũm3

).

Here, Bj = −d + j2D1,2
2 (k1,20 )2. This gives the cubic truncated system (10). We

show the explicit form of coefficients in Appendix B.

3. Existence and stability of equilibria. Let us consider the third order trun-
cated system of (10): ż0 = (µ0 + a1z

2
0 + a2z

2
1 + a3z

2
2)z0 + a4z

2
1z2,

ż1 = (µ1 + b1z
2
0 + b2z

2
1 + b3z

2
2)z1 + b4z0z1z2,

ż2 = (µ2 + c1z
2
0 + c2z

2
1 + c3z

2
2)z2 + c4z0z

2
1 ,

(11)

where

µm = µ+
m (m = 0, 1, 2)

for simplicity. Now we introduce a scale-invariance property of (11):

3.1. Scale-invariance of the normal form: The system (11) is invariant under
the scaling:

z̃j = ηzj , µ̃j = η2µj , t̃ = η2t, ∀η ∈ R. (12)

Therefore, if

z(t;µ0, µ1, µ2, z(0)) := (z0, z1, z2)(t;µ0, µ1, µ2, z0(0), z1(0), z2(0))

is a solution to (11) , then

(z̃0, z̃1, z̃2)(t̃; µ̃0, µ̃1, µ̃2, z̃(0)) = ηz(η2t; η2µ0, η
2µ1, η

2µ2, ηz(0))

is also a solution to (11). Then, the following hold:
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• Let us consider the system (11) with higher order terms O(|(z0, z1, z2)|5).
Using (12), it becomes

z̃′j = µ̃j z̃j + fj(z̃0, z̃1, z̃2; µ̃j) + η2O(|(z̃0, z̃1, z̃2)|5). (13)

Here fj are cubic terms in (11). Taking η → 0, the higher order terms vanish;
• Let z(t;µ0, µ1, µ2) = (z0, z1, z2)(t;µ0, µ1, µ2) (t̃ ∈ (0, η2T ]) be a solution of

(11). Then, there exists a similar solution of (11):

z̃(t̃; µ̃0, µ̃1, µ̃2) = ηz(η2t; η2µ0, η
2µ1, η

2µ2), t ∈ (0, T ].

This implies that we can obtain a small amplitude solution from a (large
amplitude) solution by taking η sufficiently small.

Let us seek the equilibria of (11) , and study the stabilities of them with the
assumptions:

µ0 ∈ R, aj 6= 0, bj 6= 0 and cj 6= 0.

Notice that µj (j = 1, 2) are real by the assumption (A3).

3.2. Existence of pure mode solutions: By the simple computation, we obtain
the following theorem:

Theorem 3.1. If µ0a1 < 0, µ1b2 < 0, µ2c3 < 0 then the system (11) has equilibria

±e0 := ±(
√
−µ0/a1, 0, 0), ±e1 := ±(

√
−µ1/b2, 0, 0), ±e2 := ±(0, 0,

√
−µ2/c3),

respectively. Moreover, these equilibria ±e` correspond to the pure mode stationary
solutions of (4):

u(x) = U`(x) := ±2C`

B`
cos
(
`
π

L
x
)

+ o(ε3),

v(x) = V`(x) := ±2C`

c
cos
(
`
π

L
x
)

+ o(ε3),

where

C` =


√
−µ0/a1, ` = 0,√
−µ1/b2, ` = 1,√
−µ2/c3, ` = 2.

We call the solutions (U`(x), V`(x)) “`-mode stationary solution (or `-mode solu-
tion)”. It is obvious that equilibria ±ej , (j = 0, 1, 2) appear through the pitchfork
bifurcation from the trivial solution at µj = 0. It is quite a contrast to the case of
[1] that the equilibria ±e1 corresponding to 1-mode stationary solution of (4) exist
in our case.

Remark. Even though the equilibria ±e0 correspond to the spatially uniform so-
lutions of (4), we call them “pure mode solutions”.

By the simple computation, we have the following:
(i) Linearized eigenvalues about ±e0 are

−2µ0, µ1 − b1µ0/a1, µ2 − µ0c1/a1;

(ii) Linearized eigenvalues about ±e2 are

µ0 − a3µ2/c2, µ1 − µ2b3/c2, −2µ2;
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(iii) Linearized matrix of ±e1 is given by

M±e1 :=


µ0 −

a2
b2
µ1 0

−a4
b2

µ1

0 −2µ1 0

−c4
b2
µ1 0 µ2 −

c2
b2
µ1

 .

3.2.1. Hopf instability of ±e1: Now we put

M̃±e1 :=

(
(M±e1)11 (M±e1)13
(M±e1)31 (M±e1)33

)
=

 µ0 −
a2
b2
µ1

−a4
b2

µ1

−c4
b2
µ1 µ2 −

c2
b2
µ1

 .

If tr M̃±e1 = 0 and det M̃±e1 > 0 hold, then the matrix M±e1 has a pair of purely
imaginary eigenvalues. That is, the following holds:

Lemma 3.2. The linearized matrix M±e1 of equilibria ±e1 has a pair of purely
imaginary eigenvalues at µ2 = −µ0 +µ1(a2 +c2)/b2 if and only if (µ0−µ1a2/b2)2 +
µ2
1a4c4/b

2
2 < 0 holds.

We consider the existence of periodic solutions by constructing a center manifold
around ±e1 in the latter section. Here we note that the condition a4c4 < 0 is
necessary for the Hopf instability around ±e1.

3.3. Existence of doubly mixed mode solutions:

Theorem 3.3. If (a3µ2−c3µ0)(a1c3−c1a3) > 0 and (c1µ0−a1µ2)(a1c3−a3c1) > 0,
then the system (11) has equilibria

(z0, z1, z2) = ±(z∗0 , 0, z
∗
2) and (z0, z1, z2) = ±(z∗0 , 0,−z∗2),

where

z∗0 :=

√
a3µ2 − c3µ0

a1c3 − c1a3
and z∗2 :=

√
c1µ0 − a1µ2

a1c3 − a3c1
.

Now we define

e+02 := (z∗0 , 0, z
∗
2) and e−02 := (z∗0 , 0,−z∗2).

They correspond to doubly mixed mode stationary solutions of (4):

u(x) = ±2

[
z∗0
B0
± z∗2
B2

cos

(
2π

L
x

)]
+ o(ε3),

v(x) = ±2

c

[
z∗0 ± z∗2 cos

(
2π

L
x

)]
+ o(ε3).

Since it is easy to prove this theorem, we omit the proof. Let us study the
stability of ±e±02. Linearized matrix around them is given by 2a1(z∗0)2 0 2a3z

∗
0z
∗
2

0 µ1 + b1(z∗0)2 + b3(z∗2)2 + b4z
∗
0z
∗
2 0

2c1z
∗
0z
∗
2 0 2c3(z∗2)2

 .

Though it is hard to determine the stability of ±e±02 in general, we can obtain the
following sufficient condition.
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3.3.1. Hopf instability of doubly mixed mode solutions:

Lemma 3.4. If there exist constants µ0, µ2 such that a3µ2 − c3µ0 > 0 and c1µ0 −
a1µ2 > 0 hold at

µ2 =
a1c3 + c1c3
a1a3 + c3a1

µ0.

Then the linearized matrix around ±e±02 has a pair of purely imaginary eigenvalues
if and only if a1c3 − c1a3 > 0 holds.
Proof. One of the linearized eigenvalue about ±e±02 is

µ1 + b1(z∗0)2 + b3(z∗2)2 + b4z
∗
0z
∗
2

and the others are given by the eigenvalues of matrix:(
2a1(z∗0)2 2a3z

∗
0z
∗
2

2c1z
∗
0z
∗
2 2c3(z∗2)2

)
.

It has purely imaginary eigenvalues if and only if

4(a1c3 − a3c1)(z∗0z
∗
2)2 > 0 and a1(z∗0)2 + c3(z∗2)2 = 0.

Moreover, solving a1(z∗0)2 + c3(z∗2)2 = 0 for µ2, we have

µ2 =
a1c3 + c1c3
a1a3 + c3a1

µ0.

This completes the proof.

3.4. Existence of triply mixed mode solutions: The triply mixed mode equi-
libria of (11) are given by the roots of

µ0 + a1z
2
0 + a2z

2
1 + a3z

2
2 + a4

z21z2
z0

= 0,

µ1 + b1z
2
0 + b2z

2
1 + b3z

2
2 + b4z0z2 = 0,

µ2 + c1z
2
0 + c2z

2
1 + c3z

2
2 + c4

z0z
2
1

z2
= 0.

(14)

We also note that if (z0∗, z1∗, z2∗) satisfying

z0∗ 6= 0, z1∗ 6= 0 and z2∗ 6= 0

is an equilibrium, then it correspond to the triply mixed mode stationary solution
of (4):

u(x) = 2

[
z0∗
B0

+
z1∗
B1

cos
(π
L
x
)

+
z2∗
B2

cos

(
2π

L
x

)]
+ o(ε3),

v(x) =
2

c

[
z0∗ + z1∗ cos

(π
L
x
)

+ z2∗ cos

(
2π

L
x

)]
+ o(ε3).

To study the dynamics around this equilibrium, we reduce the system (11) to the
system on R2. Now we put

ρ1 := (µ1, µ2)− (b1µ0/a1, c1µ0/a1),

zp0 :=
√
−µ0/a1,

ξ0(t) := z0(t)− zp0.

Then we have the following lemma.
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Lemma 3.5. There exists a positive constant ε1 such that if

|(ξ0, z1, z2)|+ |ρ1| < ε1

then there exists a function h0(z1, z2; ρ1) satisfying

h0(0, 0; 0) =
∂h0
∂zj

(0, 0; 0) =
∂h0
∂ρ1

(0, 0; 0) = 0

such that the center manifold of (11) is represented as

Wc
0 := {(z0, z1, z2) ∈ R3; z0 = zp0 + h0(z1, z2; ρ1)}.

Moreover, the dynamics of (11) on the center manifold is locally equivalent to
the dynamics of the following system:{

ż1 = P1(zp0 + h0(z1, z2), z1, z2) + o(|(z1, z2)|3),
ż2 = P2(zp0 + h0(z1, z2), z1, z2) + o(|(z1, z2)|3),

(15)

where

P1(z0, z1, z2) := (µ1 + b1z
2
0 + b2z

2
1 + b3z

2
2)z1 + b4z0z1z2,

P2(z0, z1, z2) := (µ2 + c1z
2
0 + c2z

2
1 + c3z

2
2)z2 + c4z0z

2
1 .

This lemma immediately follows from the center manifold reduction to the system
(11) around e0. In addition, the system (11) is invariant under the mapping:

(z0, z1, z2)→ (−z0, z1,−z2).

This yields that the center manifold about −e0 is represented as

{(z0, z1, z2) ∈ R3; z0 = −zp0 − h0(z1,−z2; ρ1)}.
Therefore, if (z1(t), z2(t)) is a solution to (15) then

(−zp0 − h0(z1(t),−z2(t); ρ1), z1(t),−z2(t))

is a solution to (11) near −e0. We also have the following Lemma.

Lemma 3.6.
(i) : If c1 < 0 then the center manifold Wc

0 is locally attractive;
(ii) : If c1 > 0 then the center manifold Wc

0 is unstable.
Proof. Since if c1 < 0 (resp. c1 > 0) then ±e0 exist if and only if µ0 > 0 (resp.
µ0 < 0). That is, linearized matrix about ±e0 has two zero eigenvalues and a
negative (resp. positive) eigenvalue: −2µ0.

It should be noted that the solutions to system (15) correspond to the solutions
to (11) in the case when

|ρ1| = |(µ1, µ2)− (b1µ0/a1, c1µ0/a1)| < 2|µ0|
and

z0(t) = zp0 +O(z1(t)2 + z2(t)2).

We also note that if system (15) has an equilibrium (z1∗, z2∗) with z1∗ 6= 0 and
z2∗ 6= 0, then it correspond to the triply mixed mode equilibrium of (11).

Let us compute the approximation of h0(z1, z2; ρ). The functions (ξ0(t), z1(t),
z2(t)) satisfies the following equations: ξ̇0 = −2µ0ξ0 + (3a1ξ

2
0 + a2z

2
1 + a3z

2
2)zp0 + (a1ξ

2
0 + a2z

2
1 + a3z

2
2)ξ0 + a4z

2
1z2,

ż1 = µ̃1z1 + (2b1z1ξ0 + b4z1z2)zp0 + (b1ξ
2
0 + b2z

2
1 + b3z

2
2)z1 + b4ξ0z1z2,

ż2 = µ̃2 + (2c1ξ0z2 + c4z
2
1)zp0 + (c1ξ

2
0 + c2z

2
1 + c3z

2
2)z2 + c4ξ0z

2
1 .

(16)
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Here µ̃1 := µ1 − b1µ0/a1 and µ̃2 := µ2 − c1µ0/a1. Then, the graph of h0(z1, z2; ρ1)
satisfies the following equation:

∂h0
∂z1

ż1 +
∂h0
∂z2

ż2 = −2µ0h0(z1, z2; ρ1) + a2(z21 + a3z
2
2)zp0

+ 3zp0a1(h0(z1, z2; ρ1))2 + · · · .

This yields

h(z1, z2) =
−zp0
2µ0

(a2z
2
1 + a3z

2
2) + o(ε21).

Thus, the dynamics on the center manifold Wc
0 of (11) can be approximated by the

following system: {
ż1 = µ1z1 + d10z1z2 + (d11z

2
1 + d12z

2
2)z1,

ż2 = µ2z2 + d20z
2
1 + (d21z

2
1 + d22z

2
2)z2,

(17)

where µj = µ̃j and

d10 := b4
√
−µ0/a1, d11 :=

(
b2 −

a2b1
a1

)
, d12 :=

(
b3 −

a3b1
a1

)
,

d20 := c4
√
−µ0/a1, d21 :=

(
c2 −

a2c1
a1

)
, d22 :=

(
c3 −

a3c1
a1

)
.

This is a typical case of 1:2 resonance with O(2) symmetries (for instance, see
[1, 6, 7] ) restricted to the real subspace.

Remark. If (u∗, v∗) is a non-zero spatially uniform steady state of (4), then by
changing variables (ũ, ṽ) = (u, v) − (u∗, v∗), we can obtain a reaction-diffusion
system which has quadratic nonlinearity, and moreover, it yields a normal form
with 1:2 resonance. However, for the sake of simplicity, we consider the system (17)
to compute existence and stability of mixed mode solutions.

Let us solve the stationary problem of (17). Using the scaling

zj = ηz̃j , µj = η2µ̃j , t = ηt̃

and drop the tildes, we have

d10z1z2 + η(µ1 + d11z
2
1 + d12z

2
2)z1 = 0, (18)

d20z
2
1 + η(µ2 + d21z

2
1 + d22z

2
2)z2 = 0. (19)

Then we obtain

z21 =
−1

d11
(µ1 + d12z

2
2)− d10

ηd11
z2. (20)

Substituting (20) into (19) and using the power series method:

z2 = ηz
(1)
2 + η2z

(2)
2 + η3z

(3)
2 + · · · ,

we obtain

z2 = − µ1

d10
η − µ1(d11d10µ2 + d20d12µ1)

d20d103
η3 + o(η3)

and

z21 =
µ1µ2

d20d10
η2 −

(
2d12µ

2
1µ2

d310d
3
20

+
2d212µ

3
1

d11d410

)
η3 + o(η3).
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This implies that if µ1µ2d20d10 > 0 then the triply mixed mode equilibrium exists for
small η. Further calculation gives the linearized eigenvalues about these equilibria
as follows: (

µ2

2
±
√
µ2
2 + 2µ1µ2

)
η + o(η).

3.4.1. Hopf instability of triply mixed mode solutions: Here we consider the Hopf
instability around the equilibria. Suppose that (z1∗, z2∗), ( z1∗ 6= 0 and z2∗ 6= 0) is
an equilibrium of (17), and M is a linearized matrix around (z1∗, z2∗). Then, the
matrixM has purely imaginary eigenvalues if and only if detM > 0 and traceM = 0
hold. Solving the stationary problem of (17) with z1 = ρz2, (ρ ∈ R) and traceM = 0
for (z1, z2, µ1, µ2), we have

z2 = z2∗ :=
ρ2d20

2(d11 + d22)
,

z1 = z1∗ := ρz2∗

and the bifurcation point is

µ1 = µ1∗ := −ρ
2d20{2d10(ρ2d11 + d22) + ρ2d20(ρ2d11 + d12)}

4(ρ2d11 + d22)2
,

µ2 = µ2∗ := −ρ
4d220(2ρ2d11 + 3d22 + ρ2d21)

4(ρ2d11 + d22)2
.

Thus, if detM > 0 at (µ1, µ2, z1, z2) = (µ1∗, µ2∗, z1∗, z2∗), then the matrix M has
a pair of purely imaginary eigenvalues at the point.

4. Existence of time-periodic solutions around the 1-mode stationary so-
lutions . Let us compute the normal form for the Hopf bifurcation around e1 in
the case of

tr M̃±e1 = 0 and det M̃±e1 > 0.

More precisely,

µ2 = −µ0 + µ1(a2 + c2)/b2 and (µ0 − µ1a2/b2)2 + µ2
1a4c4/b

2
2 < 0.

Now we put

ξ1 = z − zp1, zp1 =
√
−µ1/b2,

and introduce a new parameter ρ2 satisfying

2ρ2 = (µ2 + µ0 + (a2 + c2)z2p1) = tr M̃±e1

as follows: ξ̇1
ż0
ż2

 =

 −2µ1 0 0
0 µ0 + a2z

2
p1 + ρ2 a4z

2
p1

0 c4z
2
p1 −µ0 − a2z2p1 + ρ2

 ξ1
z0
z2


+

 N1(z0, ξ1, z2)
N0(z0, ξ1, z2)
N2(z0, ξ1, z2)

 , (21)

where Nj(z0, ξ1, z2) are higher order terms. Let

~v =

(
v11
v21

)
+ i

(
v21
v22

)
, (vjk ∈ R)
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be an eigenvector corresponding to an eigenvalue of M̃±e1 :

ρ2 + i

√
−ρ22 + det M̃±e1 .

The system (21) can be diagonalized by the following:(
ξ0
ξ2

)
= T−1

(
z0
z2

)
, T =

(
v11 v12
v21 v22

)
.

It should be noted that the matrix T = T (ρ2) satisfies the following

T (0) =

(
ν ω

c4z
2
p1 0

)
.

where

ν = µ0 + a2z
2
p1

ω2 = −ν2 − a4c4z4p1.

Here we note that ω =
√
−ν2 − a4c4z4p1 is a real value. The system of the new

variables ξj is given by the following: ξ̇1
ξ̇0
ξ̇2

 =

 −2µ1 0 0
0 0 ω
0 −ω 0

 ξ1
ξ0
ξ2

+

 Ñ1(ξ0, ξ1, ξ2)

ρ2ξ0 + Ñ0(ξ0, ξ1, ξ2)

ρ2ξ2 + Ñ2(ξ0, ξ1, ξ2)

 , (22)

where

Ñ1(ξ0, ξ1, ξ2) = N1(νξ0 + ωξ2, ξ1, c4z
2
p1ξ0),(

Ñ0(ξ0, ξ1, ξ2)

Ñ2(ξ0, ξ1, ξ2)

)
= T−1

(
N0(νξ0 + ωξ2, ξ1, c4z

2
p1ξ0)

N2((νξ0 + ωξ2, ξ1, c4z
2
p1ξ0)

)
.

Then we can apply the center manifold theory for (22).

Lemma 4.1. There exists a positive constant ε2 such that if

|(ξ0, ξ1, ξ2)|+ |ρ2| < ε2,

then, there exists a function h1(ξ0, ξ2; ρ2) satisfying

h1(0, 0; 0) =
∂h1
∂ξj

(0, 0; 0) =
∂h1
∂ρ2

(0, 0; 0) = 0, (j = 0, 2)

such that the center manifold of (22) is represented as

Wc
1 := {(ξ0, ξ1, ξ2) ∈ R3; ξ1 = h1(ξ0, ξ2; ρ2)}.

Moreover, the dynamics of (22) on Wc
1 is locally equivalent to the dynamics of(

ξ̇0
ξ̇2

)
=

(
ρ2 ω
−ω ρ2

)(
ξ0
ξ2

)
+

(
Ñ0(ξ0, h1(ξ0, ξ2; ρ2), ξ2)

Ñ2(ξ0, h1(ξ0, ξ2; ρ2), ξ2)

)
.
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4.1. Approximation of h1. Let us compute the approximation of h1. Differenti-
ating ξ1(t) = h1(ξ0(t), ξ2(t); ρ2) with respect to t, we have

−2µ1h1(ξ0, ξ2) + Ñ1(ξ0, ξ2) = ωξ2
∂h1
∂xi0

(ξ0, ξ2) +
∂h1
∂ξ2

(ξ0, ξ2).

Substituting h1 = γ20ξ
2
0 +γ11ξ0ξ2 +γ02ξ

2
2 , and equating quadratic terms, we obtain

γ20 =
−1

4b2zp1(ω2 + b22z
4
p1)

(−2b2z
2
p1b1ω

2ν − b2z4p1b4ω2c4 + ω4b1

+ω2b3c
2
4z

4
p1 + ω2c4νb4z

2
p1 + ω2b1ν

2 + 2b22z
4
p1b1ν

2

+2b22z
8
p1b3c

2
4 + 2b22z

6
p1c4νb4),

γ11 =
−ωzp1

2(ω2 + b22z
4
p1)

(b3c
2
4z

4
p1 + c4νb4z

2
p1 + 2b2z

2
p1b1ν + b2z

4
p1b4c4 − ω2b1 + b1ν

2),

γ02 =
−ω2

4b2zp1(ω2 + b22z
4
p1)

(b3c
2
4z

4
p1 + c4νb4z

2
p1 + 2b2z

2
p1b1ν

+b2z
4
p1b4c4 + ω2b1 + b1ν

2 + 2b22z
4
p1b1).

Then the dynamics of (22) on the center manifold Wc
1 is approximated by the

dynamics of the following:(
ξ̇0
ξ̇2

)
=

(
ρ2 ω
−ω ρ2

)(
ξ0
ξ2

)
+

(
Ñ0(ξ0, h1(ξ0, ξ2), ξ2)

Ñ2(ξ0, h1(ξ0, ξ2), ξ2)

)
. (23)

4.2. Normal form for the Hopf bifurcation around 1-mode solutions. Fi-
nally, we obtain the following result:

Lemma 4.2. The system (23) can be transformed by a parameter-dependent change
of complex coordinate and a nonlinear time re-parameterization, into a single equa-
tion of the form

dz

dτ
= (β + i)z + ς|z|2z + o(|z|3), (24)

where z and τ are a new complex coordinate and a new time, respectively, and β is
a new parameter satisfying dβ/dρ2 = 0 at ρ2 = 0, and moreover, ς is given by the
following:

ς = sign
[ 1

2c4z2p1
(2c4z

2
p1c1ω

2 + 6c4z
2
p1c1ν

2 + 12c4z
3
p1c2γ20

+4c4z
3
p1c2γ02 + 6c34z

6
p1c3 + 12c4zp1νγ20 + 4c4zp1νγ02 + 4c4zp1ωγ11)

+
1

zp1ω
(3zp1a1ω

3 + 3zp1ωa1ν
2 + 2ωa2z

2
p1γ20 + 6ωa2z

2
p1γ02 (25)

+ωa3c
2
4z

5
p1 + 2νa2z

2
p1γ11 + 2a4z

4
p1c4γ11

−2zp1c1ων
2 − 2νz2p1c2γ11 − 2νωγ20 − 6νωγ02 − 2ν2γ11)

]
.

The constants in the general normal form (24) are depend on a parameter µ0 even
though µ1 fixed so that the equilibria ±e1 exist. This implies that the stabilities of
the periodic solutions around ±e1 are dependent on the parameters. Now it should
be noted that if we consider the case when

(µ0, µ2) = (a2µ1/b2, c2µ1/b2), (26)
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then the constant ς is independent of the parameters νj , and (sign of ) it can be
simply determined. In fact, µ0 = a2µ1/b2 yields ν = 0, and ς is computed as follows:

ς = sign
[
a24(3P1 + P2)− a4c4(P3 + 3P4)

]
, (27)

where

P1 =
1

2b2(a4c4 − b22)
(2a1b2c4a4 − 2a1b

3
2 − a2c4a4b1

+a2c4b4b2 + a2c
2
4b3 + 2a2b1b

2
2),

P2 =
1

2b2(a4c4 − b22)
(−2c1b

3
2 + 2c1b2c4a4 − c2c4a4b1 + c2c4b4b2

+c2c
2
4b3 + 2c2b1b

2
2 + 2b2c4a4b1 + 2b22c4b4 + 2c24b3),

P3 = − 1

2b2(a4c4 − b22)
(a2a

2
4b1 + a2a4b4b2 − a2a4c4b3 + 2a2b3b

2
2

+2a3b
3
2 − 2a3b2c4a4 − 2b2a

2
4b1 − 2b22a4b4 − 2b2a4c4b3),

P4 = − 1

2b2(a4c4 − b22)
(c2a

2
4b1 + c2a4b4b2

−c2a4c4b3 + 2c2b3b
2
2 + 2c3b

3
2 − 2c3b2c4a4).

The proof of Lemma 4.2 is obtained directly by applying the elementary normal
form transformation for the Hopf bifurcation to (23) (see Lemma 3.3–3.7 in [8]).
We give the proof in the appendix A.

Let us summarize the obtained results by the following theorem which is the
main results of this paper.

Theorem 4.3.
Consider the system (4) with assumptions (A1) – (A4). Take the parameters in
(4) so that the 1-mode stationary solutions: ±(U1(x), V1(x)) obtained in theorem 2
exist. Then, the following hold:

(i) If (µ0 − µ1a2/b2)2 + a4c4 < 0 (µj, aj, b2 and c4 are coefficients of (11) ) and if
ς 6= 0 (ς is given in (26)), then the system (4) has time periodic solutions bifurcated
from 1-mode stationary solutions through the Hopf bifurcation;

(ii) The time periodic solutions obtained in (i) are locally asymptotically stable if
and only if b2 < 0 and ς = −1.

Remark. If a2 > 0 and the same hypotheses in Theorem 4.3 hold, then the
time periodic solutions around 1-mode stationary solutions exist even though the
eigenvalues corresponding to the spatially uniform eigenfunction ( 0-mode ) are
negative.

4.3. Numerical results: Here we present the numerical results to (4) correspond-
ing to the Hopf bifurcation studied in the previous subsection. Therefore, we focus
our attention on behaviors of solutions, especially, around the 1-mode stationary
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solutions corresponding to equilibria ±e1 of (11). Let us study the case when

D1 = 1/4, a = 1, b = −10, c = 2, d = −5,

F (u, v) = −u3 and G(u, v) = −0.9u3.
(28)

Then we have s∗ = 3 and

(k1,20 , D1,2
2 ) ≈ (0.87, 25.88).

The coefficients of the normal form (11) are listed as follows:

a1 ≈ 100.00, a2 ≈ 14644.17, a3 ≈ 1.69× 105, a4 ≈ 2.45× 105,
b1 ≈ −49.29, b2 ≈ −1203.01, b3 ≈ −27695.10, b4 ≈ −1652.32,
c1 ≈ −67.14, c2 ≈ −3277.22, c3 ≈ −18861.66, c4 ≈ −97.761.

(29)

It follows that a4c4 < 0 (one of the necessary conditions for the Hopf bifurcation
is satisfied). Now the special case (26) and the explicit form (27) is convenient to
determine the type of Hopf bifurcation (super, or sub critical) since it is indepen-
dent of the parameters. In the case (28), we can compute ς = −1 by using (27).
Therefore, time periodic solutions around 1-mode stationary solutions exist, and
moreover, they are locally asymptotically stable in this case (see Figure 2).

Let us see the numerical results to (4). Now we set

k0 = 0.857490 (⇔ L ≈ 3.663708), s = 2.978084.

Figure 2. Numerical results to the normal form (11) in the case
of (29) near a Hopf bifurcation point. The parameters are µ0 =
−0.609489, µ1 = 0.0052 and µ2 = 0.013621. [Left: Periodic orbits
of (z0(t), z1(t), z2(t)).] [Right: The graph of z0(t) (blue line), z1(t)
(green line) and z2(t) (blue line).]
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Figure 3. Numerical results for the reaction-diffusion system (4)
with D2 = 27.13 in the case of (28). The initial values are stable
1-mode stationary solutions at D2 = 27.0. [Above: The left and
right figures correspond to the graph of u(t, x) and v(t, x), (t ∈
[4500, 5000], x ∈ [0, L]), respectively.] [Below left: The graph of
‖(u, v)‖L2(t), t ∈ [4500, 5000]. Vertical axis : L2 norm of u, hori-
zontal axis: t.] [Below right: Graph of u0(t) (blue line), u1(t) (green
line) and u2(t) (blue line). uj(t) are j-th mode Fourier coefficients
of u(t, x)]

5. Hopf bifurcation phenomena around the other equilibria. In this section,
we compute the normal forms for the Hopf bifurcation around the equilibria: ±e±02
and triply mixed mode solutions of (11). Since the results in this section can be
obtained by the similar calculation in the previous section, we omit the proofs. It
should also be noted that the system (11) is invariant under the mappings:

(z0, z1, z2)→ −(z0, z1, z2) and (z0, z1, z2)→ (z0,−z1, z2).

This implies that if (z0(t), z1(t), z2(t)) is a solution of (11), then

−(z0(t), z1(t), z2(t)) and ± (z0(t),−z1(t), z2(t))

are also solutions of (11). Therefore, it is sufficient to consider the Hopf bifurcation
phenomena around the equilibrium (z1∗, z2∗) of (17), and around the equilibria e±02
of (11).

5.1. Hopf bifurcation around doubly mixed mode equilibria e±02: We show
the normal form around an equilibrium e+02 of (11). Here we assume that a1c3 −
c1a3 > 0. We put

ξ0(t) := z0(t)− z∗0 , ξ2(t) := z2(t)− z∗2 ,
ν1 := µ1 + b1(z∗0)2 + b3(z∗2)2 + b4z

∗
0z
∗
2 .

Then we have

ż = Az +N(z), (30)
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where

z = t(z1, ξ0, ξ2),

A =

 ν1 0 0
0 2a1(z∗0)2 2a3z

∗
0z
∗
2

0 2c1z
∗
0z
∗
2 2c3(z∗2)2

 ,

N(z) = t(N1(ξ0, z1, ξ2), N0(ξ0, z1, ξ2), N2(ξ0, z1, ξ2))

=

 ∑
j+`+m=2 βj`mξ0z1ξ2∑
j+`+m=2 αj`mξ0z1ξ2∑
j+`+m=2 γj`mξ0z1ξ2

+

 (b1ξ
2
0 + b2z

2
1 + b3ξ

2
2)z1 + b4ξ0z1ξ2

(a1ξ
2
0 + a2z

2
1 + a3ξ

2
2)ξ0 + a4z

2
1ξ2

(c1ξ
2
0 + c2z

2
1 + c3ξ

2
2)ξ2 + c4ξ0z

2
1

 .

Here,

α200 = 3a1z
∗
0 , α020 = a2z

∗
0 + a4z

∗
2 ,

α002 = a3z
∗
0 , α101 = 2a3z

∗
2 ,

α110 = α011 = 0,
β110 = 2b1z

∗
0 + b4z

∗
2 , β011 = 2b3z

∗
2 + b4z

∗
0 ,

β200 = β002 = β101 = 0,
γ200 = c1z

∗
2 , γ020 = c2z

∗
2 + c4z

∗
0 ,

γ002 = 3c3z
∗
2 , γ101 = 2c1z

∗
0 ,

γ110 = γ011 = 0.

Let us consider the case when a1(z∗0)2 + c3(z∗2)2 = 0. In this case, the system (30)
can be transformed to the following system:

˙̃z = Ãz̃ + T−1N(z̃), (31)

where

z̃ =t (z1, ξ̃0, ξ̃2) = T−1z,

Ã =

 ν1 0 0
0 0 ω
0 −ω 0

 , T =

 1 0 0
0 2a3z

∗
0z
∗
2 0

0 −2a1(z∗0)2 ω

 .

Here, ω := 2
√
a1c3 − a3c1|z∗0z∗2 | > 0. Then the following hold:

Lemma 5.1. There exists a positive constant ε3 such that if

|(ξ̃0, z1, ξ̃2)|+ |a1z∗0 + c3z
∗
2 | < ε3,

then there exists a function hz1(ξ̃0, ξ̃2) satisfying

hz1(0, 0) =
∂hz1
∂ξ̃j

(0, 0) = 0

such that the center manifold of (31) is represented as

Wc
2 := {(ξ̃0, ξ̃2) ∈ R2; z1 = hz1(ξ̃0, ξ̃2)}.

Moreover, there exists a constant δ satisfying |δ| < ε3 such that the dynamics of
(11) on Wc

2 is locally equivalent to the dynamics of the following system:(
˙̃
ξ0
˙̃
ξ2

)
=

(
δ ω
−ω δ

)(
ξ̃0
ξ̃2

)
+

(
N0(ξ̃0, hz1(ξ̃0, ξ̃2), ξ̃2)

N2(ξ̃0, hz1(ξ̃0, ξ̃2), ξ̃2)

)
. (32)
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Lemma 5.2.
(i) : If ν1 < 0 then the center manifold Wc

1 is locally attractive;
(ii) : If ν1 > 0 then the center manifold Wc

1 is unstable.

We can also compute the normal form around (ξ̃0, ξ̃2) = (0, 0). Here we present
the following results without proof.

Lemma 5.3. The system (32) can be transformed by a parameter-dependent change
of complex coordinate and a nonlinear time re-parameterization, into a single equa-
tion of the form

dz

dτ
= (β + i)z + ς4|z|2z + o(|z|3), (33)

where z and τ are a new complex coordinate and the new time, respectively, and
β = β(δ) is a new parameter satisfying β(0) = 0 and ∂β/∂δ 6= 0 at δ = 0, and
moreover, ς4 is given by the following:

ς4 := sign

[
Re

{
−g20g11(2λ̄+ λ)

2|λ|2
− |g11|

λ̄
+

|g02|2

2(λ− 2λ̄)
+
g21
2

}]
, (34)

where λ denotes iω, and

g20 =
−1

ω2a3z∗0z
∗
2

[(ω + 2ia1(z∗0)2)(−α200 + α002 − iα101)

+2a3z
∗
0z
∗
2(−iγ200 + iγ002 + γ101)],

g11 =
1

ω2a3z∗0z
∗
2

[(ω + 2ia1(z∗0)2)(α200 + α002) + 2ia3z
∗
0z
∗
2(γ200 + γ002)],

g02 =
−1

ω2a3z∗0z
∗
2

[(ω + 2ia1(z∗0)2)(−α200 + α002 + iα101)

+2a3z
∗
0z
∗
2(−iγ200 + iγ002 − γ101)],

g21 =
1

ω3a3z∗0z
∗
2

[(ω + 2ia1(z∗0)2)(3a1 + a3) + 2ia3z
∗
0z
∗
2(3c1 + c3)].

We can conclude that the system (4) has a time periodic solution bifurcated from
a doubly mixed mode solution corresponding to the equilibrium (z∗0 , 0, z

∗
2) of (11),

moreover, it is locally asymptotically stable if and only if ν1 < 0 and ς4 = −1.
Replacing (z∗0 , z

∗
2) with ±(z∗0 ,−z∗2)( or −(z∗0 , z

∗
2) ), a constant ς4 in the normal form

is computable for the all doubly mixed mode solutions: (z0, z1, z2) = ±e±02.

5.2. Hopf bifurcation around the triply mixed mode solutions: We also
consider the Hopf bifurcation phenomena around the equilibrium (z1∗, z2∗) of (17).
The corresponding triply mixed mode stationary solution of (11) is

(z0, z1, z2) = (h0(z1∗, z2∗), z1∗, z2∗).

Putting

z̃1 = z1 − z1∗, z̃2 = z2 − z2∗,
the system (17) can be transformed to the system

˙̃z1 =
∑

j+`≤3

αj`z̃
j
1z̃

`
2,

˙̃z2 =
∑

j+`≤3

βj`z̃
j
1z̃

`
2,

(35)
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where

α10 = µ1 + d10z2∗ + 3d11z1∗ + d12z2∗, α01 = d10z1∗ + 2d12z1∗z2∗,
α20 = 3d11z1∗, α11 = d10 + d12(2z2∗ + 1)z1∗z2∗,
α02 = d12z2∗, α30 = d11,
α12 = d12, α21 = α03 = 0,

β10 = 2d20z1∗ + 2d21z1∗z2∗, β01 = µ2 + 3d22z2∗ + d21z1∗,
β20 = d20 + d21z2∗, β11 = 2d21z1∗,
β02 = 3d22z2∗, β21 = d21,
β03 = d22, β12 = β30 = 0.

We consider the case when α10 and β01 are small, that is,

µ1 ≈ −(d10z2∗ + 3d11z1∗ + d12z2∗), µ2 ≈ −(3d22z2∗ + d21z1∗).

Let ω =
√
−α01β10 and λ = iω. We have similarly the following lemma.

Lemma 5.4. The system (35) can be transformed by a parameter-dependent change
of complex coordinate and a nonlinear time re-parameterization, into a single equa-
tion of the form

dz

dτ
= (β + i)z + ς5|z|2z + o(|z|3), (36)

where z and τ are a new complex coordinate and a new time, respectively, and β =
β(α10, β01) is a new parameter satisfying β(0, 0) = 0 and ∂β/∂α10 6= 0, ∂β/∂β01 6=
0 at α10 = β01 = 0, and moreover, ς5 is given by the following:

ς5 := sign

[
Re

{
−g20g11(2λ̄+ λ)

2|λ|2
− |g11|

λ̄
+

|g02|2

2(λ− 2λ̄)
+
g21
2

}]
. (37)

Here,

g20 = (α20α01 + iωα11 + iβ10α02)− i
(
β20α

2
01/ω + iβ11α01 − iωβ02

)
,

g11 = (α20α01 − β10α02)− i(β20α2
01/ω + iωβ02),

g02 = (α02α01 − iωα11 + iβ10α02)− i(β02α2
01/ω − iα01β11 − iωβ02),

g21 = 3α30α
2
01 + iα21α01ω + α12ω

2 − 3iα03β10ω

−i(3β30α3
01/ω + iβ21α

2
01 + β12α01ω + 3iβ03ω

2).

It should be noted that the time periodic-solutions to (4) bifurcated from triply
mixed mode solutions are asymptotically locally stable if and only if a2 < 0 and
ς5 = −1.

Remark. Since |zj∗| < ε1, (j = 1, 2) is assumed, we have

α01 = d10z1∗ +O(ε21), β10 = 2d20z1∗ +O(ε21).

This implies that

sign{d10d20} = sign{c4b4} = −1

is necessary to the Hopf bifurcation phenomena around triply mixed mode solutions
for small ε1.
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6. Numerical studies to chaotic dynamics in the normal form. We have
shown the normal forms with 0:1:2 resonance with odd symmetry in reaction terms
F and G. They give us the existence and stability of spatially non-uniform station-
ary solutions, and time periodic solutions in (4). We would also like to introduce
chaotic behaviors in another set of parameter values. We only consider the normal
form in the case of (11) throughout this section.

6.1. Results of numerical studies to the normal form. Let us see numerical
results. We can observe complex oscillatory dynamics in the normal form (11) (see
Figure 4 – 7 and Table 1). They suggest that there is a homoclinic orbit which
connect a triply mixed mode fixed point and itself (since of symmetries of normal
form (11), there could be four homoclinic orbits), and they could induce the complex
oscillation as shown in figures.

It should be noted that since the parameter s is real-valued, it is impossible
that µ0(s) attains the values listed in the caption of the figures. However, the

Figure 4. Bifurcation diagram of the Poincaré map of (11)
on the section z0 = z0∗ ( z0∗ is a coordinate of the equilib-
rium: (z0(t), z1(t), z2(t)) = (z0∗, z1∗, z2∗)). Parameters are µ1 =
0.0052, µ2 = −0.002. The vertical and horizontal axes correspond
to z3 and µ0, respectively. [Above : µ0 ∈ [−0.6,−0.35] [Below
left : Close-up view of the above in µ0 ∈ [−0.5644,−0.5643].
The periodic orbit disappear around µ0 ≈ 0.56437.] [ Below
right : Close-up view of the above in µ0 ∈ [−0.476,−0.466], z2 ∈
[6.5× 10−5, 8.5× 10−5]]
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Figure 5. The orbits (left) and
√
z0(t)2 + z1(t)2 + z2(t)2 (right)

for typical parameter values µ1 = 0.0052 and µ2 = −0.002 . We
change µ0 as µ0 = −0.38, −0.471, −0.473, −0.55 from the above.

system (11) is invariant under the scaling (12), we can choose a parameter s so that
the normal form (11) has small amplitude similar solutions by a suitable choice of
scaling parameter η.

Table 1. Equilibriums of (11) with the constants (29) and their
linearized eigenvalues. Parameters are µ0 = −0.55, µ1 = 0.0052
and µ2 = −0.002 ( This case correspond to Figure 5).

Equilibria Eigenvalues
(z0, z1, z2) = (0, 0, 0) −0.550000 0.005200 −0.00200

(±0.074162, 0, 0) −0.37127 −0.265895 1.100000
(0,±0.002079, 0) 0.079174 −0.011472 −0.010400

±(−0.004570, 0.001968, 0.000106) −0.014227 0.007193± 0.035272i
±(−0.004570,−0.001968, 0.000106) −0.014227 0.007193± 0.035272i
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Figure 6. Left and right figures show the orbits from the initial
conditions which are close to the triply mixed mode fixed points
(µ0 = −0.55, µ1 = 0.0052, µ2 = −0.002. 0 ≤ t ≤ 210). These
numerical results suggest that there is a pair of homoclinic orbits
in the half of the phase space {(z0, z1, z2) ∈ R3; z1 > 0}.

Figure 7. [Left: The orbits in fig. 6 are shown. ] [Right: The
orbits in fig. 6 and the attractor are shown as well. ]

6.2. Lyapunov characteristic exponents and Lyapunov dimension. In order
to see that there are chaotic dynamics, we compute the Lyapunov characteristic
exponents by using the algorithm in [10]: more precisely, let

ż = F (z) (38)

be a system of differential equation in R3, and let {ej}, j = 1, 2, 3 be a set of basis
of tangent space at z = z0 := z(0). Consider the variational equation around the
flow z(t; z0):

ẏ(t) = DF (z(t; z0))y(t). (39)

Then, the solution of (39) can be written as y(t) = U ty(0), where U t is the funda-
mental matrix. We define

λ(e1, z0) = lim
t→∞

t−1 log
(
|U te1|/|e1|

)
,

λ(e2, z0) = lim
t→∞

t−1 log
(
|U te1 × U te2|/|e1 × e2|

)
,

λ(e3, z0) = lim
t→∞

t−1 log
(
|U te1 · (U te2 × U te3)|/|e1 · (e2 × e3)|

)
,

where ej are j-dimensional space defined by ej = span{e1, . . . , ej} ⊂ R3, moreover
◦ · ◦ and ◦ × ◦ denote inner product and exterior product, respectively. We can
compute the Lyapunov characteristic exponents λj , j = 1, 2, 3 by using λ(ej , z0).



OSCILLATORY DYNAMICS IN A REACTION-DIFFUSION SYSTEM 919

Now we show the results to our problem. We solve the equations (11) by Runge-
Kutta-Fehlberg method checking the difference of the fourth order and the fifth
order approximation is smaller than 10−6. Here we also choose the scaling pa-
rameters as η = 4. The typical time difference is taken as 10−2, and we compute
0 ≤ t ≤ T . The vectors ej are normalized in each step as follows: e1 is taken as a
tangent vector of the trajectory (λ(e1, z0) must attain zero) ; The bases {ej} are
normalized by the Gram-Schmidt orthonormalization. We also set

µ0 = −0.559489, µ1 = 0.0052, µ2 = −0.002.

Then, we obtain the numerical results as shown in Table 2 for each T .

Table 2. The Lyapunov characteristic exponents for each T .

T λ1 λ2 λ3
5× 103 0.014125 0.000286 −0.136404

104 0.021547 0.000112 −0.136693
5× 104 0.025032 −0.000014 −0.137087

105 0.023560 −0.000000 −0.137040
5× 105 0.023984 −0.000028 −0.137153

106 0.023906 −0.000024 −0.137146
5× 106 0.023768 −0.000025 −0.137136

And we estimate

λ1 ≈ 0.0240, λ2 ≈ 0.0000, λ3 ≈ −0.1371.

We can also compute Lyapunov dimension of the attractor as follows (for instance,
see [4]): let j be an integer satisfying

j∑
`=1

λ` > 0 and

j+1∑
`=1

λ` < 0,

then the Lyapunov dimension df is defined by

df = j +

∑j
`=1 λ`
λj+1

.

In our case, we obtain

df ≈ 2.175.

These numerical results suggest that the normal form (11) yields chaotic dynamics
by a suitable choice of parameters and coefficients.

7. Reaction-diffusion equation with two positive and negative global feed-
back. As we showed in the introduction, the following 3-component system (2):

ut = D1uxx + au+ bv + sw + F (u, v), x ∈ Ω, t ≥ 0,
τ1vt = D2vxx + u− v +G(u, v), x ∈ Ω, t ≥ 0
τ2wt = D3wxx + u− w, x ∈ Ω, t ≥ 0
ux = vx = wx = 0, at x = 0, L

is convenient to check the condition of the Hopf bifurcation. In this section, we
set the higher order terms F (u, v) = F1(u) and G(u, v) = F2(u) (namely, they are
independent of second variable v). And we also assume the following:
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• Fj(u) = −Fj(−u) (j = 1, 2) hold, and they can be represented in Taylor series
Fj(u) = αju

3 + h.o.t., αj ∈ R;
• The coefficients in (2) satisfy the assumptions (A3) and (A4) in the section 2

(with c = 1, d = −1);
• −1/b < D2/D1 and D2 � D3 hold.

It should also be noted that the results shown in this section holds under the ap-
propriate settings of function space similarly to section 2. One of the advantage in
the system (2) is that we can obtain a coefficient of normal form for the Hopf bifur-
cation around 1-mode stationary solutions more simply than (4). This is essentially
because the system can be reduced to the scalar equation with two global feedback
effects as follows. Here we note again that if u(t, x) = (u, v, w)(t, x) is a solution to
(2) then

ũ(t, x) :=

{
u(t, x) x ∈ (0, L),
u(t, 2L− x) x ∈ (L, 2L)

is a solution of the same equations under periodic boundary condition with period
2L satisfying even symmetries. Thus, it is sufficient to consider the equations in (2)
with periodic boundary conditions on a interval (0, 2L) with even symmetry.

Let τj = 0, s1 = −b > 0 and s = s2 > 0. We have the equation in a Fourier
space which is equivalent to (2) as follows:

u̇m = λmum + [F1(u)]m − s1β(m)
2 [F2(u)]m, m ∈ N ∪ {0}, (40)

where

λm := λmk0
= a−D1m

2k20 − s1β
(m)
2 + s2β

(m)
3 , m ∈ N ∪ {0},

β
(m)
j := (1 +Djm

2k20)−1 j = 2, 3, m ∈ N ∪ {0},

[Fj(u)]m := αj

∑
m1+m2+m3=m

um1
um2

um3
,

j = 1, 2, m` ∈ Z (` = 1, 2, 3), m ∈ N ∪ {0}.

We also consider the dynamics of the equation (40) around a critical point, espe-
cially, triply degenerate point. It holds that λ0 = λ1 = λ2 = 0 if (k0, a, s2) =
(k∗0 , a

∗, s∗2) and

s1 >
D1D3

D2(D3 −D2)
, (41)

where

k∗0
2 =
−5D1D3 ±

√
9D2

1D
2
3 + 16s1D1D2D3(D3 −D2)

8D1D2D3
,

s∗2 =
(s1D2 −D1 −D1D2k

∗
0
2)(1 +D3k

∗
0
2)

(1 +D2k∗0
2)D3

and

a∗ = D1k
∗
0
2 +

s1

1 +D2k∗0
2 −

s∗2
1 +D3k∗0

2 .

We note that k∗0 attains the real value if and only if the inequality (41) holds, and
a∗ is positive if s1 − s∗2 > 0 holds.
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Applying the center manifold theorem around this critical point, we have the
reduced equation on the local center manifold Wc

loc of (40). Moreover, we obtain
the following third order truncated system which approximate the dynamics on the
manifold Wc

loc: u̇0 = λ0u0 + γ0[ (u20 + 6u21 + 6u22)u0 + 3u21u2 ],
u̇1 = λ1u1 + γ1[ (3u20 + 3u21 + 6u22)u1 + 6u0u1u2 ],
u̇2 = λ2u2 + γ2[ (3u20 + 6u21 + 3u22)u2 + 3u0u

2
1 ],

(42)

where

γj = α1 − s1α2β
(j)
2 .

Now we seek a sufficient condition for the super critical Hopf bifurcation around
the equilibria of (42): (0,±

√
−λ1/(3γ1), 0) which correspond to the 1-mode sta-

tionary solutions of (40). It should be noted again that if (u0(t), u1(t), u2(t)) is a
solutions of (40), then −(u0(t), u1(t), u2(t)) is also a solution of (40). Therefore, it

is sufficient to consider the Hopf bifurcation around (0,
√
−λ1/(3γ1), 0). Now we

assume that αj < 0 (j = 1, 2). In this case, it holds that if

s1α2 < α1 <
s1α2

1 +D2k∗0
2 (43)

then

γ0 > 0 and γj < 0, j = 1, 2.

This implies that the equilibrium of (42) corresponding to 1-mode solution can be
destabilized with purely imaginary eigenvalues. Using the lemmas in section 4,
we can compute a coefficient ς of normal form for the Hopf bifurcation around an
equilibrium (0,

√
−λ1/(3γ1), 0) as follows:

ς = sign

(
27γ0

γ21 − γ0γ2
F(γ0, γ1, γ2)

)
,

where

F(γ0, γ1, γ2) = −(5γ20 + 7γ0γ2 + 15γ22)γ21 −8γ0γ2(γ0 +γ2)γ1 +γ30γ2 + 7γ0γ
3
2 −5γ20γ

2
2 .

Here, we using the formula (27) for the shake of simplicity. In fact, the constants ς
computed here can be determined as follows: we can see that

5γ20 + 7γ0γ2 + 15γ22 = 5

[(
γ0 +

7

10
γ2

)2

+
251

100
γ22

]
> 0

and

(Discriminant of F) = 4γ0γ2(5γ40 − 2γ30γ2 + 47γ20γ
2
2 − 10γ0γ

3
2 + 105γ42).

Then, if the inequality (43) holds then F(γ0, γ1, γ2) is negative. This yields ς = −1,
namely, there exist the periodic solutions around the equilibria of (42) corresponding
to 1-mode stationary solutions bifurcated from the super critical Hopf bifurcation.

This result is obtained in the case when the higher order terms F (u, v) = F1(u)
and G(u, v) = F2(u) are independent of v. In this case, if F1(u) ≡ 0 ( or F2(u) ≡ 0),
then the Hopf bifurcation cannot occur, namely, the both cubic terms F (u, v) =
F1(u) = α1u

3 + h.o.t. and G(u, v) = F2(u) = α2u
3 + h.o.t., (αj 6= 0) are necessary

to the Hopf bifurcation around the 1-mode solutions.
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8. Discussion. Here, we show the numerical results to the reaction-diffusion sys-
tem (4) with the constants and higher order terms shown in (28). Setting

D2 = 26.5, k0 = 0.874919,

then we can also observe “chaotic” solutions as Figure 8 (see also Figure 9). It
should be noted that µ0 is dependent on only one parameter s, and it increases as
s approaches to 3 from the left.

To check the sensitivity to initial conditions, we also show a result of the following

numerical experiment: let (u
(1)
0 (x), v

(1)
0 (x)) belong to a function space X, and put

(u
(2)
0 (x), v

(2)
0 (x)) := (u

(1)
0 (x), v

(1)
0 (x)) + (10−6, 0).

Let (u(1), v(1)) and (u(2), v(2)) be solutions of (4) satisfying (u(j)(0, x), v(j)(0, x)) =

(u
(j)
0 (x), v

(j)
0 ), j = 1, 2. We show the logarithmic plot of the difference of the two

solutions in the right of Figure 9. These results agree with the results in the section
6.
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Figure 8. Numerical results of (4) for s = 2.979 (above) and
s = 2.98212 (below). The left and right figures correspond to the
graph of u(t, x) and ‖u‖L2(t), for each s, respectively.



OSCILLATORY DYNAMICS IN A REACTION-DIFFUSION SYSTEM 923

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0  500  1000  1500  2000  2500  3000  3500

Figure 9. [Left: Dynamics of Fourier coefficients
(u0(t), u1(t), u2(t)) of the solution of (4) for s = 2.98212
(This corresponds to the PDE simulation in Figure 8 (below).]
[Right:Logarithmic scale plot of the difference of the L2 norm of
the two solutions u(1)(t) and u(2)(t). The vertical and horizontal
axes correspond to log | ‖u(1)‖L2 − ‖u(2)‖L2 | and t, respectively.]

Appendix A: Proof of Lemma 4.2. Here we give the proof of Lemma 4.2:

Proof. Now we put σ := 2ρ2 and

A =

(
ρ2 ω
−ω ρ2

)
.

Then eigenvalues of the matrix A are λ and λ̄, where

λ =
σ

2
+ iω.

Let q = (q1, q2) ∈ C2 be an eigenvector of A corresponding to the eigenvalue λ:
Aq = λq, and let p = (p1, p2) ∈ C2 be an eigenvector of the transposed matrix
tA corresponding to its eigenvalue λ̄. It can be normalized with respect to q:
< p, q >= 1, where

< p, q >:= p̄1q1 + p̄2q2.

Then the vector (z0, z2) can be uniquely represented as follows:

(z0, z2) = zq + z̄q̄.

Moreover, we have

z =< p, (z0, z2) > .

Then the system (23) can be transformed into the single equation:

ż = λz+ < p,N(zq + z̄q̄) >, (44)

where N =t (N0(z1, z2), N2(z0, z2)). It also follows that < p,N > is represented as
polynomial formula:

< p,N >=
R30

6
z3 +

R21

2
z2z̄ +

R12

2
zz̄2 +

R03

6
z̄3.

Using a near-identity transformation:

z = z̃ +
h30
6
z̃3 +

h21
2
z̃2 ¯̃z +

h12
2
z̃ ¯̃z2 +

h03
6

¯̃z3,



924 TOSHIYUKI OGAWA AND TAKASHI OKUDA

where

h30 =
R30

2λ
, h12 =

R12

2λ̄
, h03 =

R03

3λ̄− λ
.

Then (44) becomes

˙̃z = λz + ς1|z̃|2z̃ + o(|z|3).

Here,

ς1 :=
R21

2
.

By time scaling t̃ = ωt, we have

dz̃

dt̃
= (β + i)z̃ + ς2|z̃|2z̃,

where

β =
σ

2ω
, ς2 =

ς1
ω
.

Change the time parameterization by:

dτ = (1 + ς3|z̃|2)dt̃,

where ς3 = Im ς2 and using new parameterization of the time, we have

dz̃

dτ
= (β + i)z̃ + l1|z̃|2z̃ + o(|z̃|3),

where

l1 =
Re ς1
ω0

.

Finally, by changing variable

z̃ =
z√
|l1|

,

we have
dz

dτ
= (β + i)z + ς|z|2z + o(|z|3).

with ς = l1/|l1| = sign Re ς1. Direct computation yields the explicit form of ς as
shown in the lemma.

Appendix B: Explicit form of the coefficients of normal form (11). We
show the coefficients of reduced system (11) explicitly. We put Am := −a +

D1,2
1 m2(k1,20 )2, then we have the following.

aj = − 1

µ−0
P

aj

f +
b

dµ−0
P aj
g , j = 1 . . . 4,

bj = − 1

µ−1
P

bj
f −

A1

cµ−1
P bj
g , j = 1 . . . 4,

cj = − 1

µ−2
P

cj
f −

A2

dµ−2
P cj
g , j = 1 . . . 4.
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Here,

(
P a1

f

P a1
g

)
:= B3

0

(
f30
g30

)
+ cB2

0

(
f21
g21

)
+ c2B0

(
f12
g12

)
+ c3

(
f03
g03

)
,

(
P a2

f

P a2
g

)
:= 6B2

1B0

(
f30
g30

)
+ 2cB1(B1 + 2B0)

(
f21
g21

)
+2c2(B0 + 2B1)

(
f12
g12

)
+ 6c3

(
f03
g03

)
,

(
P a3

f

P a3
g

)
:= 6B2

2B0

(
f30
g30

)
+ 2cB2(B2 + 2B0)

(
f21
g21

)
+2c2(B0 + 2B2)

(
f12
g12

)
+ 6c3

(
f03
g03

)
,

(
P a4

f

P a4
g

)
:= 6B2

1B2

(
f30
g30

)
+ 2cB1(B1 + 2B2)

(
f21
g21

)
+2c2(B2 + 2B1)

(
f12
g12

)
+ 6c3

(
f03
g03

)
,

(
P b1
f

P b1
g

)
:= 3B2

0B1

(
f30
g30

)
+ cB0(B0 + 2B1)

(
f21
g21

)
+c2(B1 + 2B0)

(
f12
g12

)
+ 3c3

(
f03
g03

)
,

(
P b2
f

P b2
g

)
:= 3B3

1

(
f30
g30

)
+ 3cB2

1

(
f21
g21

)
+3c2B1

(
f12
g12

)
+ 3c3

(
f03
g03

)
,

(
P b3
f

P b3
g

)
:= 6B2

2B1

(
f30
g30

)
+ 2cB2(B2 + 2B1)

(
f21
g21

)
+2c2(B1 + 2B2)

(
f12
g12

)
+ 6c3

(
f03
g03

)
,

(
P b4
f

P b4
g

)
:= 6B0B1B2

(
f30
g30

)
+ 2c(B0B1 +B1B2 +B2B0)

(
f21
g21

)
+2c2(B0 +B1 +B2)

(
f12
g12

)
+ 6c3

(
f03
g03

)
,

(
P c1
f

P c1
g

)
:= 3B2

0B2

(
f30
g30

)
+ cB0(B0 + 2B2)

(
f21
g21

)
+c2(B2 + 2B0)

(
f12
g12

)
+ 3c3

(
f03
g03

)
,
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P c2
f

P c2
g

)
:= 6B2

1B2

(
f30
g30

)
+ 2cB1(B1 + 2B2)

(
f21
g21

)
+2c2(B2 + 2B1)

(
f12
g12

)
+ 6c3

(
f03
g03

)
,

(
P c3
f

P c3
g

)
:= 3B3

2

(
f30
g30

)
+ 3cB2

2

(
f21
g21

)
+3c2B2

(
f12
g12

)
+ 3c3

(
f03
g03

)
,

(
P c4
f

P c4
g

)
:= 3B2

1B0

(
f30
g30

)
+ cB1(B1 + 2B0)

(
f21
g21

)
+c2(B0 + 2B1)

(
f12
g12

)
+ 3c3

(
f03
g03

)
.
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