Effect of anisotropies on the magnetization dynamics

  • Received: 01 July 2014 Revised: 01 December 2014
  • Primary: 37M25, 65P20; Secondary: 65P99.

  • We report a systematic investigation of the magnetic anisotropy effects observed in the deterministic spin dynamics of a magnetic particle in the presence of a time-dependent magnetic field. The system is modeled by the Landau-Lifshitz-Gilbert equation and the magnetic field consists of two terms, a constant term and a term involving a harmonic time modulation. We consider a general quadratic anisotropic energy with three different preferential axes. The dynamical behavior of the system is represented in Lyapunov phase diagrams, and by calculating bifurcation diagrams, Poincaré sections and Fourier spectra. We find an intricate distribution of shrimp-shaped regular island embedded in wide chaotic phases. Anisotropy effects are found to play a key role in defining the symmetries of regular and chaotic stability phases.

    Citation: Laura M. Pérez, Jean Bragard, Hector Mancini, Jason A. C. Gallas, Ana M. Cabanas, Omar J. Suarez, David Laroze. Effect of anisotropies on the magnetization dynamics[J]. Networks and Heterogeneous Media, 2015, 10(1): 209-221. doi: 10.3934/nhm.2015.10.209

    Related Papers:

    [1] Laura M. Pérez, Jean Bragard, Hector Mancini, Jason A. C. Gallas, Ana M. Cabanas, Omar J. Suarez, David Laroze . Effect of anisotropies on the magnetization dynamics. Networks and Heterogeneous Media, 2015, 10(1): 209-221. doi: 10.3934/nhm.2015.10.209
    [2] Jean-Bernard Baillon, Guillaume Carlier . From discrete to continuous Wardrop equilibria. Networks and Heterogeneous Media, 2012, 7(2): 219-241. doi: 10.3934/nhm.2012.7.219
    [3] Sujit Nair, Naomi Ehrich Leonard . Stable synchronization of rigid body networks. Networks and Heterogeneous Media, 2007, 2(4): 597-626. doi: 10.3934/nhm.2007.2.597
    [4] Young-Pil Choi, Seung-Yeal Ha, Jeongho Kim . Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication. Networks and Heterogeneous Media, 2018, 13(3): 379-407. doi: 10.3934/nhm.2018017
    [5] Seung-Yeal Ha, Se Eun Noh, Jinyeong Park . Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics. Networks and Heterogeneous Media, 2015, 10(4): 787-807. doi: 10.3934/nhm.2015.10.787
    [6] Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel . Lyapunov stability analysis of networks of scalar conservation laws. Networks and Heterogeneous Media, 2007, 2(4): 751-759. doi: 10.3934/nhm.2007.2.751
    [7] Hyeong-Ohk Bae, Seung Yeon Cho, Jane Yoo, Seok-Bae Yun . Effect of time delay on flocking dynamics. Networks and Heterogeneous Media, 2022, 17(5): 803-825. doi: 10.3934/nhm.2022027
    [8] Abdelaziz Soufyane, Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Imad Kissami, Mostafa Zahri . Stability results of a swelling porous-elastic system with two nonlinear variable exponent damping. Networks and Heterogeneous Media, 2024, 19(1): 430-455. doi: 10.3934/nhm.2024019
    [9] Marina Dolfin, Mirosław Lachowicz . Modeling opinion dynamics: How the network enhances consensus. Networks and Heterogeneous Media, 2015, 10(4): 877-896. doi: 10.3934/nhm.2015.10.877
    [10] Charles Bordenave, David R. McDonald, Alexandre Proutière . A particle system in interaction with a rapidly varying environment: Mean field limits and applications. Networks and Heterogeneous Media, 2010, 5(1): 31-62. doi: 10.3934/nhm.2010.5.31
  • We report a systematic investigation of the magnetic anisotropy effects observed in the deterministic spin dynamics of a magnetic particle in the presence of a time-dependent magnetic field. The system is modeled by the Landau-Lifshitz-Gilbert equation and the magnetic field consists of two terms, a constant term and a term involving a harmonic time modulation. We consider a general quadratic anisotropic energy with three different preferential axes. The dynamical behavior of the system is represented in Lyapunov phase diagrams, and by calculating bifurcation diagrams, Poincaré sections and Fourier spectra. We find an intricate distribution of shrimp-shaped regular island embedded in wide chaotic phases. Anisotropy effects are found to play a key role in defining the symmetries of regular and chaotic stability phases.


    [1] F. M. de Aguiar, A. Azevedo and S. M. Rezende, Characterization of strange attractors in spin-wave chaos, Phys. Rev. B, 39 (1989), 9448-9452.
    [2] H. A. Albuquerque and P. C. Rech, Spiral periodic structure inside chaotic region in parameter-space of a Chua circuit, Int. J. Circuit Theory. App., 40 (2012), 189-194. doi: 10.1002/cta.713
    [3] L. F. Alvarez, O. Pla and O. Chubykalo, Quasiperiodicity, bistability, and chaos in the Landau-Lifshitz equation, Phys. Rev. B, 61 (2000), 11613-11617. doi: 10.1103/PhysRevB.61.11613
    [4] I. V. Barashenkov, M. M. Bogdan and V. I. Korobov, Stability diagram for the phase-locked soliton of the parametrically driven, damped nonlinear Schrödinger equation, Europhys. Lett., 15 (1991), 113-118. doi: 10.1209/0295-5075/15/2/001
    [5] R. Barrio, A. Shilnikov and L. P. Shilnikov, Kneadings, symbolic dynamics and painting Lorenz chaos, Int. J. Bif. Chaos, 22 (2012), 1230016, 24pp. doi: 10.1142/S0218127412300169
    [6] R. Barrio, F. Blesa and S. Serrano, Topological changes in periodicity hubs of dissipative systems, Phys. Rev. Lett., 108 (2012), 214102. doi: 10.1103/PhysRevLett.108.214102
    [7] X. Batlle and A. Labarta, Finite-size effects in fine particles: Magnetic and transport properties, J. Phys. D, 35 (2002), R15-R42.
    [8] J. Becker, F. Rodelsperger, Th. Weyrauch, H. Benner, W. Just and A. Cenys, Intermittency in spin-wave instabilities, Phys. Rev. E, 59 (1999), 1622-1632. doi: 10.1103/PhysRevE.59.1622
    [9] M. Beleggia, S. Tandon, Y. Zhu and M. De Graef, On the magnetostatic interactions between nanoparticles of arbitrary shape, J. Magn.Magn. Mater, 278 (2004), 270-284. doi: 10.1016/j.jmmm.2003.12.1314
    [10] M. Beleggia and M. De Graef, General magnetostatic shape-shape interactions, J. Magn.Magn. Mater, 285 (2005), L1-L10. doi: 10.1016/j.jmmm.2004.09.004
    [11] C. Bonatto, J. Garreau and J. A. C. Gallas, Self-similarities in the frequency-amplitude space of a loss-modulated CO2 laser, Phys. Rev. Lett., 95 (2005), 143905. doi: 10.1103/PhysRevLett.95.143905
    [12] C. Bonatto and J. A. C. Gallas, Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit, Phys. Rev. Lett., 101 (2008), 054101. doi: 10.1103/PhysRevLett.101.054101
    [13] C. Bonatto and J. A. C. Gallas, Accumulation boundaries: Codimension-two accumulation of accumulations in phase diagrams of semiconductor lasers, electric circuits, atmospheric and chemical oscillators, Phil. Trans. R. Soc. A, 366 (2008), 505-517. doi: 10.1098/rsta.2007.2107
    [14] C. Bonatto, J. A. C. Gallas and Y. Ueda, Chaotic phase similarities and recurrences in a damped-driven Duffing oscillator, Phys Rev. E, 77 (2008), 026217. doi: 10.1103/PhysRevE.77.026217
    [15] J. Bragard, H. Pleiner, O. J. Suarez, P. Vargas, J. A. C. Gallas and D. Laroze, Chaotic dynamics of a magnetic nanoparticle, Phys. Rev. E, 84 (2011), 037202. doi: 10.1103/PhysRevE.84.037202
    [16] J. Cai, Y. Kato, A. Ogawa, Y. Harada, M. Chiba and T. Hirata, Chaotic dynamics during slow relaxation process in magnon systems, J. Phys. Soc. Jap., 71 (2002), 3087-3091. doi: 10.1143/JPSJ.71.3087
    [17] M. G. Clerc, S. Coulibaly and D. Laroze, Interaction law of 2D localized precession states, Europhys. Lett., 90 (2010), 38005.
    [18] M. G. Clerc, S. Coulibaly and D. Laroze, Localized waves in a parametrically driven magnetic nanowire, Europhys. Lett., 97 (2012), 30006.
    [19] B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, $2^{nd}$ edition, J. Wiley IEEE Press, New Jersey, 2009. doi: 10.1002/9780470386323
    [20] W. L. Ditto, M. L. Spano, H. T. Savage, S. N. Rauseo, J. Heagy and E. Ott, Experimental observation of a strange nonchaotic attractor, Phys. Rev. Lett., 65 (1990), 533-536. doi: 10.1103/PhysRevLett.65.533
    [21] W. Façanha, B. Oldeman and L. Glass, Bifurcation structures in two-dimensional maps: The endoskeletons of shrimps, Phys. Lett. A, 377 (2013), 1264-1268. doi: 10.1016/j.physleta.2013.03.025
    [22] R. E. Francke, T. Pöschel and J. A. C. Gallas, Zig-zag networks of self-excited periodic oscillations in a tunnel diode and a fiber-ring laser, Phys. Rev. E, 87 (2013), 042907. doi: 10.1103/PhysRevE.87.042907
    [23] J. G. Freire and J. A. C. Gallas, Non-Shilnikov cascades of spikes and hubs in a semiconductor laser with optoelectronic feedback, Phys. Rev. E, 82 (2010), 037202. doi: 10.1103/PhysRevE.82.037202
    [24] J. G. Freire and J. A. C. Gallas, Stern-Brocot trees in the periodicity of mixed-mode oscillations, Phys. Chem. Chem. Phys., 13 (2011), 12191-12198. doi: 10.1039/c0cp02776f
    [25] J. G. Freire and J. A. C. Gallas, Stern-Brocot trees in cascades of mixed-mode oscillations and canards in the extended Bonhoeffer-van der Pol and the FitzHugh-Nagumo models of excitable systems, Phys. Lett. A, 375 (2011), 1097-1103. doi: 10.1016/j.physleta.2011.01.017
    [26] J. G. Freire, C. Cabeza, A. Marti, T. Pöschel and J. A. C. Gallas, Antiperiodic oscillations, Nature Sci. Rep., 3 (2013), 01958. doi: 10.1038/srep01958
    [27] J. A. C. Gallas, Structure of the parameter space of the Hénon map, Phys. Rev. Lett., 70 (1993), 2714-2717. doi: 10.1103/PhysRevLett.70.2714
    [28] J. A. C. Gallas, The structure of infinite periodic and chaotic hub cascades in phase diagrams of simple autonomous flows, Int. J. Bifur. Chaos, 20 (2010), 197-211; and references therein. doi: 10.1142/S0218127410025636
    [29] M. R. Gallas, M. R. Gallas and J. A. C. Gallas, Distribution of chaos and periodic spikes in a three-cell population model of cancer, Eur. Phys. J. Special Topics, 223 (2014), 2131-2144.
    [30] G. Gibson and C. Jeffries, Observation of period doubling and chaos in spin-wave instabilities in yttrium iron garnet, Phys. Rev. A, 29 (1984), 811-818. doi: 10.1103/PhysRevA.29.811
    [31] A. Hoff, D. T. da Silva, C. Manchein and H. A. Albuquerque, Bifurcation structures and transient chaos in a four-dimensional Chua model, Phys. Lett. A, 378 (2014), 171-177. doi: 10.1016/j.physleta.2013.11.003
    [32] M. Lakshmanan, The fascinating world of the Landau-Lifshitz-Gilbert equation: An overview Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 369 (2011), 1280-1300. doi: 10.1098/rsta.2010.0319
    [33] P. Landeros, J. Escrig, D. Altbir, D. Laroze, J. d'Albuquerque e Castro and P. Vargas, Scaling relations for magnetic nanoparticles, Phys. Rev. B, 65 (2005), 094435.
    [34] D. Laroze and P. Vargas, Dynamical behavior of two interacting magnetic nanoparticles, Phys. B, 372 (2006), 332-336. doi: 10.1016/j.physb.2005.10.079
    [35] D. Laroze and L. M. Perez, Classical spin dynamics of four interacting magnetic particles on a ring, Phys. B, 403 (2008), 473-477. doi: 10.1016/j.physb.2007.08.078
    [36] D. Laroze, P. Vargas, C. Cortes and G. Gutierrez, Dynamics of two interacting dipoles, J. Magn. Magn. Mater., 320 (2008), 1440-1448. doi: 10.1016/j.jmmm.2007.12.010
    [37] D. Laroze, O. J. Suarez, J. Bragard and H. Pleiner, Characterization of the chaotic magnetic particle dynamics, IEEE Trans. On Magnetics, 47 (2011), 3032-3035. doi: 10.1109/TMAG.2011.2158072
    [38] D. Laroze, D. Becerra-Alonso, J. A. C. Gallas and H. Pleiner, Magnetization dynamics under a quasiperiodic magnetic field, IEEE Trans. On Magnetics, 48 (2012), 3567-3570. doi: 10.1109/TMAG.2012.2207378
    [39] D. Laroze, P. G. Siddheshwar and H. Pleiner, Chaotic convection in a ferrofluid, Commun. Nonlinear Sci. Numer. Simulat., 18 (2013), 2436-2447. doi: 10.1016/j.cnsns.2013.01.016
    [40] E. N. Lorenz, Compound windows of the Hénon map, Physica D, 237 (2008), 1689-1704. doi: 10.1016/j.physd.2007.11.014
    [41] D. Mayergoyz, G. Bertotti and C. Serpico, Nonlinear Magnetization Dynamics in Nanosystems, Elsevier, North Holland, 2009; and references therein.
    [42] R. C. O'Handley, Modern Magnetic Materials: Principles and Applications, Wiley Interscience, New York, 1999.
    [43] D. F. M. Oliveira, M. Robnik and E. D. Leonel, Shrimp-shape domains in a dissipative kicked rotator, Chaos, 21 (2011), 043122, 6pp. doi: 10.1063/1.3657917
    [44] L. M. Pérez, O. J. Suarez, D. Laroze and H. L. Mancini, Classical spin dynamics of anisotropic Heisenberg dimers, Cent. Eur. J. Phys., 11 (2013), 1629-1637.
    [45] A. Sack, J. G. Freire, E. Lindberg, T. Pöschel and J. A. C. Gallas, Discontinuous spirals of stable periodic oscillations, Nature Sci. Rep., 3 (2013), 03350. doi: 10.1038/srep03350
    [46] R. K. Smith, M. Grabowski and R. E. Camley, Period doubling toward chaos in a driven magnetic macrospin, J. Magn. Magn. Mater., 322 (2010), 2127-2134. doi: 10.1016/j.jmmm.2010.01.045
    [47] S. L. T. Souza, A. A. Lima, I. R. Caldas, R. O. Medrano-T and Z. O. Guimaã es-Filho, Self-similarities of periodic structures for a discrete model of a two-gene system, Phys. Lett. A, 376 (2012), 1290-1294.
    [48] S. Tandon, M. Beleggia, Y. Zhu and M. De Graef, On the computation of the demagnetization tensor for uniformly magnetized particles of arbitrary shape. Part I: Analytical approach, J. Magn.Magn. Mater, 271 (2004), 9-26.
    [49] S. Tandon, M. Beleggia, Y. Zhu and M. De Graef, On the computation of the demagnetization tensor for uniformly magnetized particles of arbitrary shape. Part II: Numerical approach, J. Magn.Magn. Mater, 271 (2004), 27-38.
    [50] D. Urzagasti, D. Laroze, M. G. Clerc and H. Pleiner, Breather soliton solutions in a parametrically driven magnetic wire, Europhys. Lett., 104 (2013), 40001.
    [51] D. Urzagasti, A. Aramayo and D. Laroze, Soliton-antisoliton interaction in a parametrically driven easy-plane magnetic wire, Phys. Lett. A, 378 (2014), 2614-2618. doi: 10.1016/j.physleta.2014.07.013
    [52] D. V. Vagin and P. Polyakov, Control of chaotic and deterministic magnetization dynamics regimes by means of sample shape varying, J. App. Phys, 105 (2009), 033914. doi: 10.1063/1.3075838
    [53] R. Vitolo, P. Glendinning and J. A. C. Gallas, Global structure of periodicity hubs in Lyapunov phase diagrams of dissipative flows, Phys. Rev. E, 84 (2011), 016216. doi: 10.1103/PhysRevE.84.016216
    [54] P. E. Wigen (Ed.), Nonlinear Phenomena and Chaos in Magnetic Materials, World Scientific, Singapore, 1994.
    [55] A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano, Determining Lyapunov exponents from a time series, Physica D, 16 (1985), 285-317. doi: 10.1016/0167-2789(85)90011-9
  • This article has been cited by:

    1. J Bragard, J A Vélez, J A Riquelme, L M Pérez, R Hernández-García, R J Barrientos, D Laroze, Study of type-III intermittency in the Landau–Lifshitz-Gilbert equation, 2021, 96, 0031-8949, 124045, 10.1088/1402-4896/ac198e
    2. M. Nashaat, M. Sameh, A. E. Botha, K. V. Kulikov, Yu. M. Shukrinov, Bifurcation structure and chaos in dynamics of nanomagnet coupled to Josephson junction, 2022, 32, 1054-1500, 093142, 10.1063/5.0095009
    3. J. A. Vélez, J. Bragard, L. M. Pérez, A. M. Cabanas, O. J. Suarez, D. Laroze, H. L. Mancini, Periodicity characterization of the nonlinear magnetization dynamics, 2020, 30, 1054-1500, 093112, 10.1063/5.0006018
    4. A. E. Botha, Yu. M. Shukrinov, J. Tekić, M. R. Kolahchi, Chaotic dynamics from coupled magnetic monodomain and Josephson current, 2023, 107, 2470-0045, 10.1103/PhysRevE.107.024205
    5. C. Kanchana, J. A. Vélez, L. M. Pérez, D. Laroze, P. G. Siddheshwar, Influence of higher-order modes on ferroconvection, 2022, 32, 1054-1500, 083129, 10.1063/5.0097398
    6. Ana M. Cabanas, Ronald Rivas, Laura M. Pérez, Javier A. Vélez, Pablo Díaz, Marcel G. Clerc, Harald Pleiner, David Laroze, Boris A. Malomed, A quasi-periodic route to chaos in a parametrically driven nonlinear medium, 2021, 151, 09600779, 111089, 10.1016/j.chaos.2021.111089
    7. O. J. Suarez, D. Laroze, J. Martínez-Mardones, D. Altbir, O. Chubykalo-Fesenko, Chaotic dynamics of a magnetic particle at finite temperature, 2017, 95, 2469-9950, 10.1103/PhysRevB.95.014404
    8. L.M. Pérez, J.A. Vélez, M.N. Mahmud, R.M. Corona, S. Castillo-Sepúlveda, L. Pedraja-Rejas, R.M. Otxoa, H.L. Mancini, D. Laroze, Complexity measurements for the thermal convection in a viscoelastic fluid saturated porous medium, 2023, 52, 22113797, 106737, 10.1016/j.rinp.2023.106737
    9. Camilo José Castro, Ignacio Ortega-Piwonka, Boris A. Malomed, Deterlino Urzagasti, Liliana Pedraja-Rejas, Pablo Díaz, David Laroze, Breather Bound States in a Parametrically Driven Magnetic Wire, 2024, 16, 2073-8994, 1565, 10.3390/sym16121565
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4192) PDF downloads(104) Cited by(9)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog