On the effects of discontinuous capillarities for immiscible two-phase flows in porous media made of several rock-types

  • Received: 01 January 2010 Revised: 01 April 2010
  • Primary: 35L60, 35L67; Secondary: 76S05, 76T99.

  • We consider a simplified model for two-phase flows in one- dimensional heterogeneous porous media made of two different rocks. We focus on the effects induced by the discontinuity of the capillarity field at interface. We first consider a model with capillarity forces within the rocks, stating an existence/uniqueness result. Then we look for the asymptotic problem for vanishing capillarity within the rocks, remaining only on the interface. We show that either the solution to the asymptotic problem is the optimal entropy solution to a scalar conservation law with discontinuous flux, or it admits a non-classical shock at the interface modeling oil-trapping.

    Citation: Clément Cancès. On the effects of discontinuous capillarities for immiscible two-phase flows in porous media made of several rock-types[J]. Networks and Heterogeneous Media, 2010, 5(3): 635-647. doi: 10.3934/nhm.2010.5.635

    Related Papers:

    [1] Clément Cancès . On the effects of discontinuous capillarities for immiscible two-phase flows in porous media made of several rock-types. Networks and Heterogeneous Media, 2010, 5(3): 635-647. doi: 10.3934/nhm.2010.5.635
    [2] Giuseppe Maria Coclite, Lorenzo di Ruvo, Jan Ernest, Siddhartha Mishra . Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Networks and Heterogeneous Media, 2013, 8(4): 969-984. doi: 10.3934/nhm.2013.8.969
    [3] Frederike Kissling, Christian Rohde . The computation of nonclassical shock waves with a heterogeneous multiscale method. Networks and Heterogeneous Media, 2010, 5(3): 661-674. doi: 10.3934/nhm.2010.5.661
    [4] Shyam Sundar Ghoshal . BV regularity near the interface for nonuniform convex discontinuous flux. Networks and Heterogeneous Media, 2016, 11(2): 331-348. doi: 10.3934/nhm.2016.11.331
    [5] Christophe Chalons, Paola Goatin, Nicolas Seguin . General constrained conservation laws. Application to pedestrian flow modeling. Networks and Heterogeneous Media, 2013, 8(2): 433-463. doi: 10.3934/nhm.2013.8.433
    [6] Felisia Angela Chiarello, Giuseppe Maria Coclite . Nonlocal scalar conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2023, 18(1): 380-398. doi: 10.3934/nhm.2023015
    [7] Raimund Bürger, Stefan Diehl, María Carmen Martí . A conservation law with multiply discontinuous flux modelling a flotation column. Networks and Heterogeneous Media, 2018, 13(2): 339-371. doi: 10.3934/nhm.2018015
    [8] Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina . Conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2007, 2(1): 159-179. doi: 10.3934/nhm.2007.2.159
    [9] Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada . A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks and Heterogeneous Media, 2021, 16(2): 187-219. doi: 10.3934/nhm.2021004
    [10] Darko Mitrovic . Existence and stability of a multidimensional scalar conservation law with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(1): 163-188. doi: 10.3934/nhm.2010.5.163
  • We consider a simplified model for two-phase flows in one- dimensional heterogeneous porous media made of two different rocks. We focus on the effects induced by the discontinuity of the capillarity field at interface. We first consider a model with capillarity forces within the rocks, stating an existence/uniqueness result. Then we look for the asymptotic problem for vanishing capillarity within the rocks, remaining only on the interface. We show that either the solution to the asymptotic problem is the optimal entropy solution to a scalar conservation law with discontinuous flux, or it admits a non-classical shock at the interface modeling oil-trapping.


  • This article has been cited by:

    1. Boris Andreianov, Clément Cancès, A phase-by-phase upstream scheme that converges to the vanishing capillarity solution for countercurrent two-phase flow in two-rock media, 2014, 18, 1420-0597, 211, 10.1007/s10596-014-9403-5
    2. Eduardo Abreu, Mathilde Colombeau, Eugeny Panov, Weak asymptotic methods for scalar equations and systems, 2016, 444, 0022247X, 1203, 10.1016/j.jmaa.2016.06.047
    3. Boris Andreianov, Clément Cancès, On interface transmission conditions for conservation laws with discontinuous flux of general shape, 2015, 12, 0219-8916, 343, 10.1142/S0219891615500101
    4. Elyes Ahmed, Caroline Japhet, Michel Kern, Space–time domain decomposition for two-phase flow between different rock types, 2020, 371, 00457825, 113294, 10.1016/j.cma.2020.113294
    5. Clément Cancès, Michel Pierre, An Existence Result for Multidimensional Immiscible Two-Phase Flows with Discontinuous Capillary Pressure Field, 2012, 44, 0036-1410, 966, 10.1137/11082943X
    6. Cynthia Michalkowski, Kilian Weishaupt, Veronika Schleper, Rainer Helmig, Modeling of Two Phase Flow in a Hydrophobic Porous Medium Interacting with a Hydrophilic Structure, 2022, 144, 0169-3913, 481, 10.1007/s11242-022-01816-1
    7. Boris Andreianov, Kenneth Hvistendahl Karlsen, Nils Henrik Risebro, A Theory of L 1-Dissipative Solvers for Scalar Conservation Laws with Discontinuous Flux, 2011, 201, 0003-9527, 27, 10.1007/s00205-010-0389-4
    8. Boris Andreianov, Clément Cancès, Vanishing capillarity solutions of Buckley–Leverett equation with gravity in two-rocks’ medium, 2013, 17, 1420-0597, 551, 10.1007/s10596-012-9329-8
    9. B. Andreianov, K. Brenner, C. Cancès, Approximating the vanishing capillarity limit of two-phase flow in multi-dimensional heterogeneous porous medium, 2014, 94, 00442267, 655, 10.1002/zamm.201200218
    10. Tufan Ghosh, Carina Bringedal, Rainer Helmig, G.P. Raja Sekhar, Upscaled equations for two-phase flow in highly heterogeneous porous media: Varying permeability and porosity, 2020, 145, 03091708, 103716, 10.1016/j.advwatres.2020.103716
    11. Clément Cancès, David Maltese, A Gravity Current Model with Capillary Trapping for Oil Migration in Multilayer Geological Basins, 2021, 81, 0036-1399, 454, 10.1137/19M1284233
    12. Brahim Amaziane, Mikhail Panfilov, Leonid Pankratov, Homogenized Model of Two-Phase Flow with Local Nonequilibrium in Double Porosity Media, 2016, 2016, 1687-9120, 1, 10.1155/2016/3058710
    13. MIROSLAV BULÍČEK, PIOTR GWIAZDA, AGNIESZKA ŚWIERCZEWSKA-GWIAZDA, MULTI-DIMENSIONAL SCALAR CONSERVATION LAWS WITH FLUXES DISCONTINUOUS IN THE UNKNOWN AND THE SPATIAL VARIABLE, 2013, 23, 0218-2025, 407, 10.1142/S0218202512500510
    14. Konstantin Brenner, Clément Cancès, Danielle Hilhorst, Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure, 2013, 17, 1420-0597, 573, 10.1007/s10596-013-9345-3
    15. PATRICK HENNING, MARIO OHLBERGER, BEN SCHWEIZER, HOMOGENIZATION OF THE DEGENERATE TWO-PHASE FLOW EQUATIONS, 2013, 23, 0218-2025, 2323, 10.1142/S0218202513500334
    16. Boris Andreianov, Abraham Sylla, Finite volume approximation and well-posedness of conservation laws with moving interfaces under abstract coupling conditions, 2023, 30, 1021-9722, 10.1007/s00030-023-00857-9
    17. F. Claret, N. I. Prasianakis, A. Baksay, D. Lukin, G. Pepin, E. Ahusborde, B. Amaziane, G. Bátor, D. Becker, A. Bednár, M. Béreš, S. Bérešová, Z. Böthi, V. Brendler, K. Brenner, J. Březina, F. Chave, S. V. Churakov, M. Hokr, D. Horák, D. Jacques, F. Jankovský, C. Kazymyrenko, T. Koudelka, T. Kovács, T. Krejčí, J. Kruis, E. Laloy, J. Landa, T. Ligurský, T. Lipping, C. López-Vázquez, R. Masson, J. C. L. Meeussen, M. Mollaali, A. Mon, L. Montenegro, B. Pisani, J. Poonoosamy, S. I. Pospiech, Z. Saâdi, J. Samper, A.-C. Samper-Pilar, G. Scaringi, S. Sysala, K. Yoshioka, Y. Yang, M. Zuna, O. Kolditz, EURAD state-of-the-art report: development and improvement of numerical methods and tools for modeling coupled processes in the field of nuclear waste disposal, 2024, 3, 2813-3412, 10.3389/fnuen.2024.1437714
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3790) PDF downloads(85) Cited by(17)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog