Citation: Thomas Hudson. Gamma-expansion for a 1D confined Lennard-Jones model with point defect[J]. Networks and Heterogeneous Media, 2013, 8(2): 501-527. doi: 10.3934/nhm.2013.8.501
[1] | Thomas Hudson . Gamma-expansion for a 1D confined Lennard-Jones model with point defect. Networks and Heterogeneous Media, 2013, 8(2): 501-527. doi: 10.3934/nhm.2013.8.501 |
[2] | Mathias Schäffner, Anja Schlömerkemper . On Lennard-Jones systems with finite range interactions and their asymptotic analysis. Networks and Heterogeneous Media, 2018, 13(1): 95-118. doi: 10.3934/nhm.2018005 |
[3] | Manuel Friedrich, Bernd Schmidt . On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks and Heterogeneous Media, 2015, 10(2): 321-342. doi: 10.3934/nhm.2015.10.321 |
[4] | Antonio DeSimone, Martin Kružík . Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation. Networks and Heterogeneous Media, 2013, 8(2): 481-499. doi: 10.3934/nhm.2013.8.481 |
[5] | Laura Sigalotti . Homogenization of pinning conditions on periodic networks. Networks and Heterogeneous Media, 2012, 7(3): 543-582. doi: 10.3934/nhm.2012.7.543 |
[6] | Andrea Braides, Margherita Solci, Enrico Vitali . A derivation of linear elastic energies from pair-interaction atomistic systems. Networks and Heterogeneous Media, 2007, 2(3): 551-567. doi: 10.3934/nhm.2007.2.551 |
[7] | Leonid Berlyand, Volodymyr Rybalko . Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes. Networks and Heterogeneous Media, 2013, 8(1): 115-130. doi: 10.3934/nhm.2013.8.115 |
[8] | Giovanni Scilla . Motion of discrete interfaces in low-contrast periodic media. Networks and Heterogeneous Media, 2014, 9(1): 169-189. doi: 10.3934/nhm.2014.9.169 |
[9] | Marco Cicalese, Antonio DeSimone, Caterina Ida Zeppieri . Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers. Networks and Heterogeneous Media, 2009, 4(4): 667-708. doi: 10.3934/nhm.2009.4.667 |
[10] | Andrea Braides, Anneliese Defranceschi, Enrico Vitali . Variational evolution of one-dimensional Lennard-Jones systems. Networks and Heterogeneous Media, 2014, 9(2): 217-238. doi: 10.3934/nhm.2014.9.217 |
[1] |
R. Alicandro and M. Cicalese, A general integral representation result for continuum limits of discrete energies with superlinear growth, SIAM Journal of Mathematical Analysis, 36 (2004), 1-37. doi: 10.1137/S0036141003426471
![]() |
[2] |
G. Anzellotti and S. Baldo, Asymptotic development by $\Gamma$-convergence, Applied Mathematics and Optimization, 27 (1993), 105-123. doi: 10.1007/BF01195977
![]() |
[3] |
X. Blanc, C. Le Bris and P.-L. Lions, Atomistic to continuum limits for computational materials science, M2AN. Mathematical Modelling and Numerical Analysis, 41 (2007), 391-426. doi: 10.1051/m2an:2007018
![]() |
[4] |
A. Braides, "$\Gamma$-Convergence for Beginners," Oxford Lecture Series in Mathematics and its Applications, 22, Oxford University Press, Oxford, 2002. doi: 10.1093/acprof:oso/9780198507840.001.0001
![]() |
[5] |
A. Braides and M. Cicalese, Surface energies in nonconvex discrete systems, Mathematical Models and Methods in Applied Science, 17 (2007), 985-1037. doi: 10.1142/S0218202507002182
![]() |
[6] |
A. Braides, G. Dal Maso and A. Garroni, Variational formulation of softening phenomena in fracture mechanics: The one-dimensional case, Archive for Rational Mechanics and Analysis, 146 (1999), 23-58. doi: 10.1007/s002050050135
![]() |
[7] |
A. Braides and M. S. Gelli, Continuum limits of discrete systems without convexity hypotheses, Mathematics and Mechanics of Solids, 7 (2002), 41-66. doi: 10.1177/1081286502007001229
![]() |
[8] |
A. Braides and L. Truskinovsky, Asymptotic expansions by $\Gamma$-convergence, Continuum Mechanics and Thermodynamics, 20 (2008), 21-62. doi: 10.1007/s00161-008-0072-2
![]() |
[9] | B. Dacorogna, "Direct Methods in the Calculus of Variations," $2^{nd}$ edition, Applied Mathematical Sciences, 78, Springer, New York, 2008. |
[10] |
G. Dal Maso, "An Introduction to $\Gamma$-Convergence," Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0327-8
![]() |
[11] |
W. E and P. Ming, Cauchy-Born rule and the stability of crystalline solids: Static problems, Archive for Rational Mechanics and Analysis, 183 (2007), 241-297. doi: 10.1007/s00205-006-0031-7
![]() |
[12] | L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. |
[13] | to appear in Archive for Rational Mechanics and Analysis, arXiv:1202.3858. |
[14] |
L. Scardia, A. Schlömerkemper and C. Zanini, Boundary layer energies for nonconvex discrete systems, Mathematical Models and Methods in Applied Science, 21 (2011), 777-817. doi: 10.1142/S0218202511005210
![]() |
[15] |
B. Schmidt, A derivation of continuum nonlinear plate theory from atomistic models, Multiscale Modeling & Simulation, 5 (2006), 664-694. doi: 10.1137/050646251
![]() |
[16] | E. Süli and D. F. Mayers, "An Introduction to Numerical Analysis," Cambridge University Press, Cambridge, 2003. |
[17] |
G. Zanzotto, The Cauchy-Born hypothesis, nonlinear elasticity and mechanical twinning in crystals, Acta Crystallographica Section A, 52 (1996), 839-849. doi: 10.1107/S0108767396006654
![]() |
1. | Patrick van Meurs, Many-particle limits and non-convergence of dislocation wall pile-ups, 2018, 31, 0951-7715, 165, 10.1088/1361-6544/aa999e | |
2. | Lucia Scardia, 2016, Chapter 2, 978-3-319-26882-8, 145, 10.1007/978-3-319-26883-5_2 | |
3. | Patrick van Meurs, Boundary-Layer Analysis of Repelling Particles Pushed to an Impenetrable Barrier, 2022, 54, 0036-1410, 1742, 10.1137/21M1420198 | |
4. | Patrick van Meurs, 2017, Chapter 2, 978-981-10-2632-4, 15, 10.1007/978-981-10-2633-1_2 | |
5. | Mathias Schäffner, Anja Schlömerkemper, On a $\Gamma$-Convergence Analysis of a Quasicontinuum Method, 2015, 13, 1540-3459, 132, 10.1137/140971439 | |
6. | Georgy Kitavtsev, Stephan Luckhaus, Angkana Rüland, Surface energies arising in microscopic modeling of martensitic transformations, 2015, 25, 0218-2025, 647, 10.1142/S0218202515500153 | |
7. | Sabine Jansen, Wolfgang König, Bernd Schmidt, Florian Theil, Distribution of Cracks in a Chain of Atoms at Low Temperature, 2021, 22, 1424-0637, 4131, 10.1007/s00023-021-01076-7 | |
8. | Cameron L. Hall, Thomas Hudson, Patrick van Meurs, Asymptotic Analysis of Boundary Layers in a Repulsive Particle System, 2018, 153, 0167-8019, 1, 10.1007/s10440-017-0119-0 | |
9. | Patrick van Meurs, Discrete-to-continuum limits of interacting particle systems in one dimension with collisions, 2024, 539, 0022247X, 128537, 10.1016/j.jmaa.2024.128537 |