Gamma-expansion for a 1D confined Lennard-Jones model with point defect

  • Received: 01 April 2012 Revised: 01 April 2013
  • Primary: 49J45; Secondary: 70C20, 74B20, 74G65, 74Q15.

  • We compute a rigorous asymptotic expansion of the energy of a point defect in a 1D chain of atoms with second neighbour interactions. We propose the Confined Lennard-Jones model for interatomic interactions, where it is assumed that nearest neighbour potentials are globally convex and second neighbour potentials are globally concave. We derive the $\Gamma$-limit for the energy functional as the number of atoms per period tends to infinity and derive an explicit form for the first order term in a $\Gamma$-expansion in terms of an infinite cell problem. We prove exponential decay properties for minimisers of the energy in the infinite cell problem, suggesting that the perturbation to the deformation introduced by the defect is confined to a thin boundary layer.

    Citation: Thomas Hudson. Gamma-expansion for a 1D confined Lennard-Jones model with point defect[J]. Networks and Heterogeneous Media, 2013, 8(2): 501-527. doi: 10.3934/nhm.2013.8.501

    Related Papers:

    [1] Thomas Hudson . Gamma-expansion for a 1D confined Lennard-Jones model with point defect. Networks and Heterogeneous Media, 2013, 8(2): 501-527. doi: 10.3934/nhm.2013.8.501
    [2] Mathias Schäffner, Anja Schlömerkemper . On Lennard-Jones systems with finite range interactions and their asymptotic analysis. Networks and Heterogeneous Media, 2018, 13(1): 95-118. doi: 10.3934/nhm.2018005
    [3] Manuel Friedrich, Bernd Schmidt . On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks and Heterogeneous Media, 2015, 10(2): 321-342. doi: 10.3934/nhm.2015.10.321
    [4] Antonio DeSimone, Martin Kružík . Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation. Networks and Heterogeneous Media, 2013, 8(2): 481-499. doi: 10.3934/nhm.2013.8.481
    [5] Laura Sigalotti . Homogenization of pinning conditions on periodic networks. Networks and Heterogeneous Media, 2012, 7(3): 543-582. doi: 10.3934/nhm.2012.7.543
    [6] Andrea Braides, Margherita Solci, Enrico Vitali . A derivation of linear elastic energies from pair-interaction atomistic systems. Networks and Heterogeneous Media, 2007, 2(3): 551-567. doi: 10.3934/nhm.2007.2.551
    [7] Leonid Berlyand, Volodymyr Rybalko . Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes. Networks and Heterogeneous Media, 2013, 8(1): 115-130. doi: 10.3934/nhm.2013.8.115
    [8] Giovanni Scilla . Motion of discrete interfaces in low-contrast periodic media. Networks and Heterogeneous Media, 2014, 9(1): 169-189. doi: 10.3934/nhm.2014.9.169
    [9] Marco Cicalese, Antonio DeSimone, Caterina Ida Zeppieri . Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers. Networks and Heterogeneous Media, 2009, 4(4): 667-708. doi: 10.3934/nhm.2009.4.667
    [10] Andrea Braides, Anneliese Defranceschi, Enrico Vitali . Variational evolution of one-dimensional Lennard-Jones systems. Networks and Heterogeneous Media, 2014, 9(2): 217-238. doi: 10.3934/nhm.2014.9.217
  • We compute a rigorous asymptotic expansion of the energy of a point defect in a 1D chain of atoms with second neighbour interactions. We propose the Confined Lennard-Jones model for interatomic interactions, where it is assumed that nearest neighbour potentials are globally convex and second neighbour potentials are globally concave. We derive the $\Gamma$-limit for the energy functional as the number of atoms per period tends to infinity and derive an explicit form for the first order term in a $\Gamma$-expansion in terms of an infinite cell problem. We prove exponential decay properties for minimisers of the energy in the infinite cell problem, suggesting that the perturbation to the deformation introduced by the defect is confined to a thin boundary layer.


    [1] R. Alicandro and M. Cicalese, A general integral representation result for continuum limits of discrete energies with superlinear growth, SIAM Journal of Mathematical Analysis, 36 (2004), 1-37. doi: 10.1137/S0036141003426471
    [2] G. Anzellotti and S. Baldo, Asymptotic development by $\Gamma$-convergence, Applied Mathematics and Optimization, 27 (1993), 105-123. doi: 10.1007/BF01195977
    [3] X. Blanc, C. Le Bris and P.-L. Lions, Atomistic to continuum limits for computational materials science, M2AN. Mathematical Modelling and Numerical Analysis, 41 (2007), 391-426. doi: 10.1051/m2an:2007018
    [4] A. Braides, "$\Gamma$-Convergence for Beginners," Oxford Lecture Series in Mathematics and its Applications, 22, Oxford University Press, Oxford, 2002. doi: 10.1093/acprof:oso/9780198507840.001.0001
    [5] A. Braides and M. Cicalese, Surface energies in nonconvex discrete systems, Mathematical Models and Methods in Applied Science, 17 (2007), 985-1037. doi: 10.1142/S0218202507002182
    [6] A. Braides, G. Dal Maso and A. Garroni, Variational formulation of softening phenomena in fracture mechanics: The one-dimensional case, Archive for Rational Mechanics and Analysis, 146 (1999), 23-58. doi: 10.1007/s002050050135
    [7] A. Braides and M. S. Gelli, Continuum limits of discrete systems without convexity hypotheses, Mathematics and Mechanics of Solids, 7 (2002), 41-66. doi: 10.1177/1081286502007001229
    [8] A. Braides and L. Truskinovsky, Asymptotic expansions by $\Gamma$-convergence, Continuum Mechanics and Thermodynamics, 20 (2008), 21-62. doi: 10.1007/s00161-008-0072-2
    [9] B. Dacorogna, "Direct Methods in the Calculus of Variations," $2^{nd}$ edition, Applied Mathematical Sciences, 78, Springer, New York, 2008.
    [10] G. Dal Maso, "An Introduction to $\Gamma$-Convergence," Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0327-8
    [11] W. E and P. Ming, Cauchy-Born rule and the stability of crystalline solids: Static problems, Archive for Rational Mechanics and Analysis, 183 (2007), 241-297. doi: 10.1007/s00205-006-0031-7
    [12] L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.
    [13] to appear in Archive for Rational Mechanics and Analysis, arXiv:1202.3858.
    [14] L. Scardia, A. Schlömerkemper and C. Zanini, Boundary layer energies for nonconvex discrete systems, Mathematical Models and Methods in Applied Science, 21 (2011), 777-817. doi: 10.1142/S0218202511005210
    [15] B. Schmidt, A derivation of continuum nonlinear plate theory from atomistic models, Multiscale Modeling & Simulation, 5 (2006), 664-694. doi: 10.1137/050646251
    [16] E. Süli and D. F. Mayers, "An Introduction to Numerical Analysis," Cambridge University Press, Cambridge, 2003.
    [17] G. Zanzotto, The Cauchy-Born hypothesis, nonlinear elasticity and mechanical twinning in crystals, Acta Crystallographica Section A, 52 (1996), 839-849. doi: 10.1107/S0108767396006654
  • This article has been cited by:

    1. Patrick van Meurs, Many-particle limits and non-convergence of dislocation wall pile-ups, 2018, 31, 0951-7715, 165, 10.1088/1361-6544/aa999e
    2. Lucia Scardia, 2016, Chapter 2, 978-3-319-26882-8, 145, 10.1007/978-3-319-26883-5_2
    3. Patrick van Meurs, Boundary-Layer Analysis of Repelling Particles Pushed to an Impenetrable Barrier, 2022, 54, 0036-1410, 1742, 10.1137/21M1420198
    4. Patrick van Meurs, 2017, Chapter 2, 978-981-10-2632-4, 15, 10.1007/978-981-10-2633-1_2
    5. Mathias Schäffner, Anja Schlömerkemper, On a $\Gamma$-Convergence Analysis of a Quasicontinuum Method, 2015, 13, 1540-3459, 132, 10.1137/140971439
    6. Georgy Kitavtsev, Stephan Luckhaus, Angkana Rüland, Surface energies arising in microscopic modeling of martensitic transformations, 2015, 25, 0218-2025, 647, 10.1142/S0218202515500153
    7. Sabine Jansen, Wolfgang König, Bernd Schmidt, Florian Theil, Distribution of Cracks in a Chain of Atoms at Low Temperature, 2021, 22, 1424-0637, 4131, 10.1007/s00023-021-01076-7
    8. Cameron L. Hall, Thomas Hudson, Patrick van Meurs, Asymptotic Analysis of Boundary Layers in a Repulsive Particle System, 2018, 153, 0167-8019, 1, 10.1007/s10440-017-0119-0
    9. Patrick van Meurs, Discrete-to-continuum limits of interacting particle systems in one dimension with collisions, 2024, 539, 0022247X, 128537, 10.1016/j.jmaa.2024.128537
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3145) PDF downloads(75) Cited by(9)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog