[1]
|
N. Alibaud, Entropy formulation for fractal conservation laws, J. Evol. Equ., 7 (2007), 145-175. doi: 10.1007/s00028-006-0253-z
|
[2]
|
F. Bartumeus, F. Peters, S. Pueyo, C. Marrase and J. Katalan, Helical lévy walks: Adjusting searching statistics to resource availability in microzooplankton, Proc. Natl. Acad. Sci., 100 (2003), 12771-12775. doi: 10.1073/pnas.2137243100
|
[3]
|
J. Bedrossian, N. Rodríguez and A. L. Bertozzi, Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion, Nonlinearity, 24 (2011), 1683-1714. doi: 10.1088/0951-7715/24/6/001
|
[4]
|
F. Ben Belgacem and P.-E. Jabin, Compactness for nonlinear transport equations, J. Funct. Anal., 264 (2013), 139-168. doi: 10.1016/j.jfa.2012.10.005
|
[5]
|
M. Bendahmane, K. H. Karlsen and J. M. Urbano, On a two-sidedly degenerate chemotaxis model with volume-filling effect, Math. Methods Appl. Sci., 17 (2007), 783-804. doi: 10.1142/S0218202507002108
|
[6]
|
P. Biler, T. Funaki and W. A. Woyczynski, Fractal Burgers equations, J. Differential Equations, 148 (1998), 9-46. doi: 10.1006/jdeq.1998.3458
|
[7]
|
P. Biler and G. Karch, Blowup of solutions to generalized Keller-Segel model, J. Evol. Equ., 10 (2010), 247-262. doi: 10.1007/s00028-009-0048-0
|
[8]
|
P. Biler, G. Karch and W. A. Woyczyński, Asymptotics for conservation laws involving Lévy diffusion generators, Studia Math., 148 (2001), 171-192. doi: 10.4064/sm148-2-5
|
[9]
|
P. Biler and W. A. Woyczyński, Global and exploding solutions for nonlocal quadratic evolution problems, SIAM J. Appl. Math., 59 (1999), 845-869 (electronic). doi: 10.1137/S0036139996313447
|
[10]
|
P. Biler and G. Wu, Two-dimensional chemotaxis models with fractional diffusion, Math. Methods Appl. Sci., 32 (2009), 112-126. doi: 10.1002/mma.1036
|
[11]
|
A. Blanchet, J. A. Carrillo and P. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), 133-168. doi: 10.1007/s00526-008-0200-7
|
[12]
|
A. Bueno-Orovio, D. Kay, V. Grau, B. Rodriguez and K. Burrage, Fractional diffusion models of cardiac electrical propagation: Role of structural heterogeneity in dispersion of repolarization, J. R. Soc. Interface, 11 (2014), 20140352. doi: 10.1098/rsif.2014.0352
|
[13]
|
N. Bournaveas and V. Calvez, The one-dimensional Keller-Segel model with fractional diffusion of cells, Nonlinearity, 23 (2010), 923-935. doi: 10.1088/0951-7715/23/4/009
|
[14]
|
M. Burger, V. Capasso and D. Morale, On an aggregation model with long and short range interactions, Nonlinear Anal. Real World Appl., 8 (2007), 939-958. doi: 10.1016/j.nonrwa.2006.04.002
|
[15]
|
M. Burger, M. Di Francesco and Y. Dolak-Struss, The Keller-Segel model for chemotaxis with prevention of overcrowding: Linear vs. nonlinear diffusion, SIAM J. Math. Anal., 38 (2006), 1288-1315 (electronic). doi: 10.1137/050637923
|
[16]
|
M. Burger, Y. Dolak-Struss and C. Schmeiser, Asymptotic analysis of an advection-dominated chemotaxis model in multiple spatial dimensions, Commun. Math. Sci., 6 (2008), 1-28. doi: 10.4310/CMS.2008.v6.n1.a1
|
[17]
|
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306
|
[18]
|
L. A. Caffarelli and P. E. Souganidis, Convergence of nonlocal threshold dynamics approximations to front propagation, Arch. Ration. Mech. Anal., 195 (2010), 1-23. doi: 10.1007/s00205-008-0181-x
|
[19]
|
L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. (2), 171 (2010), 1903-1930. doi: 10.4007/annals.2010.171.1903
|
[20]
|
S. Cifani and E. R. Jakobsen, Entropy solution theory for fractional degenerate convection-diffusion equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 413-441. doi: 10.1016/j.anihpc.2011.02.006
|
[21]
|
N. V. Chemetov, Nonlinear hyperbolic-elliptic systems in the bounded domain, Commun. Pure Appl. Anal., 10 (2011), 1079-1096. doi: 10.3934/cpaa.2011.10.1079
|
[22]
|
N. Chemetov and W. Neves, The generalized Buckley-Leverett System: Solvability, Arch. Ration. Mech. Anal., 208 (2013), 1-24. doi: 10.1007/s00205-012-0591-7
|
[23]
|
G.-Q. Chen, Q. Ding and K. H. Karlsen, On nonlinear stochastic balance laws, Arch. Ration. Mech. Anal., 204 (2012), 707-743. doi: 10.1007/s00205-011-0489-9
|
[24]
|
G. M. Coclite, K. H. Karlsen, S. Mishra and N. H. Risebro, A hyperbolic-elliptic model of two-phase flow in porous media - existence of entropy solutions, Int. J. Numer. Anal. Model., 9 (2012), 562-583.
|
[25]
|
A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511-528. doi: 10.1007/s00220-004-1055-1
|
[26]
|
A. Córdoba and D. Córdoba, A pointwise estimate for fractionary derivatives with applications to partial differential equations, Proc. Natl. Acad. Sci. USA, 100 (2003), 15316-15317. doi: 10.1073/pnas.2036515100
|
[27]
|
A. Debussche and J. Vovelle, Scalar conservation laws with stochastic forcing, J. Funct. Anal., 259 (2010), 1014-1042. doi: 10.1016/j.jfa.2010.02.016
|
[28]
|
Y. Dolak and C. Schmeiser, The Keller-Segel model with logistic sensitivity function and small diffusivity, SIAM J. Appl. Math., 66 (2005), 286-308 (electronic). doi: 10.1137/040612841
|
[29]
|
J. Droniou, T. Gallouet and J. Vovelle, Global solution and smoothing effect for a non-local regularization of a hyperbolic equation, J. Evol. Equ., 3 (2003), 499-521. doi: 10.1007/s00028-003-0503-1
|
[30]
|
J. Droniou and C. Imbert, Fractal first-order partial differential equations, Arch. Ration. Mech. Anal., 182 (2006), 299-331. doi: 10.1007/s00205-006-0429-2
|
[31]
|
C. Escudero, Chemotactic collapse and mesenchymal morphogenesis, Phys Rev E Stat Nonlin Soft Matter Phys, 72 (2005), 022903. doi: 10.1103/PhysRevE.72.022903
|
[32]
|
C. Escudero, The fractional Keller-Segel model, Nonlinearity, 19 (2006), 2909-2918. doi: 10.1088/0951-7715/19/12/010
|
[33]
|
L. C. Evans, Partial Differential Equations, volume 19 of {Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, second edition, 2010. doi: 10.1090/gsm/019
|
[34]
|
T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3
|
[35]
|
S. Jarohs and T. Weth, Asymptotic symmetry for a class of nonlinear fractional reaction diffusion equations, Discrete and Continuous Dynamical Systems-A, 34 (2014), 2581-2615. doi: 10.3934/dcds.2014.34.2581
|
[36]
|
K. H. Karlsen and S. Ulusoy, Stability of entropy solutions for Lévy mixed hyperbolic-parabolic equations, Electron. J. Differential Equations, 2011 (2011), 1-23.
|
[37]
|
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, Journal of Theoretical Biology, 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5
|
[38]
|
E. F. Keller and L. A. Segel, Model for chemotaxis, Journal of Theoretical Biology, 30 (1971), 225-234. doi: 10.1016/0022-5193(71)90050-6
|
[39]
|
A. Kiselev, F. Nazarov and R. Shterenberg, Blow up and regularity for fractal Burgers equation, Dyn. Partial Differ. Equ., 5 (2008), 211-240. doi: 10.4310/DPDE.2008.v5.n3.a2
|
[40]
|
J. Klafter, B. S. White and M. Levandowsky, Microzooplankton feeding behavior and the Lévy walks, Biological Motion, Lecture notes in Biomathematics (ed. W. Alt and G. Hoffmann), Springer, 89 (1990), 281-296. doi: 10.1007/978-3-642-51664-1_20
|
[41]
|
S. N. Kružkov, Results on the nature of the continuity of solutions of parabolic equations, and certain applications thereof, Mat. Zametki, 6 (1969), 97-108.
|
[42]
|
S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255.
|
[43]
|
M. Levandowsky, B. S. White and F. L. Schuster, Random movements of soil amebas, Acta Protozool, 36 (1997), 237-248.
|
[44]
|
F. Matthäus, M. S. Mommer, T. Curk and J. Dobnikar, On the origin and characteristics of noise-induced Lévy walks of E. Coli, PLoS ONE, 6 (2011), e18623.
|
[45]
|
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1-77. doi: 10.1016/S0370-1573(00)00070-3
|
[46]
|
F. Otto, L1−contraction and uniqueness for quasilinear elliptic-parabolic equations, C. R. Acad. Sci. Paris Sér I Math., 321 (1995), 1005-1010. doi: 10.1006/jdeq.1996.0155
|
[47]
|
C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338. doi: 10.1007/BF02476407
|
[48]
|
B. Perthame and A.-L. Dalibard, Existence of solutions of the hyperbolic Keller-Segel model, Trans. Amer. Math. Soc., 361 (2009), 2319-2335. doi: 10.1090/S0002-9947-08-04656-4
|
[49]
|
J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218. doi: 10.1093/biomet/38.1-2.196
|
[50]
|
Y. Sugiyama, Application of the best constant of the Sobolev inequality to degenerate Keller-Segel models, Adv. Differential Equations, 12 (2007), 121-144.
|
[51]
|
C. M. Topaz, A. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation, Bull. Math. Biol., 68 (2006), 1601-1623. doi: 10.1007/s11538-006-9088-6
|
[52]
|
G. Wu and X. Zheng, On the well-posedness for Keller-Segel system with fractional diffusion, Math. Methods Appl. Sci., 34 (2011), 1739-1750. doi: 10.1002/mma.1480
|