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Abstract. We investigate a Keller-Segel model with quorum sensing and a

fractional diffusion operator. This model describes the collective cell movement

due to chemical sensing with flux limitation for high cell densities and with
anomalous media represented by a nonlinear, degenerate fractional diffusion

operator. The purpose of this paper is to introduce and prove the existence of

a properly defined entropy solution.

1. Introduction. Chemotaxis is the active motion of organisms influenced by
chemical gradients and it has been studied by many authors. The Keller-Segel
model, introduced around 1970 [37, 38] (cf. also [47]), is used to describe aggre-
gation of slime mold amoebae and this model has become one of the most widely
studied models in mathematical biology. A special case of the Keller-Segel model
is the following system of partial differential equations:

ut = div(ε∇u− u(1− u)∇S), −∆S + S = u. (1)

It has been considered very recently by several authors [15, 16, 28, 48]. The cell-
flux on the right hand side of (1) comprises two counteracting phenomena: random
motion of cells described by the Fick’s law and cell movement in the direction of
the gradient of the chemical S.

A chemotaxis model of the form (1), but with a parabolic equation for S, was
first introduced by Hillen and Painter [34], where it was shown that the additional
volume-filling term u(1−u) in the cell-flux leads to global existence of solutions. See
[15, 16, 28, 34, 48] and some of the references cited therein for further background
information about Keller-Segel type systems. Diffusion effects are generally included
in these kind of models to account for the dispersal of organisms. Traditionally, a
linear diffusion operator is employed but more recently there is a growing interest in
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models with degenerate and nonlinear diffusion terms accounting for over-crowding
effects, see [3, 5, 11, 14, 50, 51].

Nonlocal diffusion operators, such as the fractional Laplacian, have received a
lot of attention recently from the PDE community, see for example [1, 6, 8, 17, 18,
19, 20, 29, 36] and the references cited therein.

The spatiotemporal distribution of a population density of random walkers leads
to diffusion [49]. On the other hand, biological organisms sometimes seem to adopt
Lévy-flights and superdiffusion (the mean-square displacement of the position of
the dispersing population depends superlinearly on time) to enhance their search
strategies [2, 40, 43], in which case dispersal becomes better described by fractional
diffusion operators [2, 7, 9, 10, 13, 31, 32, 40, 44, 45, 52]. Indeed, the so-called Lévy
flight foraging hypothesis states that since Lévy flights optimize random searches,
organisms have evolved to exploit Lévy flights. For example, there is evidence that
fractional diffusion better explains the feeding strategies of microzooplankton [13,
32]. Likewise, there are circumstances in which a cellular population self-interacting
chemotactically, is well described by a fractional diffusion system [32]. Moreover,
fractional diffusion models have been proposed for cardiac electrical propagation in
structurally heterogeneous excitable media [12].

Motivated by the works just mentioned, in the model below the density of cells
move with a collective chemotactic attraction through a chemical potential in an
anomalous medium, represented by a nonlinear nonlocal diffusion term.

The subject of this paper is the existence of properly defined generalized solutions
of the following Keller-Segel type model, which contains a hyperbolic term as well
as a nonlinear, degenerate nonlocal (fractional) diffusion term:

ut + div(∇Sf(u)) = ∆αβ(u), −∆S + S = u, (2)

where ∆α := −(−∆)
α
2 is the fractional Laplacian with α ∈ (0, 2) and{

β : R→ R Lipschitz, non-decreasing; β(0) = 0;

f(u) = u(1− u).
(3)

In (2), u = u(t, x), S = S(t, x), (t, x) ∈ QT := (0, T ) × Ω, d > 1, and T > 0 is a
fixed final time. We augment (2) with initial data{

u(0, x) = u0(x), u0 ∈ L1(Ω) ∩ L∞(Ω);

0 ≤ u0 ≤ 1 a.e. in Ω,
(4)

and the boundary condition

∇S · nΩ = 0 on Ω. (5)

The problem is posed on Ω, which is a bounded domain in Rd, with smooth (say,
C2) boundary and nΩ(x) is the outward normal to Ω at x ∈ ∂Ω. We note that
the normal flux in the equation for u vanishes at ∂Ω and thus the boundary is
characteristic, for this reason one does not need boundary conditions for u. This
prevents some specific difficulties, see [46, 48].

Since there is a nonlocal term in the equation for u we have to specify u in the
whole space. We use a (complementary) Dirichlet boundary condition on Rd \ Ω:

u ≡ 0 on Rd \ Ω. (6)

The nonlinearity β is assumed to be non-decreasing; in particular, β ≡ Const
is allowed and thus the hyperbolic Keller-Segel model studied in [48] is a special
case of (2). The model in (2) represents the density u(t, x) of cells moving with a
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collective chemotactic attraction through the chemical potential S in an “anomalous
medium” represented by the nonlocal diffusion term ∆αβ(u). The sensitivity of the
cells is limited by the “quorum sensing” part (1 − u) of f(u). The restrictions on
f, u0 will imply that the solutions satisfy 0 ≤ u(·, ·) ≤ 1.

The fractional Laplacian ∆α on Rd can be defined by

∆̂αu(ω) = |ω|α û(ω), ω ∈ Rd, (7)

where û represents the Fourier transform of u. Alternatively, it can be defined using
the Cauchy principal value:

∆αu(x) = Cα,d P.V.

∫
|z|>0

u(x+ z)− u(x)

|z|d+α
dz, (8)

for some normalizing factor Cα,d, α ∈ (0, 2), and v is a sufficiently regular function
(say, C∞c ). A proof of (8) for the case d = 2 can be found in, e.g., [25]. The formula
still remains valid in the general case d > 2, see [26]. For sufficiently regular v the
above formulas are equivalent to the following representation:

∆αu(x) = Cα,d

∫
Rd\{0}

[
u(x+ z)− u(x)− z · ∇u1|z|<1

]
π(dz),

where

π(dz) =
1

|z|d+α
1|z|<1 dz, α ∈ (0, 2),

and Cα,d is a normalizing factor. For a proof, see for example [30]. In view of this,
we will in the following interpret ∆αβ(u) as

∆αβ(u) = L [β(u(t, x))]

:=

∫
Rd\{0}

[
β(u(t, x+ z))− β(u(t, x))− z · ∇β(u)1|z|<1

]
π( dz).

(9)

Since the analysis does not depend on Cα,d, we have set Cα,d = 1.
Since we assume β(0) = 0 the integral representation of the nonlinear nonlocal

operator restricted to the bounded domain Ω makes sense. In fact, the nonlocal
operator L has to be replaced by the Freidrich’s extension of the restriction of L to
the space C∞c (Ω) ⊂ L2(Ω). In the following we identify L2(Ω) with the space{

u ∈ L2(Rd) : u ≡ 0 on Rd \ Ω
}
.

This new operator has the form domain (“the largest domain on which a self-adjoint
operator makes sense weakly”)

H
α/2
0 (Ω) =

{
u ∈ Hα/2(Rd) : u ≡ 0 on Rd \ Ω

}
.

In probabilistic terms, the operator coincides with the generator of the α-stable
process in Ω killed upon leaving Ω. We note that for u ∈ C∞c (Ω), we have the
representation (neglecting the positive constant)

(−∆)α/2u(x) = P. V.

∫
Rd

u(x)− u(y)

|x− y|d+α
dy

= P. V.

∫
Ω

u(x)− u(y)

|x− y|d+α
dy + u(x)κΩ(x),

(10)

for a.e. x ∈ Ω, where

κΩ(x) :=

∫
Rd\Ω

|x− y|−d−α dy, for x ∈ Ω.
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The first term in (10) describes the jump behavior of the α-stable process inside Ω.
The function κΩ is called the killing measure. See [35] and some of the references
cited therein for the motivation of this definition. Although the function u is 0
outside of Ω and β(0) = 0 we note that z can be any nonzero real number in (9)
and this representation of the nonlocal operator is still valid. Note also that though
x ∈ Ω and z ∈ Rd \ {0}, x+ z may be in the set Ω so that we have the integral with
respect to z over all Rd \ {0}. Thus, we define our nonlocal operator as in (9). We
note that we can split the integral in (9) over an integral in Ω and on Ωc as in (10)
but this is unnecessary.

As mentioned above, without the fractional diffusion operator (β ≡ const), (2) is
a hyperbolic-elliptic system first analyzed by Perthame and Dalibard [48]. One can
view the the first equation in (2) (β ≡ Const) as a quasilinear hyperbolic equation
with a nonlinear flux function V (t, x)f(u) depending on a velocity field V = ∇S
with minimal regularity. This system, as well as our system (2), does not possess
BV estimates and lacks contraction properties. In [48], the authors circumvent the
lack of strong compactness by passing to the weak limit in a kinetic formulation of
the viscosity approximation of the system, thereby arriving at a kinetic formulation
for the weak limit. Exploiting the specific structure of this formulation, the authors
deduce a posteriori the strong subsequential convergence. For other applications of
this “propagation of compactness” argument, see [22, 24] for some models describing
two-phase flow in porous media, and [21] for a mean-field vortex model arising in
superconductivity theory.

The purpose of this paper is to prove the existence of an entropy solution, i.e., a
pair (u, S) of functions satisfying (2) in the weak sense as well as a family of entropy
inequalities adapted from [36]. As in [48], we will prove existence of solution by
passing to the limit as ε→ 0 in a sequence uε of solutions to a parabolic regularized
system. However, we will employ a completely different argument to arrive at
the required strong convergence. Inspired by a “continuous dependence on the
nonlinearities” argument in [23] yielding fractional BV estimates (see also [27]), in
combination with a recent result of Ben Belgacem and Jabin [4] addressing “low
regularity” velocity fields V = ∇S, we will exhibit an ε-uniform spatial modulus of
continuity: for 0 < t < T and any δ > 0,

sup
|y|≤δ

∫
|uε(t, x+ y)− uε(t, x)| dx = o(δ).

Relying on a well-known technique of Kružkov [41], we use this spatial estimate
to establish an ε-uniform temporal L1-continuity estimate. These estimates are
enough to ensure the strong convergence of (uε, Sε) along a subsequence to a limit
point (u, S). The limit is easily shown to be an entropy solution.

Finally, we mention that a number of authors have studied questions regarding
existence, uniqueness, regularity, and temporal asymptotics for (scalar) quasilinear
hyperbolic equations perturbed by Lévy operators, see [1, 6, 8, 20, 29, 36].

The remaining part of this paper is organized as follows: In Section 2 we present
the notion of solution and state the main result (Theorem 2.2). The proof of the
main theorem is given in Section 3, while Section A is devoted to a sketch of an
existence result for the parabolic regularized system.

2. Notion of solution and the main result. Given any convex C2 entropy
function η : R → R, we define the corresponding entropy flux q : R → R by
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q′(u) = η′(u)f ′(u). We refer to (η, q) as an entropy pair. Given an entropy η and
the function β we define qβ : R→ R by q′β = η′β′.

Fix a small number κ > 0, and let us split the non-local diffusion operator L,
which is defined in (9), into two parts

L[φ] =

∫
|z|≤κ

[
φ(t, x+ z)− φ(t, x)− z · ∇φ1|z|<1

]
π(dz)

+

∫
|z|>κ

[
φ(t, x+ z)− φ(t, x)− z · ∇φ1|z|<1

]
π(dz)

=: Lκ[φ] + Lκ[φ], ∀φ ∈ C2.

Before we continue we need to introduce some notation. Let ϕ = ϕ(t, x, s, y) be a
test function in the doubled variables (t, x, s, y). To simplify the presentation, we
introduce the following notation (with ∇x+y being short-hand for ∇x +∇y)

Lx[ϕ] :=

∫
Rd\{0}

[
ϕ(t, x+ z, s, y)− ϕ− z · ∇xϕ1|z|<1

]
π(dz),

Ly[ϕ] =

∫
Rd\{0}

[
ϕ(t, x, s, y + z)− ϕ− z · ∇yϕ1|z|<1

]
π(dz),

Lx+y[ϕ] =

∫
Rd\{0}

[
ϕ(t, x+ z, s, y + z)− ϕ− z · ∇x+yϕ1|z|<1

]
π(dz).

Similar to the splitting for L, we also let

Lx = Lx,κ + Lκx, Ly = Ly,κ + Lκy , Lx+y = Lx+y,κ + Lκx+y.

We also need to introduce the operator L̃κ defined by writing

Lκ[ϕ] = L̃κ[ϕ]−

(∫
|z|>κ

z 1|z|<1 π(dz)

)
· ∇xϕ,

with similar definitions for L̃κx, L̃κy , and L̃κx+y. Let us motivate the notion of entropy
solution to be presented in Definition 2.1 below. Define Qβ : R→ R by

Q′β = η′ ◦ β−1,

where β−1 denotes, say, the left-continuous inverse of the non-decreasing function
β. One can check that

Qβ(β(u)) = qβ(u).

By the convexity of Qβ ,

η′(u(t, x))
(
β(u(t, x+ z))− β(u(t, x))− z · ∇β(u(t, x))1|z|<1

)
= Q′β(β(u(t, x)))

(
β(u(t, x+ z))− β(u(t, x))− z · β(u(t, x))1|z|<1

)
≤ Qβ(β(u(t, x+ z)))−Qβ(β(u(t, x)))− z · ∇Qβ(β(u(t, x)))1|z|<1

= qβ(u(t, x+ z))− qβ(u(t, x))− z · ∇qβ(u(t, x))1|z|<1.

Therefore,

η′(u(t, x))Lκ[β(u)] ≤ Lκ[qβ(u)],

and so for any non-negative φ ∈ C∞c (Ω),∫
Ω

η′(u(t, x))Lκ[β(u)]φ(x) dx
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≤
∫

Ω

Lκ [qβ(u(x))]φ(x) dx =

∫
Ω

qβ(u(x))Lκ[φ] dx.

Summarizing, for any κ ∈ (0, 1),∫
Ω

η′(u(x))L[β(u)]φ(x) dx

≤
∫

Ω

qβ(u(x))Lκ[φ] dx+

∫
Ω

η′(u(x))Lκ[β(u)]φ(x) dx

=

∫
Ω

qβ(u(x))Lκ[φ]dx+

∫
Ω

η′(u(x))L̃κ[β(u)]φ(x) dx

+

∫
Ω

qβ,κ(u(x)) · ∇φdx,

where qβ,κ : R→ Rd is defined by

qβ,κ(u) = qβ(u)

(∫
|z|>κ

z 1|z|<1 π(dz)

)
,

and we have used integration by parts.
The formal calculations above motivate the following definition.

Definition 2.1. An entropy solution of the initial-value problem (2)-(4) is a pair
(u, S) of measurable functions u, S : QT → R satisfying the following conditions:

(D.1) u ∈ L∞(QT ), u ∈ L∞(0, T ;L1(Ω)), S ∈ L∞(0, T ;W 2,p(Ω)) for any p in
[1,∞), and 0 ≤ u(t, x), S(t, x) ≤ 1 for a.e. (t, x) ∈ QT ;

(D.2) For any entropy pair (η, q),∫∫
QT

(
η(u)ϕt +

(
q(u)∇S + qβ,κ(u)

)
· ∇ϕ

+ (u− S)
[
q(u)− f(u)η′(u)

]
ϕ

)
dx dt

+

∫∫
QT

qβ(u)Lκ[ϕ] dx dt+

∫∫
QT

η′(u)L̃κ[β(u)]ϕdx dt

+

∫
Ω

η(u0)ϕ(0, x) dx ≥ 0,

(11)

for all non-negative ϕ ∈ C∞c ([0, T )× Ω), for any κ ∈ (0, 1).

Remark 1. We comment that entropy inequalities like the ones above imply
uniqueness and L1 contraction properties for a class of scalar equations, see for
example [1, 20, 36].

Without the fractional diffusion operator, the above notion of solution coincides
with the one utilized in [48] for a hyperbolic-elliptic Keller-Segel system.

Here is the main result of our paper.

Theorem 2.2. Suppose that the nonlinearities f, β satisfy (3), and consider the
system (2) with initial condition (4), Neumann boundary condition (5), and com-
plementary Dirichlet condition (6). Then there exists an entropy solution according
to Definition 2.1.
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3. Proof of Theorem 2.2. For the proof of Theorem 2.2 we will regularize the
system (2) by adding an artificial viscosity term ε∆, ε > 0. Indeed, we will consider
classical solutions (uε, Sε) of the parabolic regularized system

uεt + div (∇Sε(t, x)f(uε)) = L [β(uε)] + ε∆uε, t > 0, x ∈ Ω,

−∆Sε + Sε = uε, in Ω,

uε
∣∣
t=0

= uε0,

uε ≡ 0 in Rd \ Ω,

∇Sε · nΩ = 0 on ∂Ω,

(12)

with smooth initial data uε0 (→ u0 in L1) satisfying the conditions in (4). The
non-local diffusion operator L is defined in (9). It is standard to construct a unique
solution (uε, Sε) ∈ L2

loc(R+;H1(Ω))×L∞(R+;H1(Ω)) to this system for each fixed
ε > 0. Indeed, it can be done using the Galerkin method and the compactness
argument, see Chapter 5 in [33] and [39]. See [48] for a very similar argument,
which uses the semigroup approach. For the convenience of the reader we sketch a
proof in the Appendix A.

Our goal is to pass to the limit ε → 0 in the viscous problem (12) and show
that the limit function is an entropy solution of the original problem (2) with initial
condition (4). To achieve that we will derive a series of a priori estimates implying
strong convergence of (uε, Sε), at least along a subsequence as ε → 0. The main
step of our analysis is to establish spatial and temporal translation estimates for uε

implying strong L1 compactness.
However, before we do that let us list the more immediate a priori estimates

satisfied by the solution (uε, Sε) of (17) (cf. the Appendix): For all 1 ≤ p <∞ and
for any finite T > 0, the following ε-uniform estimates hold:

0 ≤ uε(t, x) ≤ 1 a.e. in R+ × Ω; ‖uε‖L∞([0,T ];L1(Ω) ≤ C1(T );

0 ≤ Sε(t, x) ≤ 1 a.e. in R+ × Ω; ‖Sε‖L∞(R+;W 2,p(Ω)) ≤ C2(d, p);∫ T

0

∫∫
Rd×Rd

√
ε ‖∇uε‖L2((0,T )×Ω) + ‖∂tSε‖L2((0,T );H1(Ω)) ≤ C3(d, T ).

(13)

3.1. Spatial translation estimate. The goal is to prove an L1 spatial translation
estimate for uε that is independent of the regularizing parameter ε. As a first main
step in that direction, we will prove

Lemma 3.1. Let J̃δ be a nonnegative C∞(Rd) kernel with support in {|x| ≤ 2},
where we assume without loss of generality that the set {|x| ≤ 2} is included in Ω
(otherwise we just need to modify the arguments slightly),

J̃δ(x) =
1

(|x|2 + δ2)d/2
, for |x| ≤ 1, (14)

and J̃δ is independent of δ on Rd \ {|x| < 1}. Define Jδ : Rd → R by

Jδ(x) =
Cδ
|log δ|

J̃δ(x), with Cδ chosen such that

∫
Rd
Jδ(

x
2 ) dx = 1. (15)

Let ψ ∈ C∞c (Ω) be an arbitrary nonnegative cut-off function. For any t ∈ [0, T ]
with T > 0 finite,
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Ω×Ω

|uε(t, x)− uε(t, y)| Jδ(x−y2 )ψ(x+y
2 ) dx dy

≤ CT
(∥∥D2ψ

∥∥
L∞

+
C

| log(δ)|
+ ε ‖∆ψ‖L∞ + τ(δ)

)
,

(16)

where CT > 0 is a constant that is independent of ε and τ(δ) is a non-decreasing
continuous function with τ(0) = 0.

Remark 2. The function Jδ(·/2) is a smooth convolution kernel, and the constant
Cδ defined in (15) is bounded from below and from above independently of δ.

Proof. To prove Lemma 3.1 we will employ a doubling-of-variables argument à la
Kružkov [42], along with some recent ideas [4] for handling velocity fields with low
regularity. To this end, fix ε > 0, and let uε(t) = uε(t, x) be the solution to the
regularized problem

∂tu
ε + divx (∇Sε(t, x)f(uε)) = L [β(uε)] + ε∆xu

ε. (17)

with initial data uε(0, x) = u0(x) and −∆xS
ε(t, x) + Sε(t, x) = uε(t, x).

Furthermore, let vε(t) = vε(t, y) be the solution to the regularized problem

∂tv
ε + divy (∇Sε(t, y)f(vε)) = L [β(vε)] + ε∆yv

ε, (18)

with initial data vε(0, y) = u0(y) and −∆yS
ε(t, y) + Sε(t, y) = uε(t, y). Clearly, by

uniqueness of regular solutions to (12), vε(t, y) = uε(t, y).
In what follows, C denotes a generic constant, which may depend on the time

interval considered, uniform bounds on the initial data or on ∇Sε, which never
depends on the regularization parameters δ or ε.

Given an entropy function η(·) with η(0) = 0 and η′(·) odd, we introduce the
associated entropy flux q(u, v) =

∫ u
v
η′(ξ − v)f ′(ξ) dξ. Subtracting (18) from (17)

and subsequently applying the chain rule, we obtain

∂

∂t
η(uε − vε)

= −η′(uε − vε)
(

divx (∇Sε(x)f(uε))− divy (∇Sε(y)f(vε))
)

+ η′(uε − vε)
(
ε∆xu

ε − ε∆yv
ε
)

+ η′(uε − vε)
(
L [β(uε)]− L [β(vε)]

)
.

(19)

We first observe that

η′(uε − vε)divx (∇Sε(x)f(uε))

= divx (∇Sε(x)q(uε, vε)) + ∆Sε(x)
(
η′(uε − vε)f(uε)− q(uε, vε)

)
.

Moreover,

η′(uε − vε)divy (∇Sε(y)f(vε))

= −divy (∇Sε(y)q(vε, uε)) + ∆Sε(y)
(
η′(uε − vε)f(vε) + q(vε, uε)

)
= −divy (∇Sε(x)q(vε, uε)) + divy

(
(∇Sε(x)−∇Sε(y)) q(vε, uε)

)
+ ∆Sε(y)

(
η′(uε − vε)f(vε) + q(vε, uε)

)
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= −divy (∇Sε(x)q(uε, vε)) + divy

(
∇Sε(x) (q(uε, vε)− q(vε, uε))

)
+ divy

(
(∇Sε(x)−∇Sε(y)) q(vε, uε)

)
+ ∆Sε(y)

(
η′(uε − vε)f(vε) + q(vε, uε)

)
.

Consequently,

− η′(uε − vε)
(

divx (∇Sε(x)f(uε))− divy (∇Sε(y)f(vε))
)

= −(∇x +∇y) · (∇Sε(x)q(uε, vε))

+ divy

(
∇Sε(x) (q(uε, vε)− q(vε, uε))

)
+ divy

(
(∇Sε(x)−∇Sε(y)) q(vε, uε)

)
−∆Sε(x)

(
η′(uε − vε)f(uε)− q(uε, vε)

)
+ ∆Sε(y)

(
η′(uε − vε)f(vε) + q(vε, uε)

)
.

Next, note that

η′(uε − vε)
(
ε∆xu

ε − ε∆yv
ε
)

=
(
ε∆x + 2ε∇x · ∇y + ε∆y

)
η(uε − vε)

− η′′(uε − vε)
∣∣√ε∇xuε −√ε∇yvε∣∣2 .

Inserting our findings into (19), we arrive at

∂

∂t
η(uε − vε)

= −(∇x +∇y) · (∇Sε(x)q(uε, vε))

+ divy

(
∇Sε(x) (q(uε, vε)− q(vε, uε))

)
+ divy

(
(∇Sε(x)−∇Sε(y)) q(vε, uε)

)
−∆Sε(x)

(
η′(uε − vε)f(uε)− q(uε, vε)

)
+ ∆Sε(y)

(
η′(uε − vε)f(vε) + q(vε, uε)

)
+
(
ε∆x + 2ε∇x · ∇y + ε∆y

)
η(uε − vε)

− η′′(uε − vε)
∣∣√ε∇xuε −√ε∇yvε∣∣2

+ η′(uε − vε)
(
L [β(uε)]− L [β(vε)]

)
.

(20)

We take 0 ≤ φδ = φδ(x, y) ∈ C∞c (Ω× Ω) to be of the form

φδ(x, y) =: Jδ(
x−y

2 )ψ(x+y
2 ), (21)

where Jδ(·) is the kernel defined in (15) and 0 ≤ ψ ∈ C∞c (Ω) is a cut-off function.
By an approximation argument, we can allow for cut-off functions ψ ∈ W 2,∞ that
are compactly supported in Ω and satisfy

|∇ψ(x)| ≤ C0ψ(x).
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We integrate (20) against the test function φδ defined in (21), yielding∫ t

0

∫∫
Ω×Ω

η(uε(t, x)− vε(t, y))φδ(x, y) dx dy

−
∫ t

0

∫∫
Ω×Ω

η(uε0(x)− uε0(y))φδ(x, y) dx dy ≤ I1
c + I2

c + I3
c + I4

c + Id + Il,

where

I1
c := −

∫ t

0

∫∫
Ω×Ω

(∇x +∇y) · (∇Sε(x)q(uε, vε))φδ(x, y) dx dy ds,

I2
c :=

∫ t

0

∫∫
Ω×Ω

divy

(
∇Sε(x) (q(uε, vε)− q(vε, uε))

)
φδ(x, y) dx dy ds,

I3
c :=

∫ t

0

∫∫
Ω×Ω

divy

(
(∇Sε(x)−∇Sε(y)) q(vε, uε)

)
φδ(x, y) dx dy ds,

I4
c :=

∫ t

0

∫∫
Ω×Ω

(
−∆Sε(x)

(
η′(uε − vε)f(uε)− q(uε, vε)

)
+ ∆Sε(y)

(
η′(uε − vε)f(vε) + q(vε, uε)

))
φδ(x, y) dx dy ds,

Id :=

∫ t

0

∫∫
Ω×Ω

(
ε∆x + 2ε∇x · ∇y + ε∆y

)
η(uε − vε)φδ(x, y) dx dy ds,

Il :=

∫ t

0

∫∫
Ω×Ω

η′(uε − vε)
(
L [β(uε)]− L [β(vε)]

)
φδ(x, y) dx dy ds.

One can easily check that

(∇x +∇y)φδ(x, y) = Jδ(
x−y

2 )∇ψ(x+y
2 ),(

∆x + 2∇x · ∇y + ∆y

)
φδ(x, y) = Jδ(

x−y
2 )∆ψ(x+y

2 ).

In view of these two relations, integrating by parts gives

I1
c =

∫ t

0

∫∫
Ω×Ω

Jδ(
x−y

2 )∇ψ(x+y
2 ) · ∇Sε(x) q(uε, vε) dx dy ds,

I2
c = −

∫ t

0

∫∫
Ω×Ω

(q(uε, vε)− q(vε, uε))∇Sε(x) · ∇yφδ(x, y) dx dy ds,

I3
c = −

∫ t

0

∫∫
Ω×Ω

q(vε, uε) (∇Sε(x)−∇Sε(y)) · ∇yφδ(x, y) dx dy ds,

Id = −ε
∫ t

0

∫∫
Ω×Ω

η(uε(s, x)− vε(s, y))Jδ(
x−y

2 )∆ψ(x+y
2 ) dx dy ds,

In what follows, we will utilize the Kružkov entropy and corresponding entropy
fluxes, i.e.,

η(u− v) = |u− v| , q(u, v) = sgn(u− v)(f(u)− f(v)).

We continue as follows:∣∣I1
c

∣∣ ≤ ∫ t

0

∫∫
Ω×Ω

Jδ(
x−y

2 )
∣∣∇ψ(x+y

2 )
∣∣ |∇Sε(x)| |uε(s, x)− vε(s, y)| dx dy ds
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≤ C0 ‖∇Sε‖L∞
∫ t

0

∫∫
Ω×Ω

|uε(s, x)− vε(s, y)| Jδ(x−y2 )ψ(x+y
2 ) dx dy ds,

I2
c = 0,∣∣I3
c

∣∣ ≤ ∫ t

0

∫∫
Ω×Ω

|uε(s, x)− vε(s, y)|
∣∣(∇Sε(x)−∇Sε(y)) · ∇yJδ(x−y2 )

∣∣
× ψ(x+y

2 ) dx dy ds

+ C ‖∇Sε‖L∞
∫ t

0

∫∫
Ω×Ω

|uε(s, x)− vε(s, y)|ψ(x+y
2 )Jδ(

x−y
2 ) dx dy ds,

|Id| ≤ C̃ ε
∫ t

0

∫∫
Ω×Ω

|uε(s, x)− vε(s, y)| Jδ(x−y2 )∆ψ(x+y
2 ) dx dy ds ≤ C ε ‖∆ψ‖L∞ .

Observe next that

I4
c =

∫ t

0

∫∫
Ω×Ω

(
−∆Sε(x) sgn(uε − vε)f(vε) + ∆Sε(y) sgn(uε − vε)f(uε)

)
× φδ(x, y) dx dy ds

=

∫ t

0

∫∫
Ω×Ω

(
∆Sε(x)q(uε, vε) + (∆Sε(y)−∆Sε(x)) sgn(uε − vε)f(uε)

)
× φδ(x, y) dx dy ds.

Regarding the “Lévy term” Il, let L̃κ,Lx,κ, and Ly,κ be the quantities defined
at the beginning of Section 2. Let us also introduce the functions

qβ(u, v) = |β(u)− β(v)| ,

qβ,κ(u, v) = |β(u)− β(v)|

(∫
|z|>κ

z 1|z|<1 π(dz)

)
, κ ∈ (0, 1).

Now following the arguments leading up to Definition 2.1, we can write

Il :=

∫ t

0

∫∫
Ω×Ω

qβ,κ(uε, vε) · ∇x+yφδ(x, y) dx dy ds+ Il,κ + Iκl ,

with

Il,κ :=

∫ t

0

∫∫
Ω×Ω

qβ(uε, vε)
(
Lx,κ [φδ] + Ly,κ [φδ]

)
dx dy ds,

and

Iκl =

∫ t

0

∫∫
Ω×Ω

sgn(uε − vε)
(
L̃κ [β(uε)] (t, x)− L̃κ [β(vε)] (s, y)

)
× φδ(x, y) dx dy ds.

One can easily verify that

|Il,κ| = o(κ), independently of δ.

Moreover, arguing as in [36], it follows that

Iκl ≤
∫ t

0

∫∫
Ω×Ω

qβ(uε, vε)L̃κx+y[φδ] dx dy ds.



192 KENNETH H. KARLSEN AND SÜLEYMAN ULUSOY

Let us introduce a function Qε,δ(t), defined for t ≥ 0 by

Qε,δ(t) :=

∫∫
Ω×Ω

|uε(t, x)− vε(t, y)| Jδ(x−y2 )ψ(x+y
2 ) dx dy,

Qε,δ(0) :=

∫∫
Ω×Ω

|uε0(x)− uε0(y)| Jδ(x−y2 )ψ(x+y
2 ) dx dy.

Summarizing our findings so far, we have arrived at the inequality

Qε,δ(t) ≤ Qε,δ(0) + C ε ‖∆ψ‖L∞ +
C

| log(δ)|
+ C

∫ t

0

Qε,δ(s) ds

+

∫ t

0

∫∫
Ω×Ω

|uε(s, x)− vε(s, y)|

×
∣∣(∇Sε(x)−∇Sε(y)) · ∇yJδ(x−y2 )

∣∣ψ(x+y
2 ) dx dy ds

+ C

∫ t

0

∫∫
Ω×Ω

|∆Sε(y)−∆Sε(x)| Jδ(x−y2 )ψ(x+y
2 ) dx dy ds

+

∫ t

0

∫∫
Ω×Ω

|β(uε(s, x))− β(vε(s, y))| Lx+y[φδ] dx dy ds,

(22)

where C depends on ∆ψ, ‖∇Sε‖L∞ , and ‖∆Sε‖L∞ as well as ‖uε‖L∞([0,T ];L1
x∩L∞x )

and ‖vε‖L∞([0,T ];L1
x∩L∞x ), and we have moreover sent κ → 0 to obtain (22). Since

Sε solves the elliptic equation ∆Sε = Sε − uε, it follows that

‖∆Sε‖L∞ ≤ ‖u
ε‖L∞ + ‖Sε‖L∞ .

By Sobolev embedding, ‖∇Sε‖L∞ is bounded independently of ε.
We rewrite (22) as

Qε,δ(t) ≤ Qε,δ(0) + C ε ‖∆ψ‖L∞ +
C

| log(δ)|

+ C

∫ t

0

Qε,δ(s) ds+A1
ε,δ(t) +A2

ε,δ(t) +A3
ε,δ(t).

(23)

We will estimate the terms on the right-hand side of (23).
The strong compactness of {uε0}ε>0 and {Sε}ε>0 implies, via Lemma A.2 in the

appendix, cf. also the proof of Corollary 1 below, the existence of a non-decreasing,
continuous function τ(δ) with τ(0) = 0, independent of ε, such hat∫∫

Ω×Ω

|uε0(x)− uε0(y)| Jδ(x−y2 )ψ(x+y
2 ) dx dy

+

∫ t

0

∫∫
Ω×Ω

|Sε(s, x)− Sε(s, y)| Jδ(x−y2 )ψ(x+y
2 ) dx dy ds ≤ τ(δ).

(24)

Repeating the main arguments of Ben Belgacem and Jabin [4], we can establish
the crucial estimate

A1
ε,δ(t) ≤ Cτ(δ) + C

∫ t

0

Qε,δ(s) ds.

Since Sε satisfies the elliptic equation ∆Sε = Sε − uε, it follows that

A2
ε,δ(t) ≤

∫ t

0

∫∫
Ω×Ω

|Sε(s, x)− Sε(s, y)| Jδ(x−y2 )ψ(x+y
2 ) dx dy ds
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+ C

∫ t

0

∫∫
Ω×Ω

|uε(s, x)− vε(s, y)| Jδ(x−y2 )ψ(x+y
2 ) dx dy ds

≤ Cτ(δ) + C

∫ t

0

Qε,δ(s) ds,

where the last inequality follows from (24).
Finally, by the Lipschitz continuity of β(·), the definition of the nonlocal operator

L[·], and since ψ(·) is smooth and compactly supported, we arrive at

A3
ε,δ(t) ≤ C̃

∫ t

0

∫∫
Ω×Ω

|uε(s, x)− vε(s, y)| Jδ(x−y2 )Lx+y[ψ(x+y
2 )] dx dy ds

≤ C
∥∥D2ψ

∥∥
L∞

.

In view of the above estimates,

Qε,δ(t) ≤ C
∥∥D2ψ

∥∥
L∞

+ C ε ‖∆ψ‖L∞ +
C

| log(δ)|
+ Cτ(δ) + C

∫ t

0

Qε,δ(s) ds,

and hence, by Gronwall’s lemma, (16) follows.

Corollary 1 (Spatial compactness). For any t ∈ [0, T ] with T > 0 finite,

sup
|y|≤δ

‖uε(t, ·+ y)− uε(t, ·)‖L1(Ω) ≤ νT (δ)→ 0, as δ → 0, (25)

where νT : R+ → [0,∞) is a modulus of continuity, i.e., νT (·) is a non-decreasing,
continuous function with νT (0+) = 0 and not depending on ε.

Proof. By a change of variables (x̃ = x+y
2 , z = x−y

2 so x = x̃ + z, y = x̃ − z) and
letting ψ → 1 in (16), it follows that (dropping the tildes)∫

Ω

∫
Ω

Jδ(z) |uε(t, x+ z)− uε(t, x− z)| dx dz ≤ ν̃T (δ), (26)

where ν̃T (δ) := CT τ(δ)→ 0 as δ → 0. Thanks to Lemma A.2 in the appendix, (26)
implies the existence a modulus of continuity νT (·) such that (25) holds.

3.2. Temporal translation estimate. Corollary 1 above establishes a uniform
spatial translation estimate in L1 implying spatial compactness of uε. Next, we
will establish a uniform temporal L1-continuity estimate, adapting an argument of
Kružkov [41, 42].

Lemma 3.2 (Temporal compactness). For any t ∈ [0, T ] with T > 0 finite,

sup
t+s∈[0,T ],|s|≤τ

‖uε(t+ s, ·)− uε(t, ·)‖L1(Ω) ≤ ωT (τ)→ 0,

as τ → 0, where ωT (·) is a temporal modulus of continuity (independent of ε).

Proof. To prove this lemma, fix ∆t > 0 and set

dε(t, x) := uε(t+ ∆t, x)− uε(t, x), t ∈ [0, T −∆t].

For any ϕ ∈ L∞([0, T ];C∞0 (Ω)) we compute∫
Ω

dε(t, x)ϕ(t, x) dx =

∫
Ω

(∫ t+∆t

t

∂su
ε(s, x) ds

)
ϕ(t, x) dx
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=

∫ t+∆t

t

∫
Ω

f(uε(s, x))∇Sε · ∇ϕ(t, x) dx ds

+

∫ t+∆t

t

∫
Ω

β(uε(s, x))L[ϕ(t, x)] dx ds

−
∫ t+∆t

t

∫
Ω

ε∇uε(s, x) · ∇ϕ(t, x) dx ds.

(27)

Let J ∈ C∞c (Rd) be a standard mollifier, for example take

J(x) =

{
C exp( 1

|x|2−1 ), if |x| < 1,

0, if |x| ≥ 1,

where the constant C > 0 is chosen so that
∫
Rd J(x) dx = 1. As above, we assume

without loss of generality that the support of J is included in the set Ω, otherwise
minor modifications have to be done. For any fixed δ > 0, we specify in (27) the
test function

ϕ := ϕδ(t, x) = δ−d
∫

Ω

J(x−yδ ) sgn(dε(t, y)) dy.

Clearly, ‖ϕδ(t, ·)‖L∞ + δ ‖∇ϕδ(t, ·)‖L∞ + δ2
∥∥D2ϕδ(t, ·)

∥∥
L∞
≤ C, uniformly in t, for

some finite constant C > 0 independent of δ.
Now it follows that∫

Ω

|dε(t, x)| dx =

∫
Ω

(
|dε(t, x)| − ϕδ(t, x)dε(t, x)

)
dx

+

∫ t+∆t

t

∫
Ω

f(uε(s, x))∇Sε · ∇ϕδ(t, x) dx ds

+

∫ t+∆t

t

∫
Ω

β(uε(s, x))L[ϕδ(t, x)] dx ds

− ε
∫ t+∆t

t

∫
Ω

∇uε(s, x) · ∇ϕδ(t, x) dx ds

=:

4∑
j=1

Iδj .

(28)

We examine each term in (28) separately.
For the term Iδ4 we have∣∣Iδ4 ∣∣ =

∣∣∣∣∣
∫ t+∆t

t

∫
Ω

εuε(s, x)∆ϕδ dx ds

∣∣∣∣∣ ≤ C∆t

δ2
, (29)

where we used that uε is uniformly bounded in L∞t (L1
x).

By Hölder’s inequality,∣∣Iδ2 ∣∣ ≤ C̃∆t

δ
‖f(uε)‖L∞t (L2

x) ‖∇S
ε‖L∞t (L2

x) ≤ C
∆t

δ
, (30)

where we have used the bound |f(u)| ≤ |u|+|u|2, and that uε and∇Sε are uniformly
bounded respectively in L∞t (L1

x ∩ L∞x ) and in L∞t (L2
x), cf. Theorem A.1.

We handle the Iδ3 similarly:∣∣Iδ3 ∣∣ =

∣∣∣∣∣
∫ t+∆t

t

∫
Ω

β(uε(s, x))L[ϕδ](t, x) dx ds

∣∣∣∣∣
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≤ C̃
∫ t+∆t

t

∫
Ω

|uε(s, x)| |L[ϕδ](t, x)| dx ds ≤ C∆t

δ2
, (31)

where we have used that β is globally Lipschitz with β(0) = 0, uε is uniformly
bounded in L∞t (L1

x), and

|L[ϕδ](t, x)| ≤ C̃L

( ∫
Rd\{0}

|z|2 π(dz)

)∥∥D2ϕδ
∥∥
L∞
≤ CL/δ2.

Finally, we estimate Iδ1 as follows:∣∣Iδ1 ∣∣ ≤ ∫
Ω

∣∣∣∣|dε(t, x)| − dε(t, x)

∫
Ω

δ−dJ(x−yδ ) sgn(dε(t, y)) dy

∣∣∣∣ dx
≤
∫

Ω

∫
Ω

δ−dJ(x−y2 ) ||dε(t, x)| − dε(t, x) sgn(dε(t, y))| dy dx

≤ 2

∫
Ω

∫
Ω

δ−dJ(x−yδ ) |dε(t, x)− dε(t, y)| dy dx

= 2

∫
Ω

∫
Ω

δ−dJ(z) |dε(t, x)− dε(t, x− δz)| dx dz ≤ C νT (δ),

(32)

where we have used the inequality ||a| − a sgn(b)| ≤ 2 |a− b|, valid for any a, b ∈ R,
and Corollary 1.

In view of (29), (30), (31), and (32), it follows from (28) that∫
Ω

|dε(t, x)| dx ≤ ωT (∆t), ωT (∆t) := C inf
δ>0

{
∆t

δ2
+ ∆t+

∆t

δ
+ νT (δ)

}
.

This concludes the proof of Lemma 3.2.

3.3. Concluding the proof of Theorem 2.2. In view of the a priori estimates
listed in (13), as well as Corollary 1 and Lemma 3.2 in combination with the Riesz-
Fréchet-Kolmogorov theorem, there exists a subsequence ε → 0 (not relabeled)
and limit functions u ∈ L∞(R+ × Ω) ∩ L∞([0, T ];L1(Ω)) and S ∈ L∞(R+ × Ω) ∩
L∞([0, T ];H1(Ω)) ∩ L∞(R+;W 2,p(Ω)), for all 1 ≤ p <∞ and for any finite T > 0,
such that

uε → u in Lploc(R+ × Ω);

Sε → S in Lp([0, T ];W 1,p(Ω)) for any finite T > 0.
(33)

Moreover, for any entropy pair (η, q),∫∫
QT

(
η(uε)ϕt +

(
q(uε)∇Sε + qβ,κ(uε)

)
· ∇ϕ

+ (uε − Sε)
[
q(uε)− f(uε)η′(uε)

]
ϕ

)
dx dt

+

∫∫
QT

qβ(uε)Lκ[ϕ] dx dt+

∫∫
QT

η′(uε)L̃κ[β(uε)]ϕdx dt

+

∫
Ω

η(uε0)ϕ(0, x) dx ≥ 0,

(34)

for all non-negative ϕ ∈ C∞c ([0, T ) × Ω), for any κ ∈ (0, 1); cf. Section 2. Thanks
to the strong convergence (33), we can send ε → 0 in (34), reaching easily the
conclusion that (u, S) is an entropy solution according to Definition 2.1. This ends
the proof of Theorem 2.2.
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Appendix A. On the viscous regularized system. In this appendix we outline
a proof for the existence of a solution to the following viscous regularized problem:

ut + div (∇Sf(u)) = L [β(u)] + ε∆u, (t, x) ∈ R+ × Ω,

−∆S + S = u, (t, x) ∈ R+ × Ω,

u(0, x) = u0(x), x ∈ Ω,

∇S · nΩ = 0 on ∂Ω,

u = 0 in Rd \ Ω for a.e. t > 0,

(35)

where f(u) = u(1 − u), the degenerate, nonlinear integral operator L[·] is defined
in (9), and ε > 0 is a fixed number. For the notational simplicity we suppress the
dependence of ε on the solution of (35) and use the notation (u, S). We have the
following theorem:

Theorem A.1. Suppose u0 ∈ (L1∩L∞∩H1)(Ω). Then there exists a unique weak
solution (u, S) ∈ L2

loc(R+;H1(Ω)) × L∞(R+;H1(Ω)) of (35). For all 1 ≤ p < ∞
and any finite T > 0, the following ε-uniform estimates hold:

0 ≤ u(t, x) ≤ 1 a.e. in R+ × Ω; ‖u‖L∞([0,T ];L1(Ω) ≤ C1(T ); (36)

0 ≤ S(t, x) ≤ 1 a.e. in R+ × Ω; ‖S‖L∞(R+;W 2,p(Ω)) ≤ C2(d, p); (37)∫ T

0

∫∫
Ω×(Rd\{0})

(β(u(t, x+ z))− β(u(t, x)))
2
π(dz) dx dt

+
√
ε ‖∇u‖L2((0,T )×Ω) + ‖∂tS‖L2((0,T );H1(Ω)) ≤ C3(d, T ). (38)

Proof. To prove this theorem, note that the system (35) can be written as one single
equation for u by means of the convolution representation formula

S(t, x) = (B ?
(x)
u)(t, x) =

∫
Ω

B(x− y)u(t, y) dy,

where B is the Bessel potential:

B(x) :=
1

(4π)d/2

∫ +∞

0

e−r−|x|
2/4r

rd/2
dr, x ∈ Rd.

We shall also need the heat kernel associated with the operator ∂t − ε∆:

G(t, x) :=
1

(4πεt)d/2
e−|x|

2/4εt, x ∈ Rd, t > 0.

The function u is extended to all of Rd by letting it be 0 outside of Ω. So the
heat kernel estimates over Rd can be employed. To this end, we also note that the
following estimates follow by straightforward computations, see page 1291 in [15]:

‖B‖L1(Rd) = 1; ‖∇B‖L1(Rd) <∞;

‖G(t, ·)‖Lp(Rd) ≤ Ct
− d(p−1)

2p (p ≥ 1);

‖∇G(t, ·)‖Lp(Rd) ≤ Ct
− d(p−1)

2p − 1
2 (p ≥ 1);∥∥D2G(t, ·)

∥∥
Lp(Rd)

≤ Ct−
d(p−1)

2p −1 (p ≥ 1).
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The above estimates enable us to prove local existence to L1 ∩ L∞ weak solutions
of (17) by means of the implicit representation formula

u(t, x) = (G ? u0)(t, x)

+

∫ t

0

∫
Ω

∇G(t− s, x− y)f(u(s, y))

(
∇(B ?

(x)
u)

)
(s, y) dy ds

+

∫ t

0

∫
Ω

β(u(s, y))L[G](t− s, x− y) dy ds,

utilizing a standard fixed point argument. We note here that this argument follows
very much the approach in [15] and the arguments so far do not require having a
bounded domain Ω. On the other hand, for further regularity estimates, needed in
the technical proofs above, we need to consider the problem on a bounded domain
with the specific restrictions mentioned above.

For the additional regularity properties listed in the theorem, for which we follow
the approach of [48], we note that the first part of (36) follows from the maximum
principle because 0 and 1 are solutions of the system. The second part follows
by “testing” the u-equation in (35) against sgn(u). The first part of (37) also
follows from the maximum principle, while the second part is a consequence of
the regularizing effect for elliptic equations with smooth coefficients. The first two
bounds in (38) are obtained by “testing” the u-equation in (35) against u. The
third bound follows by differentiating the equation for S with respect to t, yielding

−∆(∂tS) + (∂tS) = −∇ · (∇Sf(u)) + L[β(u)] + ε∆u,

and noting that the right-hand side is uniformly bounded in L2([0, T ];H−1(Ω)).

Fix a bounded time interval [0, T ], T > 0. Let {uε(t, x)}ε>0 be a sequence
of functions that is bounded in L∞([0, T ];Lp(Ω)) uniformly in ε, for p ∈ [1,∞).
We recall that a function νT : R+ → [0,∞), not depending on ε but possibly
on T , which is non-decreasing, continuous, and satisfies νT (0+) = 0, is called a
modulus of continuity. The next lemma lists two equivalent characterizations of Lp

compactness. The proof is essentially taken from [4].

Lemma A.2. The spatial translation estimate

sup
|y|≤δ

‖uε(t, ·+ y)− uε(t, ·)‖Lp ≤ νp,T (δ)→ 0, as δ → 0, t ∈ [0, T ], (39)

where νp,T : [0,∞) → [0,∞) is a modulus of continuity, holds if and only if there
exists another modulus of continuity ν̃p,T (·) such that∫

Jδ(z) |uε(t, x+ z)− uε(t, x− z)|p dx dz ≤ ν̃p,T (δ), t ∈ [0, T ], (40)

where Jδ(·) is defined via (14) and (15).

Proof. First we will prove that (40) implies the existence a modulus of continuity
νT (·), independent of ε, such that (39) holds, that is, {uε}ε>0 is compact in Lp(Ω).
To this end, we write

uε = uε,κ + (uε,κ − uε) , uε,κ(t, x) :=

∫
Jκ(x−y2 )uε(t, y) dy, κ > 0. (41)
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Observe that

‖uε,κ(t, ·)− uε(t, ·)‖Lp

≤
∫ (∫

Jκ(x−y2 ) |uε(t, y)− uε(t, x)| dy
)p

dx

=

∫ (∫
Jκ(z) |uε(t, x+ z)− uε(t, x− z)| dz

)p
dx

(Hölder ineq.)

≤ ‖Jκ‖p−1
L1(Rd)

∫ ∫
Jκ(z) |uε(t, x+ z)− uε(t, x− z)|p dx dz

(40)

≤ C ν̃p,T (κ)→ 0 as κ→ 0, uniformly in ε.

Since Jκ(·/2) is a smooth convolution kernel, the ε-uniform L∞([0, T ];Lp(Ω)) bound
implies that uε,κ(t, ·) is compact in Lp(Ω) as ε → 0, for each fixed κ > 0, that is,
there exists a modulus of continuity νκp,T , which is independent of ε but dependent
on κ, such that

sup
|y|≤δ

‖uε,κ(t, ·+ y)− uε,κ(t, ·)‖Lp ≤ ν
κ
p,T (δ)→ 0 as δ → 0.

Consequently, in view of (41),

sup
|y|≤δ

‖uε(t, ·+ y)− uε(t, ·)‖L1 ≤ inf
κ>0

{
νκp,T (δ) + 2ν̃p,T (κ)

}
=: νT (δ),

which is (25).
Next, let us assume that {uε}ε>0 is compact in Lp(Ω), i.e., (39) holds for some

ε-independent modulus of continuity νp,T (·). Clearly,∫∫
Jδ(z) |uε(t, x+ z)− uε(t, x− z)|p dx dz

≤ CT
|log δ|

+

∫∫
|z|≤1

Jδ(z) |uε(t, x+ z)− uε(t, x− z)|p dx dz.

We split the integral on the right-hand side as follows:∫∫
|z|≤1

Jδ(z) |uε(t, x+ z)− uε(t, x− z)|p dx dz

=

∫∫
|z|≤1

Cδ

|log δ| (|z|2 + δ2)d/2
|uε(t, x+ z)− uε(t, x− z)|p dx dz

=

∫∫
|z|≤δ

Cδ

|log δ| (|z|2 + δ2)d/2
|uε(t, x+ z)− uε(t, x− z)|p dx dz

+

∫∫
δ<|z|≤1

Cδ

|log δ| (|z|2 + δ2)d/2
|uε(t, x+ z)− uε(t, x− z)|p dx dz =: A+B.

To estimate A, note that |z| ≤ δ implies 1
|z|2+δ2

≤ 1
2|z|2 , and hence

|A| ≤ C̃

|log δ|

∫∫
|z|≤δ

1

|z|d
|uε(t, x+ z)− uε(t, x− z)|p dx dz
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=
C̃

|log h|

∫
|z|≤δ

1

|z|d

(∫
|uε(t, x+ z)− uε(t, x− z)|p dx

)
dz

≤ C̃

|log δ|

 ∫
|z|≤δ

1

|z|d
dz

 νp,T (δ) ≤ C νAp,T (δ)→ 0 (independently of ε),

where we have used (39). To estimate B, note that |z| ≥ δ ⇐⇒ |z| ≥ K 2−|log δ| for
some constant K > 1, and hence

|B| ≤
∫∫

K 2−|log δ|<|z|≤1

Cδ

|log δ| |z|d
|uε(t, x+ z)− uε(t, x− z)|p dx dz

≤ Cδ
|log δ|

∫
2−|log δ|≤|z|≤1

1

|z|d

(∫
|uε(t, x+ z)− uε(t, x− z)|p dx

)
dz

≤ Cδ
|log δ|

|log δ|−1∑
n=0

∫
2−(n+1)≤|z|≤2−n

1

|z|d

(∫
|uε(t, x+ z)− uε(t, x− z)|p dx

)
dz

≤ 2dCδ
|log δ|

|log δ|−1∑
n=0

∫
2−(n+1)≤|z|≤2−n

2dn
(∫
|uε(t, x+ z)− uε(t, x− z)|p dx

)
dz

≤ 2dCδ
|log δ|

|log δ|∑
n=0

∫
|z|≤2−n

2dn
(∫
|uε(t, x+ z)− uε(t, x− z)|p dx

)
dz

(39)

≤ 2dCδ
|log δ|

|log δ|∑
n=0

 ∫
|z|≤2−n

2dn dz

 νp,T (2−n),

≤ C̃

|log δ|

|log δ|∑
n=0

νp,T (2−n) =: νBp,T (δ)→ 0 as δ → 0, uniformly in ε.

Summarizing, we can produce a non-decreasing and continuous function ν̃p,T (·),

ν̃p,T (δ) :=
CT
|log δ|

+ νAp,T (δ) + νBp,T (δ), ν̃T (0+) = 0,

which is independent of ε, such that (40) holds.
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[26] A. Córdoba and D. Córdoba, A pointwise estimate for fractionary derivatives with applications

to partial differential equations, Proc. Natl. Acad. Sci. USA, 100 (2003), 15316–15317.

[27] A. Debussche and J. Vovelle, Scalar conservation laws with stochastic forcing, J. Funct. Anal.,
259 (2010), 1014–1042.

[28] Y. Dolak and C. Schmeiser, The Keller-Segel model with logistic sensitivity function and

small diffusivity, SIAM J. Appl. Math., 66 (2005), 286–308 (electronic).
[29] J. Droniou, T. Gallouet and J. Vovelle, Global solution and smoothing effect for a non-local

regularization of a hyperbolic equation, J. Evol. Equ., 3 (2003), 499–521.

[30] J. Droniou and C. Imbert, Fractal first-order partial differential equations, Arch. Ration.
Mech. Anal., 182 (2006), 299–331.

http://www.ams.org/mathscinet-getitem?mr=MR2995703&return=pdf
http://dx.doi.org/10.1016/j.jfa.2012.10.005
http://www.ams.org/mathscinet-getitem?mr=MR2325839&return=pdf
http://dx.doi.org/10.1142/S0218202507002108
http://dx.doi.org/10.1142/S0218202507002108
http://www.ams.org/mathscinet-getitem?mr=MR1637513&return=pdf
http://dx.doi.org/10.1006/jdeq.1998.3458
http://www.ams.org/mathscinet-getitem?mr=MR2643796&return=pdf
http://dx.doi.org/10.1007/s00028-009-0048-0
http://www.ams.org/mathscinet-getitem?mr=MR1881259&return=pdf
http://dx.doi.org/10.4064/sm148-2-5
http://dx.doi.org/10.4064/sm148-2-5
http://www.ams.org/mathscinet-getitem?mr=MR1661243&return=pdf
http://dx.doi.org/10.1137/S0036139996313447
http://dx.doi.org/10.1137/S0036139996313447
http://www.ams.org/mathscinet-getitem?mr=MR2477103&return=pdf
http://dx.doi.org/10.1002/mma.1036
http://www.ams.org/mathscinet-getitem?mr=MR2481820&return=pdf
http://dx.doi.org/10.1007/s00526-008-0200-7
http://dx.doi.org/10.1007/s00526-008-0200-7
http://dx.doi.org/10.1098/rsif.2014.0352
http://dx.doi.org/10.1098/rsif.2014.0352
http://dx.doi.org/10.1098/rsif.2014.0352
http://www.ams.org/mathscinet-getitem?mr=MR2608595&return=pdf
http://dx.doi.org/10.1088/0951-7715/23/4/009
http://dx.doi.org/10.1088/0951-7715/23/4/009
http://www.ams.org/mathscinet-getitem?mr=MR2307761&return=pdf
http://dx.doi.org/10.1016/j.nonrwa.2006.04.002
http://dx.doi.org/10.1016/j.nonrwa.2006.04.002
http://www.ams.org/mathscinet-getitem?mr=MR2274484&return=pdf
http://dx.doi.org/10.1137/050637923
http://dx.doi.org/10.1137/050637923
http://www.ams.org/mathscinet-getitem?mr=MR2397995&return=pdf
http://dx.doi.org/10.4310/CMS.2008.v6.n1.a1
http://dx.doi.org/10.4310/CMS.2008.v6.n1.a1
http://www.ams.org/mathscinet-getitem?mr=MR2354493&return=pdf
http://dx.doi.org/10.1080/03605300600987306
http://www.ams.org/mathscinet-getitem?mr=MR2564467&return=pdf
http://dx.doi.org/10.1007/s00205-008-0181-x
http://dx.doi.org/10.1007/s00205-008-0181-x
http://www.ams.org/mathscinet-getitem?mr=MR2680400&return=pdf
http://dx.doi.org/10.4007/annals.2010.171.1903
http://dx.doi.org/10.4007/annals.2010.171.1903
http://www.ams.org/mathscinet-getitem?mr=MR2795714&return=pdf
http://dx.doi.org/10.1016/j.anihpc.2011.02.006
http://dx.doi.org/10.1016/j.anihpc.2011.02.006
http://www.ams.org/mathscinet-getitem?mr=MR2787435&return=pdf
http://dx.doi.org/10.3934/cpaa.2011.10.1079
http://www.ams.org/mathscinet-getitem?mr=MR3021542&return=pdf
http://dx.doi.org/10.1007/s00205-012-0591-7
http://www.ams.org/mathscinet-getitem?mr=MR2917120&return=pdf
http://dx.doi.org/10.1007/s00205-011-0489-9
http://www.ams.org/mathscinet-getitem?mr=MR2926537&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2084005&return=pdf
http://dx.doi.org/10.1007/s00220-004-1055-1
http://www.ams.org/mathscinet-getitem?mr=MR2032097&return=pdf
http://dx.doi.org/10.1073/pnas.2036515100
http://dx.doi.org/10.1073/pnas.2036515100
http://www.ams.org/mathscinet-getitem?mr=MR2652180&return=pdf
http://dx.doi.org/10.1016/j.jfa.2010.02.016
http://www.ams.org/mathscinet-getitem?mr=MR2179753&return=pdf
http://dx.doi.org/10.1137/040612841
http://dx.doi.org/10.1137/040612841
http://www.ams.org/mathscinet-getitem?mr=MR2019032&return=pdf
http://dx.doi.org/10.1007/s00028-003-0503-1
http://dx.doi.org/10.1007/s00028-003-0503-1
http://www.ams.org/mathscinet-getitem?mr=MR2259335&return=pdf
http://dx.doi.org/10.1007/s00205-006-0429-2


KELLER-SEGEL SYSTEM WITH FRACTIONAL DIFFUSION 201

[31] C. Escudero, Chemotactic collapse and mesenchymal morphogenesis, Phys Rev E Stat Nonlin
Soft Matter Phys, 72 (2005), 022903.

[32] C. Escudero, The fractional Keller-Segel model, Nonlinearity, 19 (2006), 2909–2918.

[33] L. C. Evans, Partial Differential Equations, volume 19 of Graduate Studies in Mathematics,
American Mathematical Society, Providence, RI, second edition, 2010.

[34] T. Hillen and K. J. Painter, A user’s guide to PDE models for chemotaxis, J. Math. Biol.,
58 (2009), 183–217.

[35] S. Jarohs and T. Weth, Asymptotic symmetry for a class of nonlinear fractional reaction

diffusion equations, Discrete and Continuous Dynamical Systems-A, 34 (2014), 2581–2615.
[36] K. H. Karlsen and S. Ulusoy, Stability of entropy solutions for Lévy mixed hyperbolic-
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[44] F. Matthäus, M. S. Mommer, T. Curk and J. Dobnikar, On the origin and characteristics of
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