Beyond multiscale and multiphysics: Multimaths for model coupling

  • Received: 01 January 2010 Revised: 01 April 2010
  • 35Q30, 35Q35, 35Q74, 60H35, 65C05, 65C30, 65K10, 65M12, 65M60, 65N12, 65N15, 70-08, 70C20, 70G75, 74B20, 74G15, 74G65, 74G70, 76A05, 76A10, 76M10, 82C31, 82C80, 82D60, 49M25.

  • The purpose of this article is to present a unified view of some multiscale models that have appeared in the past decades in computational materials science. Although very different in nature at first sight, since they are employed to simulate complex fluids on the one hand and crystalline solids on the other hand, the models presented actually share a lot of similarities, many of those being in fact also present in most multiscale strategies. The mathematical and numerical difficulties that these models generate, the way in which they are utilized (in particular as numerical strategies coupling different models in different regions of the computational domain), the computational load they imply, are all very similar in nature. In particular, a common feature of these models is that they require knowledge and techniques from different areas in Mathematics: theory of partial differential equations, of ordinary differential equations, of stochastic differential equations, and all the related numerical techniques appropriate for the simulation of these equations. We believe this is a general trend of modern computational modelling.

    Citation: Xavier Blanc, Claude Le Bris, Frédéric Legoll, Tony Lelièvre. Beyond multiscale and multiphysics: Multimaths for model coupling[J]. Networks and Heterogeneous Media, 2010, 5(3): 423-460. doi: 10.3934/nhm.2010.5.423

    Related Papers:

    [1] Xavier Blanc, Claude Le Bris, Frédéric Legoll, Tony Lelièvre . Beyond multiscale and multiphysics: Multimaths for model coupling. Networks and Heterogeneous Media, 2010, 5(3): 423-460. doi: 10.3934/nhm.2010.5.423
    [2] Victor A. Eremeyev . Anti-plane interfacial waves in a square lattice. Networks and Heterogeneous Media, 2025, 20(1): 52-64. doi: 10.3934/nhm.2025004
    [3] Leonid Berlyand, Volodymyr Rybalko . Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes. Networks and Heterogeneous Media, 2013, 8(1): 115-130. doi: 10.3934/nhm.2013.8.115
    [4] Julian Braun, Bernd Schmidt . On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth. Networks and Heterogeneous Media, 2013, 8(4): 879-912. doi: 10.3934/nhm.2013.8.879
    [5] Fabio Camilli, Adriano Festa, Silvia Tozza . A discrete Hughes model for pedestrian flow on graphs. Networks and Heterogeneous Media, 2017, 12(1): 93-112. doi: 10.3934/nhm.2017004
    [6] Mathias Schäffner, Anja Schlömerkemper . On Lennard-Jones systems with finite range interactions and their asymptotic analysis. Networks and Heterogeneous Media, 2018, 13(1): 95-118. doi: 10.3934/nhm.2018005
    [7] Marco Cicalese, Antonio DeSimone, Caterina Ida Zeppieri . Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers. Networks and Heterogeneous Media, 2009, 4(4): 667-708. doi: 10.3934/nhm.2009.4.667
    [8] Ciro D'Apice, Rosanna Manzo . A fluid dynamic model for supply chains. Networks and Heterogeneous Media, 2006, 1(3): 379-398. doi: 10.3934/nhm.2006.1.379
    [9] Claudio Canuto, Anna Cattani . The derivation of continuum limits of neuronal networks with gap-junction couplings. Networks and Heterogeneous Media, 2014, 9(1): 111-133. doi: 10.3934/nhm.2014.9.111
    [10] Tibye Saumtally, Jean-Patrick Lebacque, Habib Haj-Salem . A dynamical two-dimensional traffic model in an anisotropic network. Networks and Heterogeneous Media, 2013, 8(3): 663-684. doi: 10.3934/nhm.2013.8.663
  • The purpose of this article is to present a unified view of some multiscale models that have appeared in the past decades in computational materials science. Although very different in nature at first sight, since they are employed to simulate complex fluids on the one hand and crystalline solids on the other hand, the models presented actually share a lot of similarities, many of those being in fact also present in most multiscale strategies. The mathematical and numerical difficulties that these models generate, the way in which they are utilized (in particular as numerical strategies coupling different models in different regions of the computational domain), the computational load they imply, are all very similar in nature. In particular, a common feature of these models is that they require knowledge and techniques from different areas in Mathematics: theory of partial differential equations, of ordinary differential equations, of stochastic differential equations, and all the related numerical techniques appropriate for the simulation of these equations. We believe this is a general trend of modern computational modelling.


  • This article has been cited by:

    1. Claude Le Bris, Tony Lelièvre, Micro-macro models for viscoelastic fluids: modelling, mathematics and numerics, 2012, 55, 1674-7283, 353, 10.1007/s11425-011-4354-y
    2. Kristian Debrabant, Giovanni Samaey, Przemysław Zieliński, Study of micro–macro acceleration schemes for linear slow-fast stochastic differential equations with additive noise, 2020, 60, 0006-3835, 959, 10.1007/s10543-020-00804-5
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3929) PDF downloads(125) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog