
NETWORKS AND HETEROGENEOUS MEDIA doi:10.3934/nhm.2010.5.423
c©American Institute of Mathematical Sciences
Volume 5, Number 3, September 2010 pp. 423–460

BEYOND MULTISCALE AND MULTIPHYSICS: MULTIMATHS

FOR MODEL COUPLING

Xavier Blanc

CEA, DAM, DIF, F-91297, Arpajon, France

Claude Le Bris
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Abstract. The purpose of this article is to present a unified view of some
multiscale models that have appeared in the past decades in computational
materials science. Although very different in nature at first sight, since they
are employed to simulate complex fluids on the one hand and crystalline solids
on the other hand, the models presented actually share a lot of similarities,
many of those being in fact also present in most multiscale strategies. The
mathematical and numerical difficulties that these models generate, the way in
which they are utilized (in particular as numerical strategies coupling different
models in different regions of the computational domain), the computational
load they imply, are all very similar in nature. In particular, a common feature
of these models is that they require knowledge and techniques from differ-
ent areas in Mathematics: theory of partial differential equations, of ordinary
differential equations, of stochastic differential equations, and all the related

numerical techniques appropriate for the simulation of these equations. We
believe this is a general trend of modern computational modelling.
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1. Introduction. A few decades ago, multiscale modelling used to only mean mod-
elling based on the homogenization paradigm. Since then, the field has exploded.
Multiscale simulations are present in a large variety of domains. The purpose of
this article is to show that, however diverse in nature they might look at first sight,
multiscale simulations definitely share common features. A common denominator
is the use of an increasing variety of mathematical notions and techniques.

For illustration purposes, we consider two prototypical modelling strategies, ap-
parently very different in nature since the first one deals with fluids, the second
one deals with solid materials. The former modelling strategy is the micro-macro
simulation of complex fluids. In short, it consists in coupling the macroscopic equa-
tions of conservation of mass and momentum for a viscous incompressible fluid, with
a kinetic description of the evolution of the microstructures within the fluid that
are responsible for the non-Newtonian character. The latter modelling strategy is
the discrete-to-continuum coupling in use for the simulation of solid materials. It
couples an atomistic description of matter using actual positions of atoms and mi-
croscopic interaction laws between them, and a description by continuum elasticity
theory in terms of gradients of deformations and energy associated with those.

Considering these two particular cases, we will show that

1. multiscale modelling arises as a response to the deficiency of single-scale mod-
elling; its purpose is to bypass the analytical or empirical derivation of a
constitutive law at the macroscopic scale, letting the numerical simulation
implicitly perform the coupling between the scales;

2. multiscale modelling is computationally costly, and is a field of predilection
for parallel computing;

3. multiscale modelling is actually especially useful today as a model coupling
strategy: the computational domain is divided between on the one hand re-
gions where a computationally cheap, purely macroscopic, single-scale model
is sufficient to accurately reproduce the behaviour, and on the other hand
hopefully small regions where the computationally expensive multiscale model
has to be employed for capturing the singularities in the physical/mechanical
behaviour;

4. multiscale modelling increasingly involves models that come from different
areas of Physics in the broad sense;

5. but beyond all this, the true novelty of the last two decades is that multiscale
modelling requires a good knowledge of the theory and the numerics of an
ever increasingly wide spectrum of mathematical objects.

In a somewhat provocative (not to be taken too seriously) style, we could say
that, after the times of multiscale and multiphysics, the era of multimaths has
begun.

The article is organized as follows. In Section 2, we recall the most commonly
used macroscopic, single-scale models for non-Newtonian fluids and elastic solid
materials. We show their limitation and explain why alternative, multiscale models
are useful. We next introduce some prototypical examples of such multiscale mod-
els in Section 3. We present some adapted discretization techniques in Section 4,
and then discuss the challenging mathematical and numerical issues they raise in
Section 5. The section illustrates the variety of mathematical notions and tech-
niques addressed. Its purpose is to point out the questions raised by these models
and briefly indicate the approaches followed to (partially) solve these questions.
The article concludes with Section 6 where the current trends are emphasized. The
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specificity of our presentation is that, throughout the sections, we systematically, se-
quentially discuss each issue for the complex fluid context and for the solid material
context. It is quite unusual to gather in a single article two so different contexts. We
however believe this emphasizes the similarities in the scientific process, and helps
to identify global achievements and challenges transverse to the field of modelling.
To conclude this introduction, we emphasize that, due to space limitations, many
questions and details are left aside in our presentation. More exhaustive presenta-
tions can be found in the papers [83, 72] by B. Jourdain, C. Le Bris and T. Lelièvre
for fluid modelling, and the articles [20, 82] by X. Blanc, C. Le Bris and F. Legoll
for solid modelling.

2. Deficiency of the single-scale macroscopic description. We recall in this
section the basic elements of single-scale modelling of fluids, and next of solid mate-
rials. We shall in particular mention the inevitable limitations of such a single-scale
strategy.

2.1. Macroscopic models for fluids. To begin with, we recall here some elements
on the modelling of viscous incompressible fluids. Consider a viscous fluid with
volumic mass (or density) ρ, flowing at the velocity u, and experiencing external
forces f per unit mass. Denote by T the stress tensor. The equation of conservation
of mass for the fluid reads

∂ρ

∂t
+ div (ρu) = 0, (2.1)

while the equation expressing the conservation of momentum is

∂(ρu)

∂t
+ div (ρu ⊗ u) − div T = ρf . (2.2)

For such a viscous fluid, the stress tensor reads T = −p Id + τ , where p is the
(hydrodynamic) pressure, and τ is the tensor of viscous stresses. The equations
are supplied with appropriate initial and boundary conditions we omit. In order
to close the above set of equations, a constitutive law is needed, which relates the
viscous stress τ and the velocity field u, namely

τ = τ (u, ρ, . . .). (2.3)

Expression (2.3) is symbolic. A more precise formulation may involve derivatives
in time, or in space, of the various fields τ , u, ρ, . . . Examples are given below.

The simplest possible situation is that of Newtonian fluids (typically the case
of water), for which, by definition, τ linearly depends on the velocity u. Under
appropriate assumptions, it can then be shown that the relation between τ and u

necessarily takes the form τ = λ (div u) Id + 2η d, where λ and η are the two Lamé

coefficients, and d denotes the (linearized) rate of deformation tensor d =
1

2
(∇u +

∇uT ), with the convention (∇u)ij =
∂ui

∂xj

. The derivation proceeds, and in the case

of an incompressible (div u = 0) homogeneous (ρ = ρ0) Newtonian viscous fluid,
the equations obtained are the celebrated incompressible Navier-Stokes equations





ρ0

(
∂u

∂t
+ (u · ∇)u

)
− η∆u + ∇p = ρ0f ,

divu = 0.
(2.4)

When the fluid is not Newtonian, that is, in many practically relevant situations
(most of the fluids of the everyday life are indeed not Newtonian: blood, wine,
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oil, . . . ), a constitutive equation (2.3) needs to be identified. It is of course specific
to the fluid under consideration. Equations (2.1)-(2.2) together with the constitutive
equation (2.3) (and possibly equations for the energy and the temperature) then
form the model for the fluid. For non-Newtonian fluids, many constitutive laws, and
thus many purely macroscopic models, exist. All are based upon considerations of
continuum mechanics. It is usual to decompose the stress tensor τ as the sum
τ = τn + τ p, where τn denotes the Newtonian contribution and τ p denotes the
part of the stress (called non-Newtonian or extra stress) that cannot be modelled
in the Newtonian manner. The bottom line is then to write an equation, in the
vein of (2.3), ruling the evolution of the non-Newtonian contribution τ p and/or
encoding a relation between the latter and other quantities characterizing the fluid
dynamics, such as the deformation tensor d, or ∇u itself. One famous example is
the Oldroyd B model , which, in non-dimensional form, writes:





Re

(
∂u

∂t
+ u · ∇u

)
= (1 − ǫ)∆u −∇p+ div τ p,

div u = 0,

∂τ p

∂t
+ u · ∇τ p − (∇u)τ p − τ p(∇u)T =

ǫ

We

(
∇u + (∇u)T

)
− 1

We
τ p.

(2.5)

The Reynolds number Re > 0, the Weissenberg number (ratio of the characteristic
relaxation time of the microstructures in the fluid to the characteristic time of the
fluid) We > 0 and ǫ ∈ (0, 1) are the non-dimensional parameters of the model.

The Oldroyd B model is not capable of reproducing many experimentally ob-
served behaviors. Refined macroscopic models for viscoelastic fluids have thus been
derived, allowing for a better agreement between simulation and experiments: the
Giesekus model, the Phan-Thien Tanner model, the FENE-P model, etc. Each
model correspond to a particular constitutive law. Overall, they yield better re-
sults than the Oldroyd B model, and satisfactorily agree with several prototypical
experiments on simple flows. Of course, in terms of scientific computing, solving
the three-field problem (2.5) is much more difficult and computationally demanding
than the ’simple’ Newtonian problem (2.4). However, the major scientific difficulty
is neither a mathematical one nor a computational one. The major difficulty is to
derive a constitutive equation (2.3). It requires a deep qualitative and quantita-
tive understanding of the physical properties of the fluid under consideration. And
there are many fluids, and many experimental situations. For many non-Newtonian
fluids, complex in nature, reaching such an understanding is therefore a challenge.
Moreover, even if such an equation is approximately known, evaluating the impact
of its possible flaws on the final outcome of the simulation is not an easy issue. It
can only be completed a posteriori, comparing the results to actual experimental
observations, when the latter exist, and they do not always exist. The difficulty is
all the more prominent that non-Newtonian fluids are very diverse in nature.

All this, in its own rights, motivates the need for alternative strategies, based on
an explicit microscopic modelling of the fluid. This gives rise to the so-called micro-
macro models (see Figure 1). The lack of information at the macroscopic level is then
circumvented by a multiscale strategy consisting in searching for the information at a
finer level (where reliable models do exist, based on general conservation equations,
posed e.g. on the microstructures of the fluids). The latter information is then
inserted in the equations of conservation at the macroscopic level.
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We shall now see that similar considerations fully apply to our second example,
although coming from an entirely different context: multiscale modelling for solid
materials.

Methods
of the integral
using the decreasing

 

Phenomenological modelling

Stochastic models

Microscopic models (kinetic theory)

Macroscopic simulations

Integral models Differential models

Finite Element
Discretization

memory function

FEM (fluid)

Monte Carlo (polymers)

Micro−macro simulations

using principles of fluid mechanics 

Figure 1. Macro-macro and micro-macro models for complex flu-
ids.

2.2. Continuum elasticity theory. We now briefly recall the standard mechani-
cal description of a solid material subjected to forces. For simplicity and brevity, the
setting is static. We refer e.g. to the monograph [36] of Ph. G. Ciarlet for a complete
mathematically oriented presentation including time-dependent situations.

We denote by D the reference domain that the material occupies at rest, by ϕ
the deformation it is subjected to, i.e. the map from D to R

3 that gives the current
position of the material. We also denote by u(x) = ϕ(x) − x the displacement, and
by F = ∇ϕ : D −→ M3 the gradient of deformation, where M3 denotes the space
of square matrices of size 3×3. The general equations that describe the equilibrium
of our sample material, when subjected to body forces f and boundary forces g,
read

− div T = f in D, (2.6)

with the boundary condition T · n = g on ∂D. Here, T denotes the stress tensor
(more precisely the first Piola-Kirchhoff stress tensor), and n is the unitary outward
normal vector on ∂D. Equation (2.6) plays, in our present discussion, the role of
equations (2.1)-(2.2) from the previous section.

In order to close the equation (2.6), a relation is needed between the stress
tensor T and the kinematic description of the material, provided by the fields ϕ, u
or F . In contrast to equations (2.6) which are general, the relation linking T to,
say, ϕ, depends on the material considered. In such a relation is indeed encoded the
physical and mechanical nature of the material. Formally, such a closure relation
reads

T = T (x, ϕ(x), ...), (2.7)

and is called, similarly to (2.3), a constitutive relation, or a law of behavior. Again,
equation (2.7) is symbolic: derivatives of ϕ may also be inserted, as well as other
points than x (or, in a time-dependent setting, times anterior to the time t at which
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the stress tensor is evaluated). The relation may be a differential equation, a partial
differential equation, an integral equation, etc.

A usual assumption in deriving such a law is the elasticity of the material: T =
T (x, F (x)). Hyperelasticity is often additionally assumed: the material is assumed
to dissipate no energy during a cyclic deformation. From this is inferred the exis-
tence of a density W of mechanical energy such that

T (F ) =
∂W

∂F
(F ). (2.8)

Actually, owing to the fact that the laws of mechanics are invariant under rigid
rotations, the function W may only depend on F via FTF . Along with (2.8), equa-
tion (2.6) is then recognized as the Euler-Lagrange equation for the minimization
of a problem of the form

inf
ϕ∈A

∫

D

W (∇ϕ(x)) dx −
∫

D

f ϕ−
∫

∂D

g ϕ, (2.9)

where A is the set of all admissible deformations ϕ. We omit several technical (and
actually also fundamental) issues in this expository presentation, see for example
the works by J. M. Ball [9] and Ph. G. Ciarlet [36]. The most famous example of
density W is provided by linearized elasticity. Then, W is the simple quadratic
form

W =
1

2
ε : A : ε where ε =

1

2
(∇u + ∇uT ) and u(x) = ϕ(x) − x. (2.10)

This model has the advantage that the Euler-Lagrange equations of the variational
problem (2.9), with W given by (2.10), are linear. Note however that this density
W is not invariant under rigid rotations.

For a given material, the derivation of the constitutive law (2.7), or equivalently
in the hyperelasticity setting, that of the density W of mechanical energy, is a
central theoretical question, and a challenging practical issue. Then, the resolution
of (2.6), or the minimization of (2.9), is the purpose of the numerical simulations
performed. Despite all these efforts, and all the expertise accumulated, the strategy
for the derivation of a constitutive law for a solid material has the exact same
flaws as that previously mentioned for fluids. Therefore, similarly to the context
of fluid mechanics above, it is useful to develop an alternative strategy: multiscale
modelling.

In conclusion to this section, we emphasize that bypassing the macroscopic con-
stitutive law is one of the major purpose of multiscale modelling in materials science.
In principle, the constitutive law is expected to encode the physical nature of the
material, so that the phenomena taking place at all the scales finer than the macro-
scopic ones are accounted for. A multiscale model is also aimed at encoding such
a relation, but, in contrast, without translating it into an explicit mathematical
relation. The physical nature of the material is inserted via an explicit microscopic
description, which is in turn coupled with the usual macroscopic description of
the material. Loosely speaking, the derivation of the constitutive law is implicitly
performed by the simulation itself. The amount of physical intuition needed is ex-
pected to be smaller, the computational effort will compensate for it. Likewise, it
is hoped that less modeling assumptions will be needed: ideally, a universal micro-
scopic model is inserted in the universal macroscopic description. In doing so, the
sources for inaccuracies are easier to identify, and the assessment of the quality of
the result is simpler.
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3. Multiscale modelling for fluids and solids. The variety of situations in
which multiscale modelling is now employed is so large that, for our exposition, we
have to pick specific examples of materials. For fluid modelling, we choose infinitely
dilute solutions of polymers, and for solid modelling, crystalline solids. We mention
that, for instance for fluids, the modelling of liquid crystals (see the reference books

by M. Doi and S.F. Edwards [49] or H.C. Öttinger [103], and the articles by H. Zhang
and P.W. Zhang [121], P. Constantin, I. Kevrekidis, and E.S. Titi [39] or G. For-
est, Q. Wang, and R. Zhou [58] for some mathematical and numerical studies), or
suspensions (see the paper [63] by P. Hébraud and F. Lequeux for an interesting
model and the series of works [30, 31, 32, 15] by M. Ben Alaya, E. Cancès, I. Catto,
Y. Gati, B. Jourdain and C. Le Bris for some mathematical and numerical studies),
or blood flows (see the models proposed by J. Fang and R.G. Owens [53, 104]),
would lead to considerations similar in spirit.

3.1. Micro-Macro simulations of polymeric fluids. Polymeric fluids are non-
Newtonian fluids. They consist of a solvent where, at the mesoscopic scale, poly-
meric chains float, see Figure 2. Each polymeric chain, itself possibly consisting
of thousands of atoms, is admittedly well modeled using a coarse-grained descrip-
tion. The simplest possible such description consists in a single end-to-end vector,
called a dumbbell, that models the total length and overall direction of the chain,
see Figure 3.

Figure 2. Left figure: A collection of polymeric chains lies, mi-
croscopically, at each macroscopic point of the trajectory of a fluid
particle. Right figure: schematic representation of a polycristal:
in each grain, atoms are located on (or close to) a perfect lattice,
whose orientation is different from one grain to the other. Each
grain can be described by a continuum model. In constrast, the
interface between two grains is in general too small and too het-
erogeneously deformed for a continuum model to hold.

Our purpose is now to explain how the derivation of an explicit constitutive law
can be bypassed in this context. The success of the enterprise owes to the existence
of a well established kinetic theory for solutions of polymeric chains, see the mono-
graphs [17, 18] by R.B. Bird, C.F. Curtiss, R.C. Armstrong, and O. Hassager, or

[49] by M. Doi and S.F. Edwards, or [103] by H.C. Öttinger, or [105] by R.G. Owens
and T.N. Phillips. The theory is based on a statistical description of the chains.

Let us now denote ψ(t,x, r) the probability density for the end-to-end vector r

modeling the polymer chains at macropoint x and time t. The variation of ψ follows
from three different phenomena:

1. a hydrodynamic force: the dumbbell is elongated or shortened because of
the interaction with the fluid; its two ends do not necessarily see the same
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X

Figure 3. The dumbbell model: the end-to-end vector X is the
vector connecting the two beads that model the entire polymeric
chain. It is supposed to accurately model the typical behaviour of
the entire chain.

fluid velocity, the slight difference in velocities (basically ∇u(t,x) r) results
in a force elongating the dumbbell ζ∇u(t,x) r, where ζ denotes a friction
coefficient;

2. an entropic force F issued from the coarse-graining procedure and which is
reminiscent of the actual, much more complex, geometry of the entire poly-
meric chain;

3. a Brownian force, modelling the permanent collisions of the polymeric chain
with solvent molecules, which (randomly) modifies its evolution.

The equation of conservation of momentum reads as the following evolution equation
on ψ:

∂ψ(t,x, r)

∂t
+ u(t,x) · ∇xψ(t,x, r)

= −divr

((
∇x u(t,x) r − 2

ζ
F (r)

)
ψ(t,x, r)

)
+

2kT

ζ
∆rψ(t,x, r).

(3.1)

Equation (3.1) is called a Fokker-Planck equation. The three terms of the right-
hand side of (3.1) respectively correspond to the three phenomena listed above. A
crucial point is that, in this right-hand side, all differential operators acting on ψ
are related to the variable r of the configuration space, not of the ambient physical
space. In contrast, the gradient of the left-hand side is the usual transport term in
the physical space u · ∇x. In the absence of such a transport term (this will indeed
be the case for extremely simple geometries, such as that of a Couette flow presented
below), (3.1) is simply a family of Fokker-Planck equations posed in variables (t, r)
and parameterized in x. These equations are coupled only through the macroscopic
field u. When the transport term is present, (3.1) is a genuine partial differential
equation in all variables (t,x, r). It is intuitively clear that the latter case is much
more difficult, computationally and mathematically.

Once ψ is obtained, its contribution to the total stress, and, further, its impact
on the macroscopic flow, need to be formalized. Elementary considerations of con-
tinuum mechanics (see Figure 4) show that the contribution to the stress is given
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by the so-called Kramers formula,

τ p(t,x) = −npkT Id + np

∫
(r ⊗ F (r))ψ(t,x, r) dr, (3.2)

where np denotes the total number of polymeric chains per unit volume.
The complete system of equations combines the equation of conservation of mo-

mentum at the macroscopic level, the incompressibility constraint, the Kramers
formula, and the Fokker-Planck equation for the distribution of the end-to-end vec-
tor. In non-dimensional form, it reads:





Re

(
∂u

∂t
+ (u · ∇)u

)
− (1 − ǫ)∆u + ∇p− div τ p = f ,

div u = 0,

τ p(t,x) =
ǫ

We

(∫
(r ⊗ F (r))ψ(t,x, r) dr − Id

)
,

∂ψ(t,x, r)

∂t
+ u(t,x) · ∇xψ(t,x, r)

= −divr

((
∇x u(t,x) r − 1

2We
F (r)

)
ψ(t,x, r)

)
+

1

2We
∆rψ(t,x, r).

(3.3)

n

Figure 4. Kramer formula: the contribution of all polymeric
chains to the stress is obtained summing over all chains cut by
the plane considered.

An alternative description of the evolution of polymeric chains is provided by
the stochastic viewpoint. This viewpoint is actually extremely useful in practice,
because it allows to circumvent the difficulties related to the high-dimensionality of
the Fokker Planck equation (3.1). It is indeed to be borne in mind that when the
geometric description of the chain is richer than a coarse, dumbbell model, then the
end-to-end vector is replaced by a possibly highly multidimensional vector, and the
dimensionality of the Fokker-Planck equation grows correspondingly.

As an alternative to (3.1), we may model the mesoscopic part of the system by
the set of stochastic differential equations :

dXt(x) + u(t,x) · ∇Xt(x) dt = ∇u(t,x)Xt(x) dt− 2

ζ
F (Xt(x)) dt+ 2

√
kT

ζ
dW t,

(3.4)
where Xt(x) denotes the stochastic process modeling the conformation of the poly-
meric chain at x at time t. The stress is then given by

τ p(t,x) = np

(
E(Xt(x) ⊗ F (Xt(x))) − kT Id

)
, (3.5)
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where np is the concentration of polymers. The coupled system is thus:





Re

(
∂u

∂t
+ u · ∇u

)
− (1 − ǫ)∆u + ∇p = div τ p + f ,

div u = 0,

τ p =
ǫ

We

(
E(Xt ⊗ F (Xt)) − Id

)
,

dXt + u · ∇Xt dt = ∇uXt dt−
1

2We
F (Xt) dt+

1√
We

dW t.

(3.6)

In both the above systems (3.3) and (3.6), the force F needs to be made specific.

In full generality, it is assumed of the form F (X) = π′(‖X‖) X

‖X‖ , for a given

potential π. The simplest potential π is the quadratic potential πHook(l) = H
l2

2
.

A peculiarity of this choice is that the multiscale model is then equivalent to the
Oldroyd B model (2.5). Other choices of forces allow to capture important phys-
ical behaviours and yield models that are genuinely multiscale: the FENE force

corresponding to the potential πFENE(l) = −bkT
2

ln

(
1 − l2

bkT/H

)
is the most

commonly used type of such forces. In general, it is believed that a multiscale
model is more accurate than a purely macroscopic model, and that the description
of the microstructure need not be sophisticated to give excellent results, capturing
the right qualitative physics being the only important issue (see the FENE force in
contrast to the Hookean force).

3.2. Atomistic-to-continuum modelling for crystals. When a model for the
density of mechanical energy (2.8) for a given solid material is unknown, or is inap-
plicable because all the assumptions of regularity of stress and strain for continuum
mechanics to apply are not satisfied, one has to return to the microscopic scale, and
use appropriate atomistic models. The task is then to deduce from the atomistic
scale an appropriate density of mechanical energy, that is, a specific form for a
constitutive law (2.7).

To this end, we proceed as follows: we give ourselves a microscopic description
of the sample, next we fix the deformation ϕ that is imposed to the material at the
macroscopic level and directly apply it to the atomic sites at the microscopic level,
and we search for the macroscopic limit of the energy obtained.

Somewhat similarly to what has been performed above for fluids using the kinetic
description and Kramers formula to obtain the stress, we expect to derive an explicit
form for the macroscopic mechanical energy of the sample deformed by ϕ, thus a
link between the density of mechanical energy W , and the energy model used at
the microscopic level.

For simplicity, we consider an elementary two-body interaction potential at the
atomic scale, and place the atoms on a particularly simple geometrical arrangement.
At the microscopic scale, the material occupies the domain D, and we assume its
substructure is the truncation D∩L of a periodic lattice L. Every pair of sites (xi, xj)
in D∩L interacts with a pair potential V (xi−xj). We assume the periodic lattice has
a cubic unit cell, and that the atomic site stands at the center of this cell. The length
of the cell is denoted by ε, and vanishes in the macroscopic limit. The potential
V , taken radially symmetric, is assumed to be smooth, and have compact support.
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No body force, nor boundary force, is applied to the material. The deformation
we apply to the sample is assumed to be smooth. All these assumptions aim at
avoiding unnecessary technicalities.

Figure 5. Deformation ϕ of a crystalline material.

Let us now apply the deformation ϕ (see Figure 5). The microscopic energy
formally reads:

1

2

1

N3

∑

xi∈(ND)∩Z3

∑

xj 6=xi∈(ND)∩Z3

V




ϕ
(

xi

N

)
− ϕ

(
xj

N

)

1
N



 . (3.7)

In fact the above sum is truncated over a finite domain, containing N = ε−1 sites
per dimension. It is normalized by the total number of particles (since the energy
is an extensive quantity). Note also that we need to rescale all distances by a
factor 1

N
= ε, so that the equilibrium length (i.e., say, the length r that minimizes

the function r −→ V (r)) is also of order ε for consistency. The purpose is now
to identify the limit of (3.7) when N −→ ∞. This means that we both let the
truncated lattice go to the whole infinite lattice at the microscopic scale, and let
the lattice size vanishes, so as to pass to the macroscopic limit.

In this simple case, the analysis is obvious. As ϕ is smooth, we write its Taylor
expansion at the first order and neglect the terms of higher order:

ϕ
(

xi

N

)
− ϕ

(
xj

N

)

1
N

= N

(
ϕ
(xi

N

)
− ϕ

(
xj

N

))
≈ ∇ϕ

(
xj

N

)
· (xi − xj). (3.8)

We insert this in the potential V , and in turn search for the first order. Arguing
formally, omitting some technicalities in particular related to boundary terms that
can be easily handled, and using the periodicity of the lattice, we see that the limit
formally reads

lim
N−→+∞

1

N3

1

2

∑

xj∈(ND)∩Z3

∑

xk 6=0∈Z3

V

(
∇ϕ

(
xj

N

)
· xk

)
. (3.9)

Denoting by

Ψ(x) =
1

2

∑

xk 6=0∈Z3

V (∇ϕ(x) · xk) , (3.10)

we observe that (3.9) is a Riemann sum in Ψ, and converges as N −→ +∞ to

1

|D|

∫

D

Ψ(x) dx =
1

2|D|

∫

D

∑

xk 6=0∈Z3

V
(
∇ϕ(x) · xk

)
dx (3.11)
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where |D| is the volume of the domain D. At the macroscopic level, the (non-
dimensional) density of mechanical energy therefore reads

W (∇ϕ(x)) =
1

2

∑

xk 6=0∈Z3

V
(
∇ϕ(x) · xk

)
. (3.12)

We observe that this energy is indeed the energy of the original periodic lattice
deformed by the linear map ∇ϕ(x) at the macroscopic point x. A simple example
is the case of the quadratic potential V ∝ |r− req|2 where req denotes some equilib-
rium interatomic distance. It is easily seen, at least formally and in dimension one
(and if particles stay ordered), that the above derivation then yields the linearized
elasticity model (2.10) as a limit in (3.12). For the simple case treated here (pe-
riodic lattice, pair-potential interaction), this derivation of a macroscopic density
of energy has been known for long. The work [23] by X. Blanc, C. Le Bris and
P.-L. Lions presents a rigorous and systematic study of such a question. In fact, the
approach may be generalized to a large variety of settings: various energy models
and various geometries at the microscopic scale, various shapes of materials, etc.
See for instance, in the bibliography, the related works [33] by I. Catto, C. Le Bris
and P.-L. Lions, and [22, 23, 24] by X. Blanc, C. Le Bris and P.-L. Lions.

In full generality, the expressions obtained are all of the form

W (∇ϕ(x)) = Energy of the microstructure at macro point x deformed by ∇ϕ(x).
(3.13)

The multiscale nature of the model is obvious on that expression.
It is illustrative to mention a slight extension of the simple case presented above,

because it establishes an enlightening connection between the elements of complex
fluids modelling introduced in the previous section and the present setting. We
consider, instead of a periodic lattice of atomic sites as the microscopic model
for the crystalline structure, a random perturbation of this arrangement. More
explicitly, we assume that, before rescaling, the atomic sites now stand at points
xi(ω) = i+Xi(ω), where i is the three-dimensional integer index that also denotes
an arbitrary point of Z

3, and where Xi(ω) is a set of ergodic stationary random
variables. Then, arguing as above, but this time additionally using the ergodic
theorem, the density of mechanical energy obtained in the macroscopic limit reads

W (∇ϕ(x)) = E


 1

2

∑

k 6=0∈Z3

V (∇ϕ(x) · (k +Xk(ω) −X0(ω)))


 , (3.14)

instead of (3.12). We refer to the original paper [23] by X. Blanc, C. Le Bris and
P.-L. Lions for the details of the derivation. The similarity of expression (3.14)
with the Kramers formula (3.5) is evident. The stress (or equivalently its primitive,
the density of mechanical energy) is inferred from an average taken on microscopic
configurations. Another, more formal similarity is that the reader now understands
how the random, microscopic description is genuinely coupled with the determin-
istic, macroscopic description. The mathematics behind the models necessarily
embraces both aspects.

The above derivation of the continuum mechanics energy (3.11) from the atom-
istic energy (3.7) is based on a smoothness assumption on the deformation ϕ. In
many situations of interest (for instance when dislocations appear, as in the nanoin-
dentation simulation shown in Figure 6), such an assumption does not hold in the
whole domain, and one cannot use a model based on (3.11). Using an atomistic
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model in the whole domain is not possible either, due to its prohibitive computa-
tional cost. We now describe a coupling method, whose motivation is based on the
observation that, actually, the deformation that we are after is not smooth in only
a small part of the solid. So, a natural idea is to try to take advantage of both
models, the continuum mechanics one and the atomistic one, and to couple them,
in a domain decomposition spirit. The description below is a toy-version of the
QuasiContinuum Method (QCM), as presented in its initial version [116, 115] by
E.B. Tadmor, M. Ortiz and R. Phillips. The method has been next amended, and
we will describe a more mature formulation in Section 4.2.

Figure 6. A typical numerical simulation coupling discrete and
continuum mechanics, in a cube of size 2 µm (Courtesy M. Fivel,
INPG; see also the work [55] by M.C. Fivel, C.F. Robertson,
G.R. Canova and L. Boulanger).

The microscopic energy of a given deformation ϕ is (3.7), that we recast as

Emicro(ϕ) =
1

N3

∑

xi∈(ND)∩Z3

Ei(ϕ),

where

Ei(ϕ) =
1

2

∑

xj∈(ND)∩Z3, xj 6=xi

V



ϕ
(

xi

N

)
− ϕ

(
xj

N

)

1
N


 (3.15)

denotes the energy of atom i.
We now split the computational domain D into two non-overlapping subdomains,

D = Dreg ∪ Dsing, (3.16)

where Dreg is a domain where the deformation is expected to be smooth (see Fig-
ures 7 and 8). Consequently, in Dreg, we can approximate the atomistic energy by a
continuum mechanics expression, in the spirit of (3.11)-(3.12). In Dsing, we cannot
make this approximation, and we keep the original atomistic model. For a given
deformation ϕ, we hence write

Emicro(ϕ) =
1

N3

∑

xi∈(NDreg)∩Z3

Ei(ϕ) +
1

N3

∑

xi∈(NDsing)∩Z3

Ei(ϕ)

≈ 1

N3

∑

xi∈(NDreg)∩Z3

Ψ

(
xi

N

)
+

1

N3

∑

xi∈(NDsing)∩Z3

Ei(ϕ), (3.17)
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where Ψ is defined by (3.10). The expression (3.17) is next approximated by

Ec(ϕ,Dreg) =
1

|D|

∫

Dreg

Ψ(x) dx+
1

N3

∑

xi∈(NDsing)∩Z3

Ei(ϕ)

=
1

|D|

∫

Dreg

W (∇ϕ(x)) dx +
1

N3

∑

xi∈(NDsing)∩Z3

Ei(ϕ). (3.18)

Recall that Ψ(x) = W (∇ϕ(x)) is the energy of an atom in an infinite system
deformed by the linear map ∇ϕ(x). The domain Dreg is hence often called the
local zone, since only the knowledge of the deformation ϕ in a neighborhood of x is
needed to compute the energy of an atom located at x. The situation is completely
different in Dsing. We make the standard assumption that, beyond a cut-off radius
rc, the potential V vanishes. Hence only the atoms inside the ball of center x and
of radius rc interact with an atom located at x ∈ D. In view of (3.18) and (3.15),
we see that the energy of an atom of Dsing, located at ϕ(xi/N), depends on the
positions of all the atoms in a ball of radius rc around ϕ(xi/N), and not only on
the values of ϕ in a neighborhood of ϕ(xi/N).

2000 angströms

1000 angströms

Non smooth deformation
Smooth deformation

Nanoindenter (25 angströms)

Figure 7. Schematic representation of a nanoindentation exper-
iment: close to the stiff indenter, one expects a non-smooth defor-
mation of the soft material, hence the need of a fine model. Fur-
ther away, the deformation is smooth, and a macroscopic model,
discretized on a coarse mesh (here quadrangles), provides a good
enough accuracy.

Continuum mech. Atomistic model

Mesh size H ≫ 1/N Atomic spacing 1/N

Figure 8. Partition of D (in dimension one) into a regular zone
Dreg where the continuum mechanics model is used, and a singular
zone Dsing where the atomistic model is used.

In practice, a finite element method is employed in Dreg to approximate the
deformation ϕ. The first term of (3.18) is computed by a numerical quadrature,
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involving a few quadrature points in each finite element. In the case of a piecewise
linear approximation, the degrees of freedom are the values of ϕ on the vertices of
the mesh in Dreg, and the positions ϕ (xj/N) of the atoms belonging to Dsing (that
is, those such that xj ∈ (NDsing) ∩ Z

3).
An equilibrium configuration ϕeq is defined as the global minimizer of an approx-

imation of (3.18), along the above lines (note that some methods alternatively focus
on local minimizers, rather than global ones, or on critical points of the energy).
This configuration only makes sense if it is smooth in Dreg. Indeed, in that region,
we replaced the original atomistic energy by a continuum mechanics energy, which is
possible only under some regularity assumptions on the deformation. If, according
to a certain criterion which is part of the multiscale method, the deformation ϕeq

is considered not smooth in a subdomain Dirreg of Dreg, then the partition (3.16) is
updated accordingly, and a new partition D = Dnew

reg ∪Dnew
sing, defined by

Dnew
reg = Dreg \ Dirreg, Dnew

sing = Dsing ∪ Dirreg,

is considered: the domain Dirreg, which was described at the continuum scale, is
now described at the atomistic scale. A coupled energy of type (3.18), based on this
new partition, is considered. This yields the following iterative procedure. Start
with a given partition of D, and then iterate over the steps:

• on the basis of the current partition, define the coupled energy (3.18);
• solve the variational problem associated with that energy (we denote ϕeq its

global minimizer);
• update the partition on the basis of ϕeq, along the lines of the above discussion.

We now assess the computational gain. Evaluating the energy of atom i is
more expensive when using the nonlocal model (3.15) than when using the local
model (3.10). Indeed, in the local formulation (3.10), it is easy to compute the
position of all the atoms in the ball of cutoff radius around atom i. On the other
hand, computing the energy of atom i according to the nonlocal expression (3.15)
requires to know all the positions ϕ (xj/N) of the atoms j in the cutoff radius
ball centered around atom i. This is a computationally demanding task, since one
first has to determine in which finite element each of these atoms j is. Besides,
in practice, finite elements of the subdomain Dreg contain a very large number of
atoms ne. As a consequence, computing the contribution of the local zone Dreg

to the total energy is much cheaper with the coarse-grained model than with the
reference model. Indeed, in the coarse-grained model, this contribution, which is
exactly the first term of (3.18), can be computed by evaluating the energy of an
extremely small number of atoms (those at the quadrature points, where Ψ needs to
be evaluated). In constrast, in the reference model, one has to compute the energy
of a large number ne of atoms. So the computational gain comes from a two-fold
argument: in Dreg, the energy of much fewer atoms needs to be evaluated, and each
of these evaluations is cheaper, since a local model is used rather than a nonlocal
one.

4. Numerical approaches.

4.1. Polymeric fluids. We now turn to the discretization of the systems (3.3) or
(3.6). Most of the numerical methods employed for the simulation of non Newtonian
fluids are based upon a finite element discretization in space and Euler schemes in
time, using a semi-explicit scheme: at each timestep, the velocity is first solved for
a given stress, and then the stress is updated, for the corresponding velocity.
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Three types of difficulties typically arise:

1. An inf-sup condition must be satisfied by the spaces respectively used for the
discrete velocity, the pressure and the stress (in order for the discretization to
be stable for ǫ close to 1).

2. The advection terms need to be appropriately discretized, in the equation of
conservation of momentum, in the equation on τ p in (2.5), in the equation on
ψ in (3.3), on in the SDE in (3.6).

3. The nonlinear terms require, as always, special attention. On the one hand,
some nonlinear terms stem from the coupling: ∇uτ p + τ p(∇u)T in (2.5),
∇uXt in (3.6) or div r(∇u r ψ(t,x, r)) in (3.3). On the other hand, for rhe-
ological models more complicated than the Oldroyd-B or Hookean dumbbell
models, some nonlinear terms come from the model itself (see the entropic
force F (Xt) in (3.6) for FENE models for example).

Besides, for both micro-macro models and purely macroscopic models, one central
difficulty of the simulation of viscoelastic fluids is the so-called High Weissenberg
Number Problem (HWNP), see for instance R. Keunings [74, 75]. It is indeed
observed that numerical simulations do not converge when We is too large and
that the problem gets all the more delicate as the mesh is refined.

Because the reader might be more familiar with a purely deterministic formu-
lation, we begin by outlining the numerical approach for problems of type (3.3).
The discretization of the Fokker-Planck equation in (3.3) is typically performed
using spectral methods (see A. Lozinski [92], J.K.C. Suen, Y.L. Joo and R.C. Arm-
strong [114] or D.J. Knezevic and E. Süli [77]). It is not easy to find a suitable varia-
tional formulation of the Fokker-Planck equation, and an appropriate discretization
that satisfies the natural constraints on the probability density ψ (namely non neg-
ativity, and normalization). We refer to C. Chauvière and A. Lozinski [34, 93] for
suitable discretizations in the FENE case. A major difficulty is the possible high
dimensionality of the Fokker-Planck equation. In the context of polymeric fluid flow
simulation, when the polymer chain is modelled by a chain of N + 1 beads linked
by N springs, the Fokker-Planck equation is a parabolic equation posed on a 3N -
dimensional domain. Some numerical methods have been developed to discretize
such high dimensional problems. The idea is to use an appropriate Galerkin basis,
whose dimension remains limited when dimension grows. We refer to P. Delaunay,
A. Lozinski and R.G. Owens [41], T. von Petersdorff and C. Schwab [119], H.-J. Bun-
gartz and M. Griebel [29] for the sparse-tensor product approach, to L. Machiels,
Y. Maday, and A.T. Patera [95] and D.J. Knezevic and A.T. Patera [78] for the
reduced basis approach and to A. Ammar, B. Mokdad, F. Chinesta and R. Keun-
ings [3, 4] and to C. Le Bris, T. Lelièvre, and Y. Maday [84] for a method coupling a
sparse-tensor product discretization with greedy algorithms used in approximation
theory.

The numerical approach for the coupled system (3.6) involving the stochastic
differential equations formulation is different. A Monte Carlo method is employed
to discretize the expectation: at each macroscopic point x (i.e. at each node of the

mesh once the problem is discretized), many replicas (or realizations) (Xk,K
t )1≤k≤K

of the stochastic process Xt are simulated, driven by independent Brownian mo-
tions (W k

t )k≥1, and the stress tensor is obtained as an empirical mean over these
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processes:

τK
p =

ǫ

We

(
1

K

K∑

k=1

X
k,K
t ⊗ F (Xk,K

t ) − Id

)
.

In this context, the discretization method coupling a finite element method and a
Monte Carlo technique is called CONNFFESSIT for Calculation Of Non-Newtonian
Flow: Finite Elements and Stochastic SImulation Technique (see M. Laso and

H.C. Öttinger [79], and Figure 9). We describe below the implementation of this
method in a simple geometry.
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Figure 9. The numerical analysis of problem (3.6) combines
knowledge in mathematical fields that rarely coexist with one an-
other.

To give a flavour of the numerical difficulties involved when solving coupled
problems of the type (3.3) or (3.6), we momentarily consider the simple situation of
a start-up Couette flow (see Figure 10). The fluid flows between two parallel planes.
Such a model is typically obtained considering a flow in a rheometer, between
two cylinders, and taking the limit of large radii for both the inner and the outer
cylinders (see Figure 10). At initial time, the fluid is at rest. The lower plane (y = 0,
modelling the inner cylinder of the rheometer) is then shifted with a velocity V (t),
which, for simplicity, will be set to a constant value V (sinusoidal velocities may
also be applied). On the other hand, the upper plane (y = L, modelling the outer
cylinder of the rheometer) is kept fixed. Such a setting is called a start-up flow, and
because it is confined between two parallel planes, a Couette flow.

We denote by x and y the horizontal and vertical axes, respectively. The flow is
assumed invariant in the direction perpendicular to (x, y).
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Figure 10. Schematic representation of a rheometer. On an in-
finitesimal angular portion, seen from above, the flow is a simple
shear flow (Couette flow) confined between two planes with velocity
profile (u(t, y), 0, 0).

After appropriate assumptions (the flow is laminar, the velocity writes u =
u(t, y)ex, the entropic force is taken Hookean, etc), the coupled system (3.3) sim-
plifies into




Re
∂u

∂t
(t, y) = (1 − ǫ)

∂2u

∂y2
(t, y) +

∂τ

∂y
(t, y),

τ(t, y) =
ǫ

We

∫

R2

P Qψ(t, y, P,Q) dP dQ,

∂ψ

∂t
(t, y, P,Q) = − ∂

∂P

((
∂u

∂y
(t, y)Q− 1

2We
P

)
ψ(t, y, P,Q)

)

+
∂

∂Q

(
1

2We
Q ψ(t, y, P,Q)

)
+

1

2We

(
∂2

∂P 2
+

∂2

∂Q2

)
ψ(t, y, P,Q),

(4.1)

where P and Q are the two components of the end-to-end vector r, along the x
and y axes respectively. In the above system, τ(t, y) denotes the xy entry of the
tensor τ p. Actually, the pressure field, and the other entries of the stress tensor
may be then deduced, independently.

We emphasize at this stage the tremendous simplifications that the Couette
model allows for. Owing to the simple geometric setting and the fact that the
flow is assumed laminar, the divergence-free constraint (3.3) is fulfilled by construc-
tion of the velocity field and can be eliminated from the system. In addition, both
transport terms (u · ∇)u and (u · ∇)ψ vanish, again because of evident geomet-
rical considerations. This explains the extremely simple form of the equation of
conservation of momentum in this context, which indeed reduces to a simple one-
dimensional heat equation. This set of simplifications is specific to the Couette flow.
Substantial difficulties arise otherwise.

The macroscopic equation is discretized with finite elements: P1 finite elements
for the velocity and P0 finite elements for the stress tensor.
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If the mesoscopic scale is modelled by the Fokker Planck equation, the latter may
be discretized using finite difference in time (taking explicit the transport term and
implicit the parabolic terms) and a spectral method for the space variable. More
precisely, we first introduce the equilibrium solution for the last line of (4.1) when

u = 0, namely ψ∞(P,Q) =
1

2π
exp

(
−P

2 +Q2

2

)
, rewrite the Fokker-Planck equa-

tion using ϕ =
ψ

ψ∞
as the primary unknown function, and next proceed with the

discretization. Because of the specific form of ψ∞, the most appropriate Galerkin
basis consists of (tensor products of) Hermite polynomials Hi, which indeed satisfy

1√
2π

∫

R

Hi(P )Hj(P ) exp (−P 2/2)dP = δij . Note that the use of such a spectral ba-

sis allows to circumvent the practical difficulty related to the fact that the equation
is posed on the whole space.

Alternatively to the last two lines of (4.1), the mesoscopic scale may be modelled
using the stochastic differential equations





dP (t, y) =

(
∂u

∂y
(t, y)Q(t) − 1

2We
P (t, y)

)
dt+

1√
We

dVt,

dQ(t) = − 1

2We
Q(t)dt+

1√
We

dWt,

(4.2)

where Vt and Wt are two mutually independent one-dimensional Brownian motions,
and the stress is given by

τ(t, y) =
ǫ

We

∫

R2

P Qψ(t, y, P,Q) dP dQ =
ǫ

We
E(P (t, y)Q(t)). (4.3)

The system is discretized using a forward Euler scheme in time and a standard
Monte-Carlo method for replacing the above expectation value by an empirical
mean:

Pn+1
i,k = ∆t

Un+1
i − Un+1

i−1

∆y
Qn

k +

(
1 − ∆t

2We

)
Pn

i,k +

√
∆t

We
V n

k , (4.4)

Qn+1
k =

(
1 − ∆t

2We

)
Qn

k +

√
∆t

We
Wn

k , (4.5)

for 1 ≤ k ≤ K (number of realizations of the random variables), where V n
k and Wn

k

are independent normal random variables, and

(τh)n+1
i =

ǫ

We

1

K

K∑

k=1

Pn+1
i,k Qn+1

k . (4.6)

This discretization is the CONNFFESSIT approach mentioned above, imple-
mented in a simple case (see Figure 11).

A crucial remark (which not only applies to the Couette flow, but also to more
general situations) is the following. Since the stress (τh)n+1

i is an empirical mean
(4.6), it is thus also a random variable. It follows that the discretized macroscopic
velocity itself is a random variable. In contrast, at the continuous level, K → ∞
in (4.6), and the stress and the velocity are both deterministic quantities (since
the expectation value is a deterministic quantity). Consequently, computing the
velocity or the stress using the stochastic approach implies performing a collection
of simulations, and averaging out the results. This immediately brings variance
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Figure 11. The CONNFFESSIT method in a shear flow.

issues into the picture. Appropriate variance reduction methods can be applied.
We refer to C. Le Bris and T. Lelièvre [83] (and more specifically to B. Jourdain,
C. Le Bris, and T. Lelièvre [67]) for more details.

The Matlab codes corresponding to the above description are available at
http://hal.inria.fr/inria-00165171

The numerical approach to treat other types of entropic forces (like the FENE force)
and other geometries of flows follows the same line, but the extension can be quite
involved, especially for the Fokker-Planck approach.

It is evident from the above discussion that the work load implied by such a
coupling may be overwhelming in many practical, especially three-dimensional, sit-
uations. Thus the micro-macro simulations are, to date, limited in applications.
They serve as a backroom strategy to validate or derive appropriate constitutive
laws. They may also be employed on a limited portion of the computational do-
main (typically in a layer close to the boundaries where non-Newtonian effects are
expectedly important; see for example A. Ern and T. Lelièvre [52] for results in this
direction).

4.2. Solids. The method analyzed in Section 3.2 is a model example for more
advanced methods, such as the QuasiContinuum Method (QCM). In its initial
version [115, 116] by E.B. Tadmor, M. Ortiz and R. Phillips, the approach first
considers the continuum scale, with a standard continuum mechanics model, dis-
cretized by a finite element method. The multiscale feature of the method appears
when the elastic energy of an element is computed. Depending on some criteria,
some elements are declared to be too heterogeneously strained for a macroscopic
description to be valid. They are considered henceforth as a set of discrete parti-
cles. The associated energy is then computed according to an underlying atomistic
model. Otherwise, for an element that is smoothly deformed, the standard original
continuum mechanics model is used to compute the energy.

http://hal.inria.fr/inria-00165171
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In the second, later, version of the method [112] by V.B. Shenoy, R. Miller,
E.B. Tadmor, D. Rodney, R. Phillips and M. Ortiz, that we describe below, the
opposite viewpoint is adopted. The starting point is a multibody atomistic energy,

Emicro(ϕ) =

N∑

i=1

Ei(ϕ), (4.7)

sum of the energies Ei(ϕ) of each individual atom i when the current configuration
of the atomistic system is defined by ϕ. We define the equilibrium configuration as
the solution to

inf {Emicro(ϕ); ϕ ∈ A} , (4.8)

with

A =
{
ϕ ∈ R

dN , ϕ satisfies some boundary conditions
}
,

where d is the space dimension. In practice, the system under consideration is com-
posed of an extremely large number N of atoms. Hence, the evaluation of (4.7), for
a given ϕ, is already a challenging task. Furthermore, the variational problem (4.8)
is set in a high-dimensional space.

To drastically diminish the number N of degrees of freedom, Nr atoms are
selected, with Nr ≪ N . They are called the representative atoms, abbreviated
repatoms. Let iα, 1 ≤ α ≤ Nr, denote their indices. Their current positions{
ϕiα
}Nr

α=1
are the only remaining degrees of freedom of the reduced system. The

positions of the N − Nr non-representative atoms are obtained by interpolation.
The idea of interpolation is related to the Cauchy-Born rule; see the work [60] by
G. Friesecke and F. Theil for a seminal paper on the validity of this assumption for
a spring lattice system. More precisely, a mesh is built upon the repatoms in the
reference configuration. Let ϕi

0 be the reference position of atom i, and Sα(x) be the
piecewise affine function associated with the node α (for simplicity, we henceforth
consider a P1 finite element method). In a one-dimensional setting, we thus have

Sα(x) =





x− ϕ
iα−1

0

ϕiα

0 − ϕ
iα−1

0

if ϕ
iα−1

0 ≤ x ≤ ϕiα

0 ,

x− ϕ
iα+1

0

ϕiα

0 − ϕ
iα+1

0

if ϕiα

0 ≤ x ≤ ϕ
iα+1

0 ,

0 otherwise.

The position of any atom i in the deformed configuration is obtained from the
current positions of the repatoms using the interpolation formula

ϕi =

Nr∑

α=1

Sα(ϕi
0) ϕ

iα . (4.9)

Otherwise stated, a Galerkin approximation

inf {Emicro(ϕ); ϕ ∈ A and satisfies (4.9)} (4.10)

of (4.8) is performed.
We now turn to the practical evaluation of the energy (4.7), and explain how to

handle the large number of terms it involves. Assume that the energy of atom i
reads

Ei(ϕ) =
1

2

∑

j 6=i,‖ϕj−ϕi‖≤rcut

V (ϕj − ϕi) (4.11)
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for some interaction potential V with some cutoff radius rcut, and assume that the
reference configuration is a periodic lattice. Consider an atom i that only interacts
with the atoms j of the same finite element. The key point is to observe that its
energy Ei(ϕ) actually does not depend on i. Indeed, when atoms i and j belong to
the same finite element, on which Sα is an affine function, we infer from (4.9) that

ϕj − ϕi =

Nr∑

α=1

(
gℓ

α · (ϕj
0 − ϕi

0)
)
ϕiα ,

where gℓ
α is the gradient of Sα in the finite element ℓ, which is a constant vector.

Hence, ϕj − ϕi is a function of ϕj
0 − ϕi

0, parameterized by the finite element ℓ and

the current positions
{
ϕiα
}Nr

α=1
of the repatoms:

ϕj − ϕi = F
(
ϕj

0 − ϕi
0; ℓ,

{
ϕiα
}Nr

α=1

)
.

Inserting the above relation in (4.11), we observe that Ei(ϕ) is a sum of terms that

only depend on ϕj
0 − ϕi

0, that we write

Ei(ϕ) =
1

2

∑

j 6=i

F̃
(
ϕj

0 − ϕi
0; ℓ,

{
ϕiα
}Nr

α=1

)
.

The reference configuration being a perfect lattice, we obtain that the above sum
actually does not depend on i.

Hence, all atoms i in a finite element ℓ that only interact with atoms j in the
same finite element share the same energy, which we may thus denote by Eℓ, and
which only depends on the current positions of the repatoms (actually, only on

those related to the vertices of the finite element): Ei(ϕ) = Eℓ

({
ϕiα
}Nr

α=1

)
. By

choice, the exact same expression Eℓ

({
ϕiα
}Nr

α=1

)
is taken as an approximation of

the energy of atoms that interact with atoms belonging to different finite elements.
We hence approximate the energy (4.7) using

Ẽmicro(ϕ) =
∑

ℓ

nℓEℓ

({
ϕiα
}Nr

α=1

)
, (4.12)

where nℓ is the number of atoms included in the finite element ℓ. Note that there
are much fewer terms in the sum (4.12) than in the sum (4.7). We next approxi-
mate (4.10) by the problem

inf
{
Ẽmicro(ϕ); ϕ ∈ A and satisfies (4.9)

}
, (4.13)

which can be solved in practice, since it is posed on a space of moderate dimension

(there are dNr ≪ dN degrees of freedom), and it involves energies Ẽmicro(ϕ) that
can be computed practically.

So, in its second version, the QuasiContinuum method somewhat consists in an
efficient quadrature rule to compute (4.7). This second formulation leads to similar
equations as the first version, presented in Section 3.2, in the case of a discretization
using Lagrangian P1 finite elements. Indeed, in that case, the degrees of freedom
in both the first and second versions are the current positions of the atoms at the
mesh vertices. In addition, using the fact that ∇ϕ is constant over each triangle Tℓ,
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the first term of (3.18) reads

1

|D|

∫

Dreg

W (∇ϕ(x)) dx =
∑

ℓ;Tℓ⊂Dreg

|Tℓ|
|D|W (∇ϕ|Tℓ

),

where ∪ℓTℓ is the triangulation of Dreg. The volume ratio |Tℓ|/|D| is equal to nℓ/N ,
where nℓ is the number of atoms included in the finite element Tℓ, and N is the total
number of atoms in the system. Besides, by definition, W (∇ϕ|Tℓ

) is the energy of
an atom in a lattice deformed by the linear map ∇ϕ|Tℓ

, which is exactly equal to

the energy Eℓ

({
ϕiα
}Nr

α=1

)
. Hence, the first term of (3.18) reads

1

|D|

∫

Dreg

W (∇ϕ(x)) dx =
1

N

∑

ℓ;Tℓ⊂Dreg

nℓEℓ

({
ϕiα
}Nr

α=1

)
.

Up to a multiplicative constant, we recover the expression (4.12) in the subdomain
Dreg.

The QuasiContinuum method has been applied in a number of practical situ-
ations (see e.g. the works [99, 111, 117] by N. Bernstein, E. Kaxiras, R. Miller,
M. Ortiz, R. Phillips, V.B. Shenoy, G.S. Smith and E.B. Tadmor). A review of
its current status can be read in [98] by R. Miller and E.B. Tadmor. See also the
work [6] by M. Anitescu, D. Negrut, P. Zapol and A. El-Azab for an application of
a similar idea to another context, and the paper [94] by M. Luskin and C. Ortner
for some discussion of the consistency and accuracy of several quadrature rules that
have been proposed for the practical evaluation of (4.7), along the above lines.

5. Mathematical and numerical analysis. The questions raised by the above
multiscale models in terms of mathematical analysis and numerical analysis are
diverse in nature, because the mathematical objects involved are themselves diverse.

Before proceeding with our overview of these questions, let us mention that some
knowledge on the mathematical nature of the (single-scale) macroscopic models is a
prerequisite. The situation cannot be expected to be simpler than, say, models like
the Oldroyd B model (2.5) for complex fluids, or the nonlinear elasticity models (2.9)
for solid materials. There is a two-fold reason for this. Firstly, the multiscale models
are indeed, for some simple particular cases, equivalent to some single-scale models.
We have mentioned the Hookean model equivalent to the Oldroyd B model, or the
nearest neighbour harmonic interaction potential that leads to linearized elasticity
(2.10). Secondly, multiscale systems at least involve macroscopic equations, either
because they couple general equations of conservation (like the first two lines of
(3.3)) with equations at finer scales, or because they use in practice two different
sets of equations in different regions of the computational domain, and one of such
set of equations is often purely macroscopic. Without even speaking of the coupling
issues, considering separately each region, or each equation, is necessary.

As a reference, and because, as we have seen, this is implicitly or explicitly
embedded into the analysis of the multiscale problems, we each time begin our
discussion below with briefly recalling the mathematical and numerical challenges
for the single-scale equations.
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5.1. Fluids.

5.1.1. Mathematical analysis. Systems like (2.5) modelling purely macroscopically
non-Newtonian fluids typically include the Navier-Stokes equations, with the ad-
ditional term div τ p in the right-hand side. The equation on τ p is essentially a
transport equation and, formally, τ p has at best the regularity of ∇u (this for-
mal observation is important for the choice of appropriate functional spaces for the
mathematical setting, and of the discretization spaces for numerical methods). The
term div τ p in the right-hand side of the momentum equation is not likely to bring
more regularity on u. It is thus expected that the study of these coupled systems
contains at least the well-known difficulties of the Navier-Stokes equations. Recall
that for the three-dimensional Navier-Stokes equations, it is known that global-
in-time weak solutions exist but the regularity, and thus the uniqueness, of such
solutions for appropriate data is only known locally in time.

Besides the difficulties already contained in the Navier-Stokes equations (which
essentially originate from the Navier term u·∇u), the coupling with the equation on
τ p raises additional problems. First, these equations contain a transport term u ·
∇τ p without any diffusion term in the space variable. They are hyperbolic in
nature. The regularity on the velocity u is typically not sufficient to rigorously treat
this transport term by a characteristic method. Moreover, these equations involve a
nonlinear multiplicative term ∇u τ p. Finally, for the most sophisticated models, the
equations defining τ p generally contain additional non-linearities. These difficulties
of course limit the state-of-the-art mathematical well-posedness analysis to mainly
local-in-time existence and uniqueness results. They also have many implications
on the numerical methods (in terms of choice of the discretization spaces, stability
of the numerical schemes, ...).

Example of results for such macroscopic models that may be found in the litera-
ture are contributions by M. Renardy in [107] (local-in-time existence for an abstract
model that covers the specific Oldroyd-B case), by C. Guillopé and J.C. Saut [61, 62]
(existence results for less regular solutions for non-zero viscosity of the solvent), by
E. Fernandez-Cara, F. Guillen and R.R. Ortega [54] and references therein (local-in-
time well-posedness in Sobolev spaces), by F.-H. Lin, C. Liu and P.W. Zhang [87]
(local-in-time existence and uniqueness results and global-in-time existence and
uniqueness results for small data), by P.-L. Lions and N. Masmoudi [90] (the only
global-in-time existence result we are aware of, for a specific Oldroyd-like model
with the corotational convective derivative on the stress tensor rather than the
upper convected derivative). For reviews on the mathematical analysis of macro-
scopic models citing many more contributions, we refer to M. Renardy [109], or
E. Fernandez-Cara, F. Guillen and R.R. Ortega [54].

We now turn to the multiscale models. The analysis of micro-macro models for
polymeric fluids has begun with an early work by M. Renardy [108], where a micro-
macro model in its Fokker-Planck formulation is studied. There is now a growing
literature on such models, presumably because they are prototypical of a broad class
of multiscale models, where some parameters inserted in the macroscopic equations
are computed using models at finer scales.

The difficulties present for the purely macroscopic models discussed above are
also present mutatis mutandis in the multiscale models. They are related to the
transport terms (in addition to u · ∇u, we now have u · ∇Xt and u · ∇ψ), the
nonlinear terms either coming from the coupling between variables (in addition to
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the variables (u, p) and τ p, we now have ∇uXt and div r (∇u rψ)), or inherently
contained in the equations defining τ p (due to the non-linear entropic force F ).

Several existence and uniqueness results for the coupled system involving the
Fokker-Planck equation have been obtained. For some local existence and unique-
ness results, we refer to M. Renardy [108], T. Li, H. Zhang and P.W. Zhang [85],
H. Zhang and P.W. Zhang [122], N. Masmoudi [96]. The latter author has also
shown a global in time existence result for initial data close to equilibrium (see also
F.-H. Lin, C. Liu and P.W. Zhang [88] for a prior, more restricted result). Moreover,
N. Masmoudi has also recently obtained global existence of weak solutions to the
FENE model in [97].

Global existence results have also been obtained for some closely related prob-
lems:

• Existence results for a regularized version: In a series of papers [12, 13, 14],
J.W. Barrett and E. Süli obtain global existence results using space regularized
versions. For example, the velocity u in the Fokker Planck equation is replaced
by a smoothed velocity, and the same smoothing operator is used on the stress
tensor τ p in the right-hand side of the momentum equations. Alternatively, a
small diffusion term (with respect to the space variable) is introduced in the
Fokker-Planck equation. See also L. Zhang, H. Zhang and P.W. Zhang [123].

• Existence results with a corotational derivative: In J.W. Barrett, C. Schwab
and E. Süli [12, 13] (again with some regularizations) and P.-L. Lions and
N. Masmoudi [91, 96] (without any regularizations), the authors obtain global-
in-time existence results replacing ∇u in the Fokker-Planck equation by
∇u−∇u

T

2 . More precisely, in [91], a global-in-time existence result of weak
solutions is obtained in dimension 2 and 3, while in [96], it is proved that in
dimension 2, there exists a unique global-in-time strong solution. A related
recent result by F.-H. Lin, P. Zhang and Z. Zhang is [89].

We would like also to mention the related works [37, 38, 40] by P. Constantin,
C. Fefferman, N. Masmoudi and E.S. Titi, on existence results for coupled Navier-
Stokes Fokker-Planck micro-macro models.

We now turn to system (3.6), which is quite difficult to study in full general-
ity. Two simplifications of this general setting are usually considered, at least for
preliminary arguments: homogeneous flows and shear flows. In homogeneous flows,
∇u does not depend on the space variable, and therefore Xt (and thus τ p) does
not depend on the space variable either. It greatly simplifies the mathematical sit-
uation. For illustration purposes, we prefer to consider here a shear flow, studied
in particular in M. Laso and H.C. Öttinger [79], J.C. Bonvin and M. Picasso [27],
C. Guillopé and J.C. Saut [62], W. E, T. Li and P.W. Zhang [50]. The equations
have already been introduced in (4.1) and (4.2). For a general force (instead of an
Hookean force), the system reads:





Re
∂u

∂t
(t, y) − (1 − ǫ)

∂2u

∂y2
(t, y) =

∂τ

∂y
(t, y) + f(t, y),

τ(t, y) =
ǫ

We
E(Pt(y)FQ(Xt(y))),

dPt(y) =
∂u

∂y
(t, y)Qt(y) dt−

1

2We
FP (Xt(y)) dt+

1√
We

dVt,

dQt(y) = − 1

2We
FQ(Xt(y)) dt+

1√
We

dWt,

(5.1)
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where (Pt(y), Qt(y)) are the two components of the stochastic process Xt(y), and
(FP , FQ) the two components of the force F .

A standard formal manipulation on this system, involving some elements of sto-
chastic calculus, yields the following a priori estimate:

Re

2

d

dt

∫

D

|u|2(t,x) + (1 − ǫ)

∫

D

|∇u|2(t,x) +
ǫ

We

d

dt

∫

D

E(Π(Xt(x)))

+
ǫ

2We 2

∫

D

E(‖F (Xt(x))‖2) =
ǫ

2We 2

∫

D

∆Π(Xt(x)), (5.2)

where Π is the potential of the force F = ∇Π. Notice that the right-hand side of
this equality is typically a positive term (recall that, in practice, the potential Π
is convex). The situation is different from the usual a priori estimates for, say, the
Navier-Stokes equations where the right-hand side is zero. Here, some energy is
brought to the system by the finer scales. On finite time intervals, this is however
not a difficulty for the mathematical analysis.

A typical result is, in the case of Hookean dumbbells in a shear flow, the global-
in-time existence and uniqueness result proved for the first time in B. Jourdain,
C. Le Bris and T. Lelièvre [70]. The solution (u,Xt) on the interval [0, T ] satisfies
the estimate

‖u‖2
L∞

t (L2
y) + ‖u‖2

L2
t(H

1
0,y) + ‖Xt‖2

L∞

t (L2
y(L2

ω)) + ‖Xt‖2
L2

t(L
2
y(L2

ω))

≤ C
(
‖X0‖2

L2
y(L2

ω) + ‖u0‖2
L2

y
+ T + ‖f‖2

L1
t(L

2
y)

)
.

This setting (Hookean dumbbell in a shear flow) is actually extremely specific. A
global-in-time existence and uniqueness result is obtained since the coupling term
∇uXt of the original problem simplifies to ∂u

∂y
Qt in (5.1), where Qt is known inde-

pendently of (u, Pt). In other words, this coupling term is, serendipitously, no more
nonlinear.

For the FENE force, two new difficulties have to be addressed: first, the SDE
contains an explosive drift term and second, even in a shear flow, the coupling
term ∇uXt is genuinely nonlinear. Advanced questions of stochastic analysis arise,
the model being really multimaths. We refer to B. Jourdain and T. Lelièvre [69]
and to B. Jourdain, C. Le Bris and T. Lelièvre [71] for the first studies in this
setting and in particular the proof of a local-in-time existence and uniqueness result.
For a similar result in a more general setting (3-dimensional flow) and forces with
polynomial growth, we refer to W. E, T. Li and P.W. Zhang [51]. The authors
prove a local-in-time existence and uniqueness result in high Sobolev spaces. We
also refer to A. Bonito, Ph. Clément and M. Picasso [26] for existence results for
Hookean dumbbells, neglecting the advection terms.

More generally, it is important to notice that, when the velocity field is not
sufficiently regular, and similarly to the situation seen for the Fokker-Planck setting
above, it is difficult to give a sense to the transport term in the SDE (which is
actually a Stochastic Partial Differential Equation). We refer to C. Le Bris and
P.-L. Lions [80, 81] for works in this direction.

On the other hand, the presence of an energy source, the right-hand side of (5.2),
affects the analysis of the long-time behaviour, like questions related to return to
equilibrium. For such questions, the appropriate notion to introduce is that of
free energy rather than energy. Assume zero Dirichlet boundary conditions on the
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velocity u. The expected stationary state (equilibrium) is

u(∞,x) = 0, ψ(∞,x,X) = ψeq(X) ∝ exp(−Π(X)).

The free energy

F (t) =
Re

2

∫

D

|u|2(t,x) +
ǫ

We

∫

D

∫

Rd

ψ(t,x,X) ln

(
ψ(t,x,X)

ψeq(X)

)
,

sum of the kinetic energy plus the relative entropy with respect to the equilibrium
ψeq, can be shown to satisfy:

dF

dt
= −(1 − ǫ)

∫

D

|∇u|2(t,x) − ǫ

2We 2

∫

D

∫

Rd

ψ(t,x,X)

∣∣∣∣∇X ln

(
ψ(t,x,X)

ψeq(X)

)∣∣∣∣
2

.

(5.3)
Comparing with (5.2), we observe that the introduction of the entropy allows to
eliminate the positive right-hand side. Standard techniques of kinetic theory (like
Logarithmic Sobolev inequalities, see [5]) allow then to conclude that, under appro-
priate conditions, the fluid returns to equilibrium after perturbations. We refer to
B. Jourdain, C. Le Bris, T. Lelièvre and F. Otto [68], or A. Arnold, J.A. Carrillo
and C. Manzini [7]. The multimaths character of the setting is evident.

We would like to also mention that these estimates on the micro-macro system
can be used as a guideline to derive new estimates on related macro-macro models
(see D. Hu and T. Lelièvre [64]) and also to derive new approximation schemes
(see S. Boyaval, T. Lelièvre and C. Mangoubi [28]). This is an interesting (perhaps
general) byproduct of mathematical studies of multiscale systems to actually con-
tribute to better understand and approximate the associated purely macroscopic
models.

5.1.2. Numerical analysis. Of course, the difficulties raised by the discretization
of the models are, as always, reminiscent of the difficulties of the mathematical
analysis. Here again, as mentioned above, the treatment of the multiscale problem
necessarily requires a good knowledge of the treatment of the purely macroscopic
model. An overview of the numerical difficulties encountered when simulating purely
macroscopic models for non Newtonian fluids may be found in R. Keunings [74],
F.P.T. Baaijens [8], and R. Owens and T. Phillips [105]. As for multiscale problems,
we will only, for brevity, address here the stochastic formulation of the equations,
that is, system (3.6). A typical result of numerical analysis, proved in B. Jour-
dain, C. Le Bris and T. Lelièvre [70] and W. E, T. Li and P.W. Zhang [50], deals
with Hookean dumbbells in a shear flow. The error estimate for the discretization
approach reads:

∣∣∣∣
∣∣∣∣u(tn) − un

h

∣∣∣∣
∣∣∣∣
L2

y(L2
ω)

+

∣∣∣∣
∣∣∣∣E(Ptn

Qtn
) − 1

K

K∑

k=1

Pn
i,kQ

n
k

∣∣∣∣
∣∣∣∣
L1

y(L1
ω)

≤ C

(
∆y + ∆t+

1√
K

)
.

The main difficulties for the proof (see Figures 9, 10 and 11 for the context)
originate from the following facts:

• The velocity un
h is a random variable. The energy estimate at the continuous

level cannot be directly translated into an energy estimate at the discrete level
(which in turn would yield the stability of the scheme).



450 XAVIER BLANC, CLAUDE LE BRIS, FRÉDÉRIC LEGOLL & TONY LELIÈVRE

• The end-to-end vectors (Pn
i,k, Q

n
k )1≤k≤K are coupled random variables (even

though the driving Brownian motions (V n
k ,W

n
k )1≤k≤K are independent).

• The stability of the numerical scheme requires an almost sure bound on Qn
k .

For an extension of these results to a more general geometry and discretization by a
finite difference scheme, we refer to T. Li and P.W. Zhang [86]. A convergence result
in space and time may be found in A. Bonito, Ph. Clément and M. Picasso [25].
Many other studies now exist in the literature.

5.2. Solids. As announced at the beginning of Section 5, before studying multiscale
models of solids, we first briefly review nonlinear elasticity models. A very nice
review by J.M. Ball on this type of mathematical problems may be found in [9].
The (important) difficulties present in these models are also present in multiscale
models. The coupling with discrete models brings additional problems which we
study in the sequel.

We return to the study of problem (2.9): it defines the deformation ϕ of a solid
subject to the body force f and the surface force g. The set A may be for instance
of the form:

A =
{
ϕ ∈W 1,p(D,R3), ϕ(x) = Mx on ∂D

}
, (5.4)

where M is a given matrix, and p > 1 should be related to W (see (5.5) below).
The appropriate mathematical notion involved in the study of (2.9)-(5.4) is qua-
siconvexity. We refer to the papers [11] by J.M. Ball and F. Murat, and [100]
by C.B. Morrey, for its definition. Under fairly general regularity assumptions on

W , quasiconvexity is a sufficient condition for the functional ϕ 7→
∫

D

W (∇ϕ) to

be weakly lower semi-continuous. Thus, minimization problems of the form (2.9)-
(5.4) have minimizers, as stated by the following prototypical result extracted from
J.M. Ball and F. Murat [11]. Assume that W is quasiconvex and bounded from
below and that f ∈ L1(D). Assume in addition that W satisfies the growth condition:

∃p > 1, ∃C2 ≥ C1 > 0, such that ∀M ∈ R
3×3,

C1 (|M |p − 1) ≤W (M) ≤ C2 (|M |p + 1) , (5.5)

and that A is defined by (5.4) with the same p as in (5.5). Then, problem (2.9) has
a minimizer ϕ ∈ W 1,p(D). This result however does not apply to most physically
relevant situations. Indeed, since matter cannot interpenetrate itself, a natural as-
sumption is that W (M) −→ +∞ as det(M) −→ 0+. This clearly contradicts (5.5).
In the same spirit, an expression of the form (3.12) implies some invariances that
prevent W from being quasiconvex, unless it is a function of the determinant of
∇ϕ(x). We refer to I. Fonseca [56] for the proof, and to M. Chipot and D. Kinder-
lehrer [35] and I. Fonseca [57] for related results.

A good simple model to understand the underlying difficulties is the so-called
one-well problem: W (F ) = d(F, SO(3)) := infR∈SO(3) ‖F − R‖2, where ‖M‖2 =

Trace
(
MTM

)
, and where SO(3) is the group of rotations in R

3. Obviously, W
is nonnegative and vanishes only on SO(3). This functional satisfies the frame
invariance. According to D. Kinderlehrer [76] (see also S. Müller [101]), we have, if
f = g = 0:

• If ϕ is a minimizer of (2.9), with A defined by (5.4), then ϕ(x) = Mx almost
everywhere in D.

• Any minimizing sequence (ϕj)j∈N of (2.9) satisfies ∇ϕj −→M in measure.
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The second assertion is delicate. The gradient of a minimizing sequence is easily
shown to converge almost everywhere to a matrix of the formRM , where R ∈ SO(3)
may depend on x ∈ D. The point is to show that this rotationR is actually constant.
The result is closely related to fundamental results called rigidity lemmas, contained
in [65, 66] by F. John, [59] by G. Friesecke, R.D. James and S. Müller, and [110] by
Y.G. Reshetnyak.

More involved is the case when W in (2.9) has two minima (up to rotational
invariance). More precisely, assume that W ≥ 0, and that there exists two matrices
A 6= B such that

W (M) = 0 ⇐⇒ (M ∈ ASO(3) or M ∈ B SO(3)) . (5.6)

We then have the following property (see J.M. Ball and R.D. James [10]): if ϕ ∈
W 1,∞(D) is such that for all x ∈ D, ∇ϕ(x) ∈ {A,B}, then:

• if rank(A − B) ≥ 2, then ∇ϕ = A almost everywhere or ∇ϕ = B almost
everywhere.

• If A − B = a ⊗ n, where a ∈ R
3 and n ∈ R

3, then there exists a Lipschitz
function h such that h′ ∈ {0, 1} and ϕ(x) = Ax+ah(x·n)+b, for some b ∈ R

3.

Hence, in the first case, i.e. if A and B are not rank-one connected, then ∇ϕ
must be constant, and the behavior is similar to the one-well problem case. On the
contrary, in the second case, i.e. if A and B are rank-one connected, minimizing
sequences may behave differently. Indeed, if the boundary condition M satisfies
M = λA + (1 − λ)B, for some λ ∈ (0, 1), then it is possible to construct a
minimizing sequence (ϕj)j≥0 of (2.9) such that ∇ϕj = A and B alternately on strips
of width λ/j and (1 − λ)/j, respectively. A suitable tool to study such oscillating
minimizing sequences is gradient Young measures. We refer to S. Müller [101],
P. Pedregal [106] and L.C. Young [120].

Let us now turn to the problem of minimizing the coupled energy (3.18). We
perform the analysis in a one-dimensional setting, as in X. Blanc, C. Le Bris and
F. Legoll [20, 19]. The generalization to higher dimensions is, to date, unclear. As
we will see below, serious difficulties already arise in the one-dimensional case. We
assume that the interaction potential V is the Lennard-Jones potential

V (r) =
1

r12
− 2

r6
,

and we only account for nearest neighbor interactions.
We assume that D = (0, 1), that the equilibrium configuration corresponds to a

constant distance between the atoms:

xi =
i

N
, i ∈ {0, 1, 2, . . . , N},

that D = Dreg ∪ Dsing is a nontrivial partition of D, and, for simplicity, that

Dsing = (0, b], with b < 1. (5.7)

We denote by BN = ⌊Nb⌋ ∈ N the largest integer that is lower than Nb. The
coupled energy (3.18) reads

Ec(ϕ) =

∫ 1

b

V (ϕ′(x)) dx +
1

N

BN−1∑

i=0

V

(
ϕ
(

i+1
N

)
− ϕ

(
i
N

)

1/N

)
, (5.8)

and the problem we consider is

inf
ϕ∈A

Ec(ϕ), (5.9)
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where the set A reads

A =

{
ϕ; ϕ|Dreg

∈ W 1,1(Dreg), ϕ|Dsing
is the discrete set of variables ϕ

(
i

N

)
,

ϕ(0) = 0, ϕ(1) = a, ϕ is increasing on D
}
. (5.10)

In principle, Dreg and Dsing should be chosen such that the expected singulari-
ties of the deformation all belong to Dsing. However, as established by X. Blanc,
C. Le Bris and F. Legoll [20], if N is large enough and if ϕ(1) is set to a > 1, the
minimizers of (5.9) are of the form:

∀ i

N
∈ Dsing, ϕ

(
i

N

)
=

i

N
(5.11)

∀x ∈ Dreg, ϕ(x) = x+
∑

i∈I

ṽiH(x− xi), ∀i, xi ∈ Dreg, ṽi > 0, (5.12)

with I ⊂ N and
∑

i∈I

ṽi = a− 1 (see Figure 12). Here, H denotes the Heaviside

function: H(t) = 0 if t < 0, and H(t) = 1 if t > 0.

Dreg

Dsing

b
x

1

ϕ

Figure 12. A typical minimizer of (5.9), when N is large enough
and ϕ(1) is set to a > 1.

Equations (5.11)-(5.12) indicate that the material breaks if a > 1, and that
the fracture systematically occurs in the regular zone Dreg, that is in the zone
where ϕ was expected to be smooth. Loosely speaking (see the papers [20, 82, 21]
by X. Blanc, C. Le Bris, F. Legoll and P.-L. Lions for more details), one easily
constructs test-functions ϕ1 and ϕ2 such that ϕ1 has a fracture in Dsing and ϕ2 has
a fracture in Dreg, and E(ϕ1) = E(ϕ2) + 1

N
+ o

(
1
N

)
> E(ϕ2).

Note however that the difference of energy is of order 1
N

, which is tiny, since N
is the typical number of atoms in the system under consideration. In addition, the
above-mentioned argument assumes an exact evaluation of the energies. In practice,
the energy of the continuous model is evaluated using a discretization method (say
a Finite Element Method for simplicity), which has a finite mesh size H . Hence,
E(ϕ) =

∫
V (ϕ′) is approximated by

EH(ϕ) =
1

NH

NH∑

j=1

V (ϕ′(xj)) .

As explained by X. Blanc, C. Le Bris, F. Legoll and P.-L. Lions [21, 82], it is easily
seen that this approximation introduces an error term of order 1/NH ≫ 1/N , which



BEYOND MULTISCALE AND MULTIPHYSICS: MULTIMATHS 453

turns out to counterbalance the above-mentioned effect. It follows that, although
the theory establishes the fracture always occurs in the continuous zone Dreg, the
discretized approximation of the continuous energy shows a different behavior. A
numerical artifact somehow saves the situation. However, this indicates that one
should be careful with the method: it might break down if the mesh is too much
refined. Let us also point out that in many situations, global minimizers are not
physically relevant. In such a case, the above phenomenon does not take place.

In any event, the above discussion shows that, when coupling two different types
of mathematical models (here, discrete and continuous), new difficulties arise. An-
other example of such difficulties is the existence of ghost forces, to which we now
turn.

The notion has been first introduced and discussed by V.B. Shenoy, R. Miller,
E.B. Tadmor, D. Rodney, R. Phillips and M. Ortiz in [112], see also [42, 44]
by M. Dobson and M. Luskin, [82] by F. Legoll and [113] by T. Shimokawa,
J. Mortensen, J. Shiotz and K. Jacobsen. The phenomenon is not present in the
oversimplified case of one dimensional nearest neighbor interactions. The simplest
case in which it occurs is a one-dimensional system with second nearest neighbor
interactions and no external force. The atomistic energy reads

ENNN
micro(ϕ) =

N−2∑

i=0

V2(ϕ
i+2 − ϕi) +

N−1∑

i=0

V1(ϕ
i+1 − ϕi) (5.13)

where V1 and V2 are the nearest neighbor and the second nearest neighbor inter-
action potentials, respectively. The energy (5.13) is a sum of pair-wise interac-
tions. As a consequence, when the configuration is homogeneously deformed, e.g.
ϕi = a i+ b for any i, the force on any atom that does not interact with the bound-
aries (namely, any atom i with 2 ≤ i ≤ N − 2) vanishes. We now consider the
partition D = Dreg ∪Dsing, with Dsing defined by (5.7), and the associated coupled
energy

ENNN
c (ϕ) =

∫ 1

b

V1(ϕ
′(x)) + V2(2ϕ

′(x)) dx

+
1

N

BN−1∑

i=0

V1

(
ϕ
(

i+1
N

)
− ϕ

(
i
N

)

1/N

)
+

1

N

BN−2∑

i=0

V2

(
ϕ
(

i+2
N

)
− ϕ

(
i
N

)

1/N

)
, (5.14)

which is the generalization of (5.8) to the case of second nearest neighbor interac-
tions. Note that atom BN −1 has two discrete neighbors on its left, but only one on
its right. A simple computation shows that the derivative of ENNN

c , evaluated on a
homogeneously deformed configuration, does not vanish for this atom. Some spu-
rious force, the so-called ghost force, appears at atom BN − 1, due to the coupling
of a discrete model with a continuous one.

As mentioned by F. Legoll in [82], one can either work with the coupled en-
ergy (5.14), hoping that the effect of ghost forces is not too important, or correct
these forces by various means (see the works by M. Dobson, M. Luskin and C. Or-
tner [44, 43, 45, 47] and [42], respectively). The former option is the energy based
formulation, whereas the latter option is the force based formulation (see M. Dobson,
M. Luskin and C. Ortner [42, 46, 48], R. Miller, E.B. Tadmor [98] and V.B. Shenoy,
R. Miller, E.B. Tadmor, R. Phillips and M. Ortiz [111]). The latter consists in ap-
proximating the atomistic forces (rather than the energy) by a coupled formulation.
In that setting, by construction, the forces cancel for any homogeneously deformed
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configuration (up to forces at the boundaries of the computational domain, that
were already present in the reference model). It turns out that the correspond-
ing set of equations is not the Euler-Lagrange equation of a variational problem
(there is no underlying energy minimization problem), although the whole strategy
is supposed to approximate a problem originally posed as a variational problem
(see e.g. (4.8)). Specific techniques are to be used to address this case, both for the
standpoint of mathematical analysis and numerical algorithms.

The problem of ghost forces is similar to the problem of defining boundary or
interface conditions for multiphysics models. Such conditions need to be appropri-
ately defined in order to avoid spurious effects (like ghost forces here). Note also
that the above discussion only considered static problems. Similar problems are
encountered in the dynamics. This is reminiscent of well-known problems in, for
instance, wave propagations, where dedicated methods such as perfectly matching
layers (see J.-P. Bérenger [16], or F.L. Teixeira and W.C. Chew [118] for instance)
and/or transparent boundary conditions are needed (see Y. Achdou, C. Sabot, and
N. Tchou [1], U.E. Aladl, A.S. Deakin, and H. Rasmussen [2], J.B. Keller and
D. Givoli [73], or D.P. Nicholls and N. Nigam [102]).

The above discussion certainly demonstrates that appropriately setting problem
(5.9) is delicate. Although the above study is only carried out in a one-dimensional
geometry, there is no reason to think that similar difficulties cannot be expected
in more general situations. The simple mathematical observation performed above,
along with the absence of a complete mathematical analysis of the situation (in
particular regarding the systematic study for choosing Dreg), indicate that all re-
sults obtained with atomistic-to-continuum coupling methods must be taken with
great care. The definite practical success of numerical approaches involving hybrid
problems of the type (5.9) should motivate further mathematical efforts. The state
of the mathematical understanding is certainly lagging behind the success of the
numerical simulations.

6. Trends for multiscale modeling. Polymeric fluids modelling and crystalline
solids modelling, which have been jointly examined here, examplify a general trend
for multiscale modelling: the inclusion of an increasing number of mathematical
objects often different in nature, in order to account for all the phenomena at play
at the various scales.

Schematically, traditional single-scale modelling is based on a description of the
form





Du

Dt
= F(τ p,u),

Dτ p

Dt
= G(τ p,u).

(6.1)

We take here the vocabulary of fluid modelling (velocity u and stress τ p) and
consider the time-dependent setting, but a similar abstract formulation could be
proposed for solids, and for many other practically relevant situations in materials
science and other fields. In contrast, the multiscale approach introduces an addi-
tional intermediate step, where the stress tensor is calculated as an average value
of a field Σ describing the microstructure. An evolution equation is written on the
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latter: 




Du

Dt
= F(τ p,u),

τ p = average over Σ,

DΣ

Dt
= Gµ(Σ,u).

(6.2)

The structure of system (6.2) is a common denominator to many multiscale
models in many contexts. A global macroscopic equation is coupled with a local
(microscopic) equation, via an averaging formula. For instance, the reader familiar
with homogenization theory for materials formally recognizes in (6.2) the homog-
enized equation, the value of the homogenized tensor, and the corrector equation,
respectively. On the numerical front, it is also a structure shared with multiscale
algorithmic approaches: a global coarse solver coupled to a local fine one using an
averaging process (think of the Godunov scheme for solving the Riemann problem
in computational fluid dynamics).

Already the consideration of systems of the type (6.2) requires several mathe-
matical notions different in nature. But, lately, an additional ingredient appeared.
A particular feature of the most recent multiscale approaches is the consideration
of random quantities. Randomness may be caused by the need to describe in a
concise manner many possible behaviours at a given scale. This is the case with the
statistical description seen above of the assembly of thousands of polymeric chains
floating in the fluid considered. It may be also related to the wish to get closer to
real materials, as is the case in the modelling of solids. Periodicity for solid is often
an idealization. In real life, solid materials consist of different grains, are polycrys-
tals, contain defects, etc. Randomness is a way to appropriately account for these
flaws in the material.

Understanding mathematically this new category of multiscale systems, and im-
proving the corresponding numerical approaches, therefore require an appropriate
background, at the intersection of many mathematical domains.
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[14] J. W. Barrett and E. Süli, Existence and equilibration of global weak solutions to
finitely extensible nonlinear bead-spring chain models for dilute polymers, preprint,
http://web.comlab.ox.ac.uk/people/endre.suli/barrett-and-suli.2010.pdf

[15] M. Ben Alaya and B. Jourdain, Probabilistic approximation of a nonlinear parabolic equation
occuring in rheology, Journal of Applied Probability, 44 (2007), 528–546.
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