Equilibria for data networks

  • Received: 01 February 2007 Revised: 01 May 2007
  • Primary: 90B18; Secondary: 35L65.

  • This paper investigates equilibrium solutions for data flows on a network. We consider a fluid dynamic model based on conservation laws. The dynamics at nodes is solved by FIFO policy combined with through flux maximization. We first link the dimension of the equilibria space to topological properties of the graph associated to the network. Then we focus on regular plane tilings with square or triangular cells. For various networks, we completely determine the characteristics of periodic equilibria and, in some cases, of all equilibria. The obtained results are expected to play a role both in the analysis of asymptotic behavior of network load and for security issues in case of node failures.

    Citation: Alessia Marigo. Equilibria for data networks[J]. Networks and Heterogeneous Media, 2007, 2(3): 497-528. doi: 10.3934/nhm.2007.2.497

    Related Papers:

    [1] Alessia Marigo . Equilibria for data networks. Networks and Heterogeneous Media, 2007, 2(3): 497-528. doi: 10.3934/nhm.2007.2.497
    [2] Alberto Bressan, Ke Han . Existence of optima and equilibria for traffic flow on networks. Networks and Heterogeneous Media, 2013, 8(3): 627-648. doi: 10.3934/nhm.2013.8.627
    [3] Alberto Bressan, Khai T. Nguyen . Optima and equilibria for traffic flow on networks with backward propagating queues. Networks and Heterogeneous Media, 2015, 10(4): 717-748. doi: 10.3934/nhm.2015.10.717
    [4] Emiliano Cristiani, Fabio S. Priuli . A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks. Networks and Heterogeneous Media, 2015, 10(4): 857-876. doi: 10.3934/nhm.2015.10.857
    [5] Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel . Lyapunov stability analysis of networks of scalar conservation laws. Networks and Heterogeneous Media, 2007, 2(4): 751-759. doi: 10.3934/nhm.2007.2.751
    [6] Jean-Bernard Baillon, Guillaume Carlier . From discrete to continuous Wardrop equilibria. Networks and Heterogeneous Media, 2012, 7(2): 219-241. doi: 10.3934/nhm.2012.7.219
    [7] Fethallah Benmansour, Guillaume Carlier, Gabriel Peyré, Filippo Santambrogio . Numerical approximation of continuous traffic congestion equilibria. Networks and Heterogeneous Media, 2009, 4(3): 605-623. doi: 10.3934/nhm.2009.4.605
    [8] Timilehin O. Alakoya, Bidisha Ghosh, Salissou Moutari, Vikram Pakrashi, Ranganatha B. Ramachandra . Traffic network analysis via multidimensional split variational inequality problem with multiple output sets. Networks and Heterogeneous Media, 2024, 19(1): 169-195. doi: 10.3934/nhm.2024008
    [9] Yacine Chitour, Frédéric Grognard, Georges Bastin . Equilibria and stability analysis of a branched metabolic network with feedback inhibition. Networks and Heterogeneous Media, 2006, 1(1): 219-239. doi: 10.3934/nhm.2006.1.219
    [10] Riccardo Bonetto, Hildeberto Jardón Kojakhmetov . Nonlinear diffusion on networks: Perturbations and consensus dynamics. Networks and Heterogeneous Media, 2024, 19(3): 1344-1380. doi: 10.3934/nhm.2024058
  • This paper investigates equilibrium solutions for data flows on a network. We consider a fluid dynamic model based on conservation laws. The dynamics at nodes is solved by FIFO policy combined with through flux maximization. We first link the dimension of the equilibria space to topological properties of the graph associated to the network. Then we focus on regular plane tilings with square or triangular cells. For various networks, we completely determine the characteristics of periodic equilibria and, in some cases, of all equilibria. The obtained results are expected to play a role both in the analysis of asymptotic behavior of network load and for security issues in case of node failures.


  • This article has been cited by:

    1. Georges Bastin, Jean-Michel Coron, 2016, Chapter 3, 978-3-319-32060-1, 85, 10.1007/978-3-319-32062-5_3
    2. Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485
    3. Georges Bastin, Jean-Michel Coron, Exponential stability of networks of density-flow conservation laws under PI boundary control, 2013, 46, 14746670, 221, 10.3182/20130925-3-FR-4043.00029
    4. Georges Bastin, Jean-Michel Coron, Simona Oana Tamasoiu, Stability of linear density-flow hyperbolic systems under PI boundary control, 2015, 53, 00051098, 37, 10.1016/j.automatica.2014.12.025
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3889) PDF downloads(53) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog